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1 Goal of this lecture

Let Mg be the moduli stack of smooth genus g ≥ 2 curves. Goal of seminar: understand

H∗(Mg,Q).

Essential tool: Deligne-Mumford compactification

Mg ⊂Mg = {stable curves}.

After lunch, Mg will be constructed. For the moment, assume it exists. Today we shall prove:

Theorem 1 (Deligne-Mumford, ’69). Mg/C is proper. Equivalently, Mg(C) is compact Hausdorff.

To see why these notions are equivalent, first observe that Mg(C) is compact Hausdorff if
and only if Mg is proper over C [SGA1, Bourbaki]. So it suffices to show that Mg is proper if
and only if Mg is; since the morphismMg →Mg is finite, it suffices to prove that properness of
Mg implies properness of Mg, but this follows from the Keel-Mori theorem: the coarse moduli
space X of a separated DM stack X is a separated algebraic space, and hence proper if X is
proper (Stacks).

2 Notation

• All schemes and stacks defined over C.

• An algebraic variety is a reduced and separated scheme of finite type over C.

• A curve (/surface) is a complete algebraic variety all whose irreducible components are of
dimension one (/two).

3 Nodal and stable curves

Let C = ∪iCi be a curve with normalization π : C̃ → C. Then OC → π∗OC′ is injective. Indeed,
let U be an affine open subset of C and let A = OC(U). Let pi be the prime ideal corresponding
to the generic point ξi of Ci. Then we have a finite canonical homomorphism

ϕ : A→ ⊕iA/pi.

Recall that
√

(0) = ∩p, the intersection of all prime ideals [Altman-Kleiman, 3.29], which is also
the intersection of all minimal prime ideals of A [A-K, 3.14] - hence this intersection is zero since
A is reduced. So ϕ is injective. It induces Frac(A) ∼= ⊕iFrac(A/pi). Since V (pi) = Spec(A/pi) is
an open subset of Ci, V (pi) is integral, hence A/pi is an integral domain. Moreover, the integral
closure A′ of A in Frac(A) is contained in ⊕(A/pi)

′, where (A/pi)
′ is the integral closure of the

domain A/pi in the field Frac(A/pi). It follows that A′ = ⊕(A/pi)
′, and that A→ A′ is injective.

Define a coherent sheaf S on C by the following exact sequence:

0→ OC → π∗OC′ → S → 0;

S is a skyscraper sheaf whose support is Csing. If δx = dimC Sx, then we obtain n−
∑

i pa(C
′
i) =∑

i

χ(OC′i) = χ(OC′) = χ(π∗OC′) = χ(OC)+χ(S) = 1−pa(C)+dimH0(C,S) = 1−pa(C)+
∑
x

δx.
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Lemma 2. Consider the curve C = ∪ni=1Ci as above. Then

pa(C) + n− 1 =
n∑
i=1

pa(C
′
i) +

∑
x

dim δx.

Proposition 3. Let x ∈ C. The following are equivalent:

1. π−1(x) = {α, β} for some α, β ∈ C̃ and δx = 1,

2. We have an isomorphism
ÔX,x ∼= C[[x, y]]/(xy).

3. We have an isomorphism
ÔXan,x

∼= C[[x, y]]/(xy).

4. Consider the analytic subset X = {xy = 0} ⊂ C2. There is an open neighborhood x ∈ U ⊂
Can and an open neighborhood 0 ∈ V ⊂ X such that (U, x) ∼= (V, 0).

Proof. The direction 4 =⇒ 3 is clear. For 3 ⇐⇒ 2, this follows from the fact that for any
locally algebraic scheme X over C, the morphism of ringed spaces Xan induces an isomorphism
on completed local rings [SGA 1]. For 2 ⇐⇒ 1, see [Liu, 7.5.15]. We claim that 1 =⇒ 4. By
[Liu, proof of 10.3.7(d)], C is locally a closed (hence principal) subscheme of a smooth surface. If
S is this surface, then San looks locally like C2, hence C is determined locally by a holomorphic
function f : C2 → C. Then f(0) = ∂f/∂x(0) = ∂f/∂y(0) = 0, and that the Hessian of f at 0 is
non-singular. Therefore 4 holds by [GACII, 10.2.3].

