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1 Goal of this lecture

Let M, be the moduli stack of smooth genus g > 2 curves. Goal of seminar: understand
H*(M,, Q).
Essential tool: Deligne-Mumford compactification
M, C M, = {stable curves}.
After lunch, ﬂg will be constructed. For the moment, assume it exists. Today we shall prove:

Theorem 1 (Deligne-Mumford, '69). ﬂg/(c is proper. Equivalently, M 4(C) is compact Hausdorff.

To see why these notions are equivalent, first observe that M 4(C) is compact Hausdorff if
and only if M, is proper over C [SGA1, Bourbaki]. So it suffices to show that M, is proper if
and only if M is; since the morphism M, — M is finite, it suffices to prove that properness of
Mg implies properness of Mg, but this follows from the Keel-Mori theorem: the coarse moduli
space X of a separated DM stack X is a separated algebraic space, and hence proper if X is
proper (Stacks).

2 Notation

e All schemes and stacks defined over C.
e An algebraic variety is a reduced and separated scheme of finite type over C.

e A curve (/surface) is a complete algebraic variety all whose irreducible components are of
dimension one (/two).

3 Nodal and stable curves

Let C' = U;C; be a curve with normalization 7 : C — C. Then O¢ — m.O¢ is injective. Indeed,
let U be an affine open subset of C' and let A = O¢(U). Let p; be the prime ideal corresponding
to the generic point &; of C;. Then we have a finite canonical homomorphism

Recall that /(0) = Np, the intersection of all prime ideals [Altman-Kleiman, 3.29], which is also
the intersection of all minimal prime ideals of A [A-K, 3.14] - hence this intersection is zero since
A is reduced. So ¢ is injective. It induces Frac(A) = &;Frac(A/p;). Since V (p;) = Spec(A/p;) is
an open subset of C;, V/(p;) is integral, hence A/p; is an integral domain. Moreover, the integral
closure A" of A in Frac(A) is contained in &(A/p;)’, where (A/p;)" is the integral closure of the
domain A/p; in the field Frac(A/p;). It follows that A = &(A/p;)’, and that A — A’ is injective.
Define a coherent sheaf S on C' by the following exact sequence:

0—>Oc—>7T*OC/—>S—>0;

S is a skyscraper sheaf whose support is Csing. If 0, = dim¢ S;, then we obtain n—3 . pa(C}) =

Zx(oc;) = x(0cr) = x(m0cr) = X(Oc)+X(S) = 1=pa(C)+dim HY(C, S) = 1=pa(C)+) &,
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Lemma 2. Consider the curve C' = U;_,C; as above. Then

Pa(C) +n—1=> pa(C}) + > dimd,.
=1 x

Proposition 3. Let x € C. The following are equivalent:
1. 7 Yz) = {a, B} for some a, B € C and 6, =1,

2. We have an isomorphism

Ox.o = Cllz, y]]/ (xy)-

3. We have an isomorphism R
Oxen o = Clz,y]l/ (zy).

4. Consider the analytic subset X = {xy = 0} C C2. There is an open neighborhood x € U C
C* and an open neighborhood 0 € V- C X such that (U, x) = (V,0).

Proof. The direction 4 = 3 is clear. For 3 <= 2, this follows from the fact that for any
locally algebraic scheme X over C, the morphism of ringed spaces X" induces an isomorphism
on completed local rings [SGA 1]. For 2 <= 1, see [Liu, 7.5.15]. We claim that 1 = 4. By
[Liu, proof of 10.3.7(d)], C is locally a closed (hence principal) subscheme of a smooth surface. If
S is this surface, then S looks locally like C?, hence C is determined locally by a holomorphic
function f : C2 — C. Then f(0) = 0f/0x(0) = 0f/0y(0) = 0, and that the Hessian of f at 0 is
non-singular. Therefore 4 holds by [GACII, 10.2.3]. O

Definition 4. Let C be a curve. A point x € C is a node if the above conditions are satisfied. A
family of nodal curves is a proper flat morphism of schemes

v: 2 — B
such that every geometric fiber is a nodal curve. We also say that ¢ is a nodal S-curve.
Examples 5. Draw pictures.
Lemma 6. Let f: C — S be a a nodal S-curve. Then f is a local complete intersection.

