
On the topology of real algebraic stacks

Emiliano Ambrosi and Olivier de Gaay Fortman

Abstract

We investigate the topology of the real locus of a separated Deligne–Mumford stack of
finite type over the real numbers. Specifically, we propose a natural generalization of the
classical Smith–Thom inequality for real varieties to real Deligne–Mumford stacks, and
establish this conjecture in several cases. In the process, we develop methods for studying
the real locus of various types of real algebraic stacks. This requires a combination of
techniques from group theory, algebraic geometry, and topology.

1 Introduction

1.1 Smith–Thom inequality for real algebraic varieties. Let X be a real alge-
braic variety, by which we mean a finite type scheme over R. The topological space
X(C) is endowed with an involution σX : X(C) ! X(C) such that X(R) is equal to set
of fixed point X(C)σX of the involution σX .

One of the foundational result in real algebraic geometry (see [Flo52; Bor60; Tho65;
DIK00b; Man17] for various proofs) is the Smith–Thom inequality

h∗(X(R)) =
∑
i≥0

dimHi(X(R),Z/2) ≤
∑
i≥0

dimHi(X(C),Z/2) = h∗(X(C)). (1)

It allows one to bound the cohomology of X(R) in terms of the one of X(C), usually
much easier to compute. Here, and in the sequel, h∗(Y ) denotes the dimension of the
cohomology ring H∗(Y,Z/2) of a topological space Y .

1.2 Failure of the naive Smith–Thom inequality for real algebraic stacks. In
recent years, there has been increasing interest in moduli problems over R, particularly
in determining whether (1) attains equality for the associated coarse moduli space.
Notable cases include moduli spaces of stable vector bundles on a curve [BS22], Hilbert
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schemes of points on a surface [Fu23; KR24], and symmetric powers of varieties [BD17;
Fra18].

Note, however, that such a study says something about the real moduli space as-
sociated to the moduli problem only if this real moduli spaces arises as the real locus
of the coarse moduli space, a phenomenon which in fact seems rare. For instance, if
A1 is the coarse moduli space of elliptic curves, then A1(R) = R parametrizes complex
elliptic curves that admit a real structure up to complex isomorphism, whereas the real
moduli space of real elliptic curves has two connected components (there are exactly
two real models for a complex elliptic curve that can be defined over R).

To bypass this limitation, and start a systematic approach to study the topology
of real moduli spaces, one is led to consider real algebraic stacks. If X is such a stack,
then X (R) is a category rather than a set. To obtain a topological space in a way that
generalizes the euclidean topology on X(R) when X is a real variety, one considers the
set |X (R)| of isomorphism classes of X (R), and defines a natural topology on |X (R)| as
in [GF22b]. A similar procedure defines a topology on the set |X (C)| of isomorphism
classes of X (C) (if X is separated Deligne–Mumford, the latter coincides with the
topology on |X (C)| induced by the coarse moduli space).

The advantage of this perspective is that when the algebraic stack X represents a
moduli problem—parametrizing equivalence classes of certain algebraic objects (such
as genus g curves or sheaves on a fixed variety)—the set |X (R)| corresponds to the real
isomorphism classes of the real objects. For instance, |Mg(R)| represents the space of
isomorphism classes of real algebraic curves of genus g.

It is then natural to wonder whether the foundational inequality (1) generalizes to
this setting. In other words: do we have h∗(|X (R)|) ≤ h∗(|X (C)|) for each algebraic
stack X over R? This is not the case, as the elliptic curve example shows.

Example 1.1. Let X = A1 be the moduli stack of elliptic curves. The j-invariant gives
an homeomorphism |X (C)| ∼−! C, while |X (R)| has two connected components both
homeomorphic to R, one corresponding to elliptic curves with a connected real locus
and the other to those with a disconnected real locus. In particular, h∗(|X (R)|) = 2,
which is larger than h∗(|X (C)|) = 1.

The aim of this paper is twofold. First, we propose a conjectural alternative to the
Smith–Thom inequality, expected to hold for all real Deligne–Mumford stacks X (see
Conjecture 1.2 below). Second, we develop several techniques to study the topological
space |X (R)| associated with such a real stack X . These techniques, which allow us to
verify the conjecture in numerous examples, appear to be of independent interest.
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1.3 Conjectural Smith–Thom inequality for real algebraic stacks. The main
challenge in extending the Smith–Thom inequality (1) to algebraic stacks is that, al-
though |X (C)| is equipped with an involution σX : |X (C)| ! |X (C)| which generalizes
complex conjugation on the complex locus of a real variety, the natural map

|X (R)| −! |X (C)|σX (2)

is, even in easy examples, neither injective (Example 6.4) nor surjective (Example 6.5).
The failure of surjectivity of |X (C)|σX is due to the existence of isomorphism classes

of objects x ∈ X (C) which are isomorphic to their complex conjugate, but not defined
over R.