Definition 4. Let C be a curve. A point x ∈ C is a node if the above conditions are satisfied. A
family of nodal curves is a proper flat morphism of schemes

ϕ : X → B

such that every geometric fiber is a nodal curve. We also say that ϕ is a nodal S-curve.

Examples 5. Draw pictures.

Lemma 6. Let f : C → S be a a nodal S-curve. Then f is a local complete intersection.

Proof. Since f is flat and of finite type, it suffices to prove this in the case where S is the
spectrum of an algebraically closed field k. We use the following Lemma: Let X → S be
a morphism of finite type over a locally Noetherian scheme S. Fix s ∈ S, x ∈ Xs, and let
d = dimk(x) Ω1

Xs/k(s),x
⊗OXs,x

k(x). Then in a neighborhood of x, X → S factors into a closed
immersion X → Z followed by a morphism Z → S which is smooth at x, and such that dimx Zs =
d and that Ω1

Z/S,x is free of rank d over OZ,x. [Liu, 6.2.4]. Hence C is locally a closed - hence
principal - subscheme of a smooth surface over k. Consequently, C is a local complete intersection
over k.

Corollary 7. Let C be a nodal curve. Then C has a canonical sheaf ωC [Liu, 6.4.7] which is
isomorphic to the dualizing sheaf ωoC . In particular, the dualizing sheaf ωoC is invertible.

Proof. See [Hartshorne, III.7.11].

Proposition 8. Let C be a connected nodal curve of genus g = pa(C) ≥ 2. The following are
equivalent:

1. Let E be a smooth rational irreducible component of C. Then E intersects the other
components of C in more than 2 points.

2. |Aut(C)| <∞.
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3. ωC is ample.

Proof. The equivalence of 1 and 2 is clear. Now let Q be the set of points of C̃ lying over nodes
of C, and let {Ci} be the irreducible components of C. For the equivalence of 2 and 3, one
proceeds to show that, by the description of ωC in terms of meromorphic differentials,

deg(ω|Ci) = 2g(C̃i)− 2 + |(Q ∩ C̃i)|. (1)

But Aut(C) is finite if and only if the right side of (1) is larger than zero. Since a line bundle on
a curve is ample if and only if its degree is positive on every irreducible component [ref: Liu],
the result follows.

Definition 9. Let C be a curve. Then C is called stable if C is nodal, g(C) = H1(C,OC) ≥ 2,
and the above conditions are satisfied. Let S be a scheme. A stable curve of genus g over S is
a proper flat morphism π : C → S whose geometric fibers are stable curves of genus g.

Examples 10. Draw pictures.

The following theorem is useful for constructing the moduli space of genus g stable curves:

Theorem 11 (Deligne-Mumford). Let C be a stable curve. Then ω⊗3C is very ample.

4 Stable Reduction

Recall: our goal was to prove that Mg (assuming it exists as a finite type Deligne-Mumford
stack over C) is proper over C. The first step is separation. Why carry about stable curves? Let
C be a smooth curve of genus g ≥ 2 and let p be a point on C. Let X = C×C and let Y be the
blow-up of X along (p, p). Then π : Y → C is a family of nodal curves of fiber Ct = π−1(t) = C
whenever t 6= p, and Cp the union C∪P P1, the curve C glued to P1 at the point P . Both X → C
and Y → C are families of nodal curves, extending the smmooth curve X \ {p, p} → C \ {p}.

In other words, if we try to compactify Mg by throwing in all nodal curves, even if we manage
to construct a moduli space, the result will not be separated. If we use stable curves, this does
not happen:

Proposition 12. Let X and Y be stable curves over a discrete valuation ring R with algebraically
closed residue field. Denote by η and s the generic and closed points of Spec R, and assume that
the generic fibres Xη and Yη of X and Y are smooth. Then any isomorphism ϕη between Xη

and Yη extends to an isomorphism ϕ between X and Y .

Proof. Start with a smooth curve Xη of genus g ≥ 2 over the quotient field K of R, and let X
be a stable curve over R with Xη as its generic fibre. Now given a smooth curve C of genus
g ≥ 1 over K, there is, up to canonical isomorphism, at most one regular 2-dimensional scheme
Y , proper and flat over R, with C as its generic fibre, without exceptional curves of the first
kind in Ys. One can show that the existence of X implies the existence of a minimal model Y of
Xη, and moreover that X is the normal scheme obtained from Y by contracting all non-singular
rational components of Ys linked to the other irreducible components by exactly two points.