Proof. Since f is flat and of finite type, it suffices to prove this in the case where S is the
spectrum of an algebraically closed field k. We use the following Lemma: Let X — S be
a morphism of finite type over a locally Noetherian scheme S. Fiz s € S, x € X4, and let
d = dimyy) Q%(s/k(s)@ ®ox, , k(x). Then in a neighborhood of x, X — S factors into a closed
immersion X — Z followed by a morphism Z — S which is smooth at x, and such that dim, Zs; =
d and that le/s’m is free of rank d over Oz,. [Liu, 6.2.4]. Hence C is locally a closed - hence
principal - subscheme of a smooth surface over k. Consequently, C'is a local complete intersection
over k. O

Corollary 7. Let C be a nodal curve. Then C has a canonical sheaf we [Liu, 6.4.7] which is
isomorphic to the dualizing sheaf wg.. In particular, the dualizing sheaf w¢. is invertible.

Proof. See [Hartshorne, II1.7.11]. O

Proposition 8. Let C' be a connected nodal curve of genus g = pa(C) > 2. The following are
equivalent:

1. Let E be a smooth rational irreducible component of C. Then E intersects the other
components of C' in more than 2 points.

2. |Aut(C)| < oo.



3. we is ample.

Proof. The equivalence of 1 and 2 is clear. Now let Q be the set of points of C' lying over nodes
of C, and let {C;} be the irreducible components of C. For the equivalence of 2 and 3, one
proceeds to show that, by the description of we in terms of meromorphic differentials,

deg(wle,) = 29(C) =2+ [(Q N Cy)l. (1)

But Aut(C) is finite if and only if the right side of (1) is larger than zero. Since a line bundle on
a curve is ample if and only if its degree is positive on every irreducible component [ref: Liu],
the result follows. O

Definition 9. Let C be a curve. Then C is called stable if C is nodal, g(C) = HY(C,O¢) > 2,
and the above conditions are satisfied. Let S be a scheme. A stable curve of genus g over S is
a proper flat morphism 7 : C — S whose geometric fibers are stable curves of genus g.

Examples 10. Draw pictures.
The following theorem is useful for constructing the moduli space of genus g stable curves:

Theorem 11 (Deligne-Mumford). Let C' be a stable curve. Then w??’ is very ample.

4 Stable Reduction

Recall: our goal was to prove that M, (assuming it exists as a finite type Deligne-Mumford
stack over C) is proper over C. The first step is separation. Why carry about stable curves? Let
C be a smooth curve of genus g > 2 and let p be a point on C. Let X = C' x C and let Y be the
blow-up of X along (p,p). Then 7 :Y — C is a family of nodal curves of fiber C; = 771(t) = C
whenever ¢ # p, and C,, the union CUpP!, the curve C glued to P! at the point P. Both X — C
and Y — C are families of nodal curves, extending the smmooth curve X \ {p,p} — C \ {p}.

In other words, if we try to compactify M, by throwing in all nodal curves, even if we manage
to construct a moduli space, the result will not be separated. If we use stable curves, this does
not happen:

Proposition 12. Let X and Y be stable curves over a discrete valuation ring R with algebraically
closed residue field. Denote by n and s the generic and closed points of Spec R, and assume that
the generic fibres X, and Y, of X and Y are smooth. Then any isomorphism ¢, between X,
and Y, extends to an isomorphism ¢ between X and Y .

Proof. Start with a smooth curve X, of genus g > 2 over the quotient field K of R, and let X
be a stable curve over R with X, as its generic fibre. Now given a smooth curve C' of genus
g > 1 over K, there is, up to canonical isomorphism, at most one regular 2-dimensional scheme
Y, proper and flat over R, with C' as its generic fibre, without exceptional curves of the first
kind in Y. One can show that the existence of X implies the existence of a minimal model Y of
X, and moreover that X is the normal scheme obtained from Y by contracting all non-singular
rational components of Yy linked to the other irreducible components by exactly two points. [

So what about stable curves?

Theorem 13 (Stable Reduction). Let X — B be a proper flat curve over a smooth pointed curve
(B,0) such that the restriction X* — B\ {0} is a stable genus g > 2 curve. There exists a finite
cover B' — B, totally ramified over 0, and a stable genus g curve X — B’ over B’ such that

‘)?‘(B’)* >~ X X B* (B,)*

Diagram:



Instead of giving a complete proof, we first give an example and then give a sketch of the
proof.

Example 14. Consider a smooth projective surface S and an ample line bundle L on it, and let
PL c PHO(S, L) be a projective line. This gives a pencil of curves {C;} on S; suppose that Cy is
a smooth curve for t in a punctured neighborhood of t = 0, but that C' := Cy is a curve with one
cusp p € Cy. We can write the equation of the curve in a neighborhood of p and t =0 as

with G nonzero at p. Locally, such a pencil will look like y? = 3+t Let C — C be the
normalization of C. Then the stable limit is C U, E, the curve C with an elliptic tail at p € C.

Proof. Let 2 C P! x S be the total space of the family, and write the family by 7 : 2~ — B.
Notice that 2" is smooth. We have C' = Xy, an effective irreducible divisor on 2°. First blow
up the point p € C: write 1 : Bl,Z = 21 — 2.

Draw picture.

This amounts to replacing the divisor C' by ¢*C = C+ 2F1, where E; = P!. Note that
C-Ey = (p*C —2E))-E, = —2E? =2.

IfCn Ey = {p1,p2}, then there are two points of C lying over the node p € C; this is absurd,
hence C' and Ej intersect in a single point p € 27, and have intersection multiplicity 2 there.

Next, we blow up the point p € 27 to get Za: write ¢ : 25 — Z1.
Draw picture.

This creates an extra smooth rational curve Es C Z5. Note that ¢* (5’ +2F)) = C+ 2F1 4+ 3F;
as divisors on Z5. One observes that

C-Ey=(C—Ey)-(E1—E)=C -Ei+E}=2-1=1.
Similarly, C-FEy=F -Ey=1. Suppose that C meets E; and E» in different points. Since C
and E7 meet transversally now, and their intersectio number on 25 outside E5 is the same as
their intersection number on 27, so this is absurd. Hence C intersects FE; and E5 in the same
point p € Z5. We have: N N

©5(C +2E1) = C +2E) + 3.

Next, we blow up p € Z5: write g3 : Z3 — %5 for this morphism.
Draw picture.

Note that C- By = (¢*C' — E3)-(¢*E1 — E3) = C-E1 4+ E2 = 0, and similarly C- Ey = E; - Ey = 0.
Moreover, we have B _
QOE(C +2F; + 3E2) =C+2FE, +3Ey+6GE;.

We have thus arrived at a family whose reduced special fiber has only nodes as singularities; but
the special fiber is non-reduced, have components of multiplicity 2, 3 and 6.

Definition 15. For any divisor D =) a;D; on a surface, and p € Z, define D=, to be the divisor
D=, =>"a;D; where 0 <a; <p—1 and a; = a; mod p.

Lemma 16. Consider our family & — B above, with special fiber Xog = D = > a;D;. For any
prime number p, let Z be the normalization of the base change of 2" — B along B — B,t — tP.

Then & — Z is a finite cover whose ramification divisor is D=, C 2 . Moreover, Z is smooth
if D=, is smooth.