So what about stable curves?

Theorem 13 (Stable Reduction). Let X → B be a proper flat curve over a smooth pointed curve
(B, 0) such that the restriction X ∗ → B \ {0} is a stable genus g ≥ 2 curve. There exists a finite
cover B′ → B, totally ramified over 0, and a stable genus g curve X̃ → B′ over B′ such that

X̃ |(B′)∗ ∼= X ∗ ×B∗ (B′)∗.

Diagram:
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Instead of giving a complete proof, we first give an example and then give a sketch of the
proof.

Example 14. Consider a smooth projective surface S and an ample line bundle L on it, and let
P1 ⊂ PH0(S,L) be a projective line. This gives a pencil of curves {Ct} on S; suppose that Ct is
a smooth curve for t in a punctured neighborhood of t = 0, but that C := C0 is a curve with one
cusp p ∈ C0. We can write the equation of the curve in a neighborhood of p and t = 0 as

F (x, y) + t ·G(x, y) = 0,

with G nonzero at p. Locally, such a pencil will look like y2 = x3 + t. Let C̃ → C be the
normalization of C. Then the stable limit is C̃ ∪p E, the curve C̃ with an elliptic tail at p ∈ C̃.

Proof. Let X ⊂ P1 × S be the total space of the family, and write the family by π : X → B.
Notice that X is smooth. We have C = X0, an effective irreducible divisor on X . First blow
up the point p ∈ C: write ϕ1 : BlpX = X1 →X .

Draw picture.

This amounts to replacing the divisor C by ϕ∗C = C̃ + 2E1, where E1
∼= P1. Note that

C̃ · E1 = (ϕ∗C − 2E1) · E1 = −2E2
1 = 2.

If C̃ ∩ E1 = {p1, p2}, then there are two points of C̃ lying over the node p ∈ C; this is absurd,
hence C̃ and E1 intersect in a single point p ∈X1, and have intersection multiplicity 2 there.

Next, we blow up the point p ∈X1 to get X2: write ϕ : X2 →X1.

Draw picture.

This creates an extra smooth rational curve E2 ⊂X2. Note that ϕ∗(C̃ + 2E1) = C̃ + 2E1 + 3E1

as divisors on X2. One observes that

C̃ · E1 = (C̃ − E2) · (E1 − E2) = C̃ · E1 + E2
2 = 2− 1 = 1.

Similarly, C̃ · E2 = E1 · E2 = 1. Suppose that C̃ meets E1 and E2 in different points. Since C̃
and E1 meet transversally now, and their intersectio number on X2 outside E2 is the same as
their intersection number on X1, so this is absurd. Hence C̃ intersects E1 and E2 in the same
point p ∈X2. We have:

ϕ∗2(C̃ + 2E1) = C̃ + 2E1 + 3E2.

Next, we blow up p ∈X2: write ϕ3 : X3 →X2 for this morphism.

Draw picture.

Note that C̃ ·E1 = (ϕ∗C̃−E3) ·(ϕ∗E1−E3) = C̃ ·E1+E2
3 = 0, and similarly C̃ ·E2 = E1 ·E2 = 0.

Moreover, we have
ϕ∗3(C̃ + 2E1 + 3E2) = C̃ + 2E1 + 3E2 + 6E3.

We have thus arrived at a family whose reduced special fiber has only nodes as singularities; but
the special fiber is non-reduced, have components of multiplicity 2, 3 and 6.

Definition 15. For any divisor D =
∑
aiDi on a surface, and p ∈ Z, define D≡p to be the divisor

D≡p =
∑
āiDi where 0 ≤ ai ≤ p− 1 and āi ≡ ai mod p.