Proof. Let 2 — B be the base change of 2" — B along B — B, t — tP. Then 2"/ — 2
is a degree p cover ramified along D = {t = 0}, so that the local equation of the surface 2~
is {(u,z) € Bx 2 :u? = m(x) =t} everywhere. Let E C 2 be a component of multiplicity
m = a+pk, 0 < a < p—1in the special fiber. Let p € D and let g € m;, C Og , be the Cartier

divisor defining D,..qy around p. Then in a neighborhood of p, t = ¢, so that the local equation
of 2" will be

{(u,2) - w” = g™ (2)}.
If m > 1, this will be singular along the inverse image of D. The normalization process will re-

place u by a local coordinate v = u/ glm/rl =4 /g¥, so that the local equation of the normalization
will be

g
gkv gkp
So indeed, 2 — % is a ramified degree p cover, whose ramification divisor is D=,,. O

In our case, D = (t) C 2 reduced mod 2 is D=y = C + Fs. Since Dy is smooth, X will
be smooth as well. The inverse images of Ey and C will be curves mapping isomorphically to
them. Since F3 meets the branch locus in two points, its inverse image Y will be a smooth
double cover of E3 = P! ramified at two points: by Riemann-Hurwitz, this gives 2g(Y) — 2 =
2(—=2)+2=-2 = ¢g=0:Y is a single rational curve and we write F3 =Y C 2. Since E
is disjoint from the branch locus, ¢! E; is an unramified cover of Fy = P!: two disjoint smooth
rational curves which we call £} and F;. The pullback to 2~ of the divisor D = (¢) on 2 is
the sum of the components of the inverse image of the special fiber in 2", which multiplicities
unchanged from that of the corresponding component of (¢) on 2" for those components that
are not contained in the branch divisor, and which multiplicity doubled for components in the
branch divisor. Therefore, we have:

@*D = 2C + 2E} + 2E| + 6E5 + 6E3.
The special fiber (u) of the new family 2 — B is exactly one-half of this divisor: thus

(u) = Xo = C + E} + E| + 3E; + 3E.

Draw picture.

Write 2~ — B for the new family, with special fiber D = (u) as given above. Make a base
change of order 3. Note that p!* order covers of P! totally ramified along two points have genus
g determined by

29 —2=-2p+2(p—1);

that is, g = 0. Note that D=3 = 6’+Ei +E]. Write ¢ : 2 — 2 for the 3rd order cover ramified
along D=3 as above. The inverse images of C?E; and Ei/ are copies of themselves. Since Fs is
disjoint from D=3, its inverse image is a disjoint union of three smooth rational curves, which
we call By, Ey and F, . The inverse image F of F3 is a smooth triple cover of F3 = P! totally
ramified over three points. Riemann-Hurwitz gives

29(F)—2=-6+4+3-2 = g(E)=1.
In other words, FE is an elliptic curve. We have
¢*D = 3C + 3E}| + 3E| + 3Ey + 3E, + 3E, + 3E.

Let v be the local coordinate on B such that v = u. Write 7 : 2 — B as the new family thus
obtained. Then _
(v)=Xo=C+E{+E, +E5+Ey+FEy, +E.



Draw picture.

Then 7 : 2 — B is a family whose special fiber X is a reduced curve with only nodes as
singularities. Note that for any component F' in the special fiber Xy we have F' - Xy = 0, since
in fact Xy is a principal Cartier divisor, defined by the meromorphic function v : 2~ — P!,
v e C(Z). It follows that for any rational curve F' in X, we have

F-Xg=F)+F - E=F’+1=0 — F?=—1.

Hence F' is an exceptional curve of the first kind and can be contracted by Castelnuovo’s theorem
[Hartshorne, V.5.7]. Blowing down the five curves of this tape, we arrive at a family

T: X —- B

whose special fiber consists of the union of the normalization C' of the original curve together
with the elliptic curve E (called an elliptic tail), joined at the point of C' lying over the cusp of C.

Draw picture.

Then 7 : & — B is the stable reduction. (Note that E is the unique elliptic curve with
an automorphism of order 3. Its j-invariant is j(E) = 0.) O

5 Proof of Stable Reduction

Sketch of Proof of Theorem 15. —

I. We may assume that our family 7 : 2~ — B is smooth over B\ {0}. Indeed, this follows
from the fact that we have already proved that M, is separated (see Proposition 12) so
this follows from [Stacks, Lemma 0CQM].

II. Apply resolution of singularities to the pair (27, Xy): thus we may assume that 2 is
smooth, and that (X)yeq is a normal crossings divisor. At this point, the map 7 will by
given by an equation of the form ¢ = 2% in terms of a local coordinate ¢ on B and local
coordinates « and y on Z .

III. Let m be the least common multiple of the multiplicities of the components of the special
fiber Xy. Make a base change t — t™ and normalize the resulting total space. A local
calculation then shows that X has reduced normal crossings and the map 7 has local
equation of the form either t" = x or, at nodes of the special fiber, " = zy where t is
again a local coordinate on B. In the latter case, the total space Z  will be smooth at the
node if and only if n = 1. If n > 1, there is an A,,_; singularity at the node. In any case,
Xy is now reduced and nodal.

IV. Minimally resolve the A,_; singularities that arise. This has the effect of replacing each
singularity by a chain of (n — 1) smooth rational curves. Now we have a family 2" — B
with smooth total space and reduced, nodal special fiber.

V. Blow down all exceptional curves of the first kind: these are smooth rational components
of Xy meeting the rest of Xy only once. This gives the minimal model 2" — B of Z":
given any smooth curve Y — B\ {0}, there is, up to canonical isomorphism, at most one
regular surface Y together with a flat and proper morphism Y — B, restricting to Y over
B\ {0}, without exceptional curves of the first kind.

VI. To obtain stable reduction, blow down all semistable chains of smooth rational curves:
that is, chains of smooth rational curves of self-intersection —2.
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6 Stable Reduction in all characteristics

There is in fact a stronger version of Theorem 13:

Theorem 17 (Deligne-Mumford, ’69). Let R be a discrete valuation ring with fraction field K. Let
n and s be the generic and closed point of Spec(R) respectively. Let C' be a smooth geometrically
wrreducible curve over K of genus g > 2. There exists a finite algebraic extension L of K and a
stable curve €1, — Spec(Ry,), where Ry, is the integral closure of R in L, such that €7, = Cx kL.

Sketch of the proof. Let € be the minimal model of C over R: € is to be a regular scheme, flat
and proper over R, with generic fiber €, = C, such that for any other regular scheme ¢”, flat
over R with generic fiber ‘5,; = (C, the birational map ¢’ — € is a morphism. This scheme exists
[Safarevich, Lichtenbaum] and is clearly unique for these properties. Moreover, € is projective
over R [Lichtenbaum, see Liu, 8.3.16].

Let A be an abelian variety over K. Let A° be the identy component of the Néron model
of A over R. We say that A has semi-abelian reduction over R if A? is a semi-abelian variety.
That is, there is an exact sequence of algebraic groups

0T A= B0

where T is a torus and B an abelian variety over k(s). Moreover, we say that C' has stable
reduction in sense 1 if €5 is a nodal curve. We say that C has stable reduction in sense 2 if
there is a stable curve 2 over R with generic fibre 2, = C.

Proposition 18. The two senses of stable reduction for C' are equivalent.
Proof. See [DM, 2.3]. O

Let J be the Jacobian of C. It is shown in [DM, Theorem 2.4] that J has stable reduction
if and only if C' has stable reduction. Moreover, there is the following

Theorem 19 (Grothendieck). Let R be a discrete valuation ring with quotient field K. Let A be
an abelian variety over K. Then there exists a finite algebraic extension L of K such that, if
Ry, is the integral closure of R in L, then A X L has semi-abelian reduction over R.

This concludes the proof. ]
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