Lemma 16. Consider our family X → B above, with special fiber X0 = D =
∑
aiDi. For any

prime number p, let X̃ be the normalization of the base change of X → B along B → B, t 7→ tp.
Then X̃ →X is a finite cover whose ramification divisor is D≡p ⊂X . Moreover, X̃ is smooth
if D≡p is smooth.
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Proof. Let X ′ → B be the base change of X → B along B → B, t 7→ tp. Then X ′ → X
is a degree p cover ramified along D = {t = 0}, so that the local equation of the surface X ′

is {(u, x) ∈ B ×X : u2 = π(x) = t} everywhere. Let E ⊂ X be a component of multiplicity
m = a+ pk, 0 ≤ a ≤ p− 1 in the special fiber. Let p ∈ D and let g ∈ mp ⊂ OX ,p be the Cartier
divisor defining Dred around p. Then in a neighborhood of p, t = gm, so that the local equation
of X ′ will be

{(u, x) : up = gm(x)}.

If m > 1, this will be singular along the inverse image of D. The normalization process will re-
place u by a local coordinate v = u/g[m/p] = u/gk, so that the local equation of the normalization
will be

vp =
up

gkp
=
gm

gkp
= ga.

So indeed, X̃ →X is a ramified degree p cover, whose ramification divisor is D≡p.

In our case, D = (t) ⊂ X reduced mod 2 is D≡2 = C̃ + E2. Since D≡2 is smooth, X̃ will
be smooth as well. The inverse images of E2 and C̃ will be curves mapping isomorphically to
them. Since E3 meets the branch locus in two points, its inverse image Y will be a smooth
double cover of E3

∼= P1 ramified at two points: by Riemann-Hurwitz, this gives 2g(Y ) − 2 =

2(−2) + 2 = −2 =⇒ g = 0: Y is a single rational curve and we write E3 = Y ⊂ X̃ . Since E1

is disjoint from the branch locus, ϕ−1E1 is an unramified cover of E1
∼= P1: two disjoint smooth

rational curves which we call E′1 and E”
1 . The pullback to X̃ of the divisor D = (t) on X is

the sum of the components of the inverse image of the special fiber in X , which multiplicities
unchanged from that of the corresponding component of (t) on X for those components that
are not contained in the branch divisor, and which multiplicity doubled for components in the
branch divisor. Therefore, we have:

ϕ∗D = 2C̃ + 2E′1 + 2E
′′
1 + 6E2 + 6E3.

The special fiber (u) of the new family X̃ → B is exactly one-half of this divisor: thus

(u) = X̃0 = C̃ + E′1 + E
′′
1 + 3E2 + 3E3.

−

Draw picture.

Write X → B for the new family, with special fiber D = (u) as given above. Make a base
change of order 3. Note that pth order covers of P1 totally ramified along two points have genus
g determined by

2g − 2 = −2p+ 2(p− 1);

that is, g = 0. Note that D≡3 = C̃+E′1+E
′′
1 . Write ϕ : X̃ →X for the 3rd order cover ramified

along D≡3 as above. The inverse images of C̃?E1 and E
′′
1 are copies of themselves. Since E2 is

disjoint from D≡3, its inverse image is a disjoint union of three smooth rational curves, which
we call E′2, E

′′
2 and E

′′′
2 . The inverse image E of E3 is a smooth triple cover of E3

∼= P1 totally
ramified over three points. Riemann-Hurwitz gives

2g(E)− 2 = −6 + 3 · 2 =⇒ g(E) = 1.

In other words, E is an elliptic curve. We have

ϕ∗D = 3C̃ + 3E′1 + 3E
′′
1 + 3E′2 + 3E

′′
2 + 3E

′′′
2 + 3E.

Let v be the local coordinate on B such that v3 = u. Write π : X → B as the new family thus
obtained. Then

(v) = X0 = C̃ + E′1 + E
′′
1 + E′2 + E

′′
2 + E

′′′
2 + E.

6



−

Draw picture.

Then π : X → B is a family whose special fiber X0 is a reduced curve with only nodes as
singularities. Note that for any component F in the special fiber X0 we have F ·X0 = 0, since
in fact X0 is a principal Cartier divisor, defined by the meromorphic function v : X → P1,
v ∈ C(X ). It follows that for any rational curve F in X0, we have

F ·X0 = F 2 + F · E = F 2 + 1 = 0 =⇒ F 2 = −1.

Hence F is an exceptional curve of the first kind and can be contracted by Castelnuovo’s theorem
[Hartshorne, V.5.7]. Blowing down the five curves of this tape, we arrive at a family

π : X → B

whose special fiber consists of the union of the normalization C̃ of the original curve together
with the elliptic curve E (called an elliptic tail), joined at the point of C̃ lying over the cusp of C.

Draw picture.

Then π : X → B is the stable reduction. (Note that E is the unique elliptic curve with
an automorphism of order 3. Its j-invariant is j(E) = 0.)

5 Proof of Stable Reduction

Sketch of Proof of Theorem 13. −

I. We may assume that our family π : X → B is smooth over B \ {0}. Indeed, this follows
from the fact that we have already proved that Mg is separated (see Proposition 12) so
this follows from [Stacks, Lemma 0CQM].

II. Apply resolution of singularities to the pair (X , X0): thus we may assume that X is
smooth, and that (X0)red is a normal crossings divisor. At this point, the map π will by
given by an equation of the form t = xayb in terms of a local coordinate t on B and local
coordinates x and y on X .

III. Let m be the least common multiple of the multiplicities of the components of the special
fiber X0. Make a base change t 7→ tm and normalize the resulting total space. A local
calculation then shows that X0 has reduced normal crossings and the map π has local
equation of the form either tn = x or, at nodes of the special fiber, tn = xy where t is
again a local coordinate on B. In the latter case, the total space X will be smooth at the
node if and only if n = 1. If n > 1, there is an An−1 singularity at the node. In any case,
X0 is now reduced and nodal.

IV. Minimally resolve the An−1 singularities that arise. This has the effect of replacing each
singularity by a chain of (n − 1) smooth rational curves. Now we have a family X → B
with smooth total space and reduced, nodal special fiber.

V. Blow down all exceptional curves of the first kind: these are smooth rational components
of X0 meeting the rest of X0 only once. This gives the minimal model X → B of X :
given any smooth curve Y → B \ {0}, there is, up to canonical isomorphism, at most one
regular surface Ȳ together with a flat and proper morphism Ȳ → B, restricting to Y over
B \ {0}, without exceptional curves of the first kind.

VI. To obtain stable reduction, blow down all semistable chains of smooth rational curves:
that is, chains of smooth rational curves of self-intersection −2.

7



6 Stable Reduction in all characteristics

There is in fact a stronger version of Theorem 13:

Theorem 17 (Deligne-Mumford, ’69). Let R be a discrete valuation ring with fraction field K. Let
η and s be the generic and closed point of Spec(R) respectively. Let C be a smooth geometrically
irreducible curve over K of genus g ≥ 2. There exists a finite algebraic extension L of K and a
stable curve CL → Spec(RL), where RL is the integral closure of R in L, such that CL,η ∼= C×KL.

Sketch of the proof. Let C be the minimal model of C over R: C is to be a regular scheme, flat
and proper over R, with generic fiber Cη = C, such that for any other regular scheme C ′, flat
over R with generic fiber C ′η = C, the birational map C ′ → C is a morphism. This scheme exists
[Safarevich, Lichtenbaum] and is clearly unique for these properties. Moreover, C is projective
over R [Lichtenbaum, see Liu, 8.3.16].

Let A be an abelian variety over K. Let A0 be the identy component of the Néron model
of A over R. We say that A has semi-abelian reduction over R if A0

s is a semi-abelian variety.
That is, there is an exact sequence of algebraic groups

0→ T → A0
s → B → 0

where T is a torus and B an abelian variety over k(s). Moreover, we say that C has stable
reduction in sense 1 if Cs is a nodal curve. We say that C has stable reduction in sense 2 if
there is a stable curve X over R with generic fibre Xη = C.

Proposition 18. The two senses of stable reduction for C are equivalent.

Proof. See [DM, 2.3].

Let J be the Jacobian of C. It is shown in [DM, Theorem 2.4] that J has stable reduction
if and only if C has stable reduction. Moreover, there is the following

Theorem 19 (Grothendieck). Let R be a discrete valuation ring with quotient field K. Let A be
an abelian variety over K. Then there exists a finite algebraic extension L of K such that, if
RL is the integral closure of R in L, then A×K L has semi-abelian reduction over R.

This concludes the proof.
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