The failure of injectivity is measured by the following observation: for x ∈ X (R), the
fibre of (2) above the image of x in |X (C)|σX is in canonical bijection with the first Galois
cohomology group H1(Gal(C/R),Aut(xC)). Therefore, in a sense, the topological space
|X (C)| is too small to fully encode information about |X (R)|, as it does not capture,
for instance, the automorphisms of objects in X (C). To take these into account, we
consider the inertia stack π : IX ! X , whose complex locus consists of pairs (x, ϕ),
where x ∈ X (C) and ϕ is an automorphism of x. The fiber of π over an object
x ∈ X (C) is given by the constant group scheme of automorphisms of x.

With these considerations in mind, we propose the following conjectural generaliza-
tion of the Smith–Thom inequality (1) to real Deligne–Mumford stacks.

Conjecture 1.2. Let X be a separated Deligne–Mumford stack of finite type over R,
with inertia stack IX ! X . Then the following inequality holds:∑

i≥0

dimHi(|X (R)| ,Z/2) ≤
∑
i≥0

dimHi(|IX (C)|,Z/2). (3)

When X is a scheme, the map IX ! X is an isomorphism, hence (3) reduces to the
usual Smith–Thom inequality (1). Moreover, we construct various examples of stacks
which are not schemes for which the inequality (3) is an equality. As we explain below,
we prove Conjecture 1 in various cases.

We warn the reader that, in general, there is no natural closed embedding of |X (R)|
into |IX (C)|. For example, take an elliptic curve E over R such that h∗(E(R)) = 4, and
consider the stacky quotient X := [E/⟨−1⟩], where −1: E ! E is the multiplication
by −1. Then one can show (see Section 6.7) that |X (R)| ≃ E(R)

∐
E(R), and that

|IX (C)| ≃ E(C)
∐(∐

x∈E(C)[2]{x}))
)
.
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|[E/[±1]](R)| |I[E/[±1]](C)|
Figure 1: [E/[±1]]

a Note that inequality (3) holds in this case (and is an equality): we have h∗(|X (R)| =
8 and h∗(|IX (C)|) = 4 + 4 = 8.

Since Conjecture 1.2 is purely topological in nature, it is natural to consider a more
general formulation within the category of topological groupoids with involution. We
provide a precise statement of this generalized conjecture in Section 10.2.

Remark 1.3. Let X be a separated Deligne–Mumford stack of finite type over R.
If p : |IX (C)| ! |X (C)| is the map induced by π, then we have Hi(|IX (C)|,Z/2) =

Hi(|X (C)|, p∗Z/2). Therefore, defining FX = p∗Z/2, the inequality (3) becomes equiv-
alent to the inequality dimH∗(|X (R)| ,Z/2) ≤ dimH∗(|X (C)|, FX ). The latter might
be closer in analogy to the classical inequality (1).

Remark 1.4. When the Deligne–Mumford stack X over R is smooth, the space |X (R)|
carries a natural real analytic orbifold structure; see [GF22a, Section 2.2.3]. This orb-
ifold structure on |X (R)| is analogous to the natural complex analytic orbifold structure
on |X (C)|. It is natural to ask whether the classical Smith–Thom inequality (1) admits
an analogue in terms of orbifold cohomology. We explore this question in Section 10.1.

1.4 Topology of real quotient stacks. A distinctive feature of the Smith–Thom
inequality is its inherently global nature. Since varieties are locally contractible, the
inequality holds trivially at the local level. In contrast, the inequality proposed in Con-
jecture 1.2 does not seem locally trivial. Indeed, for any separated Deligne–Mumford
stack X over R and any x ∈ X (R), there exists a real algebraic variety U , a finite group
scheme Γ over R, a point y ∈ U(R) and an étale map [U/Γ] ! X such that y maps to
x (see [AV02, Lemma 2.2.3] and its proof). Even for [U/Γ], Conjecture 1.2 does not
appear to be straightforward.
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1.4.1 Topology of real quotient stacks. As it turns out, the topology of a real quotient
stack can be quite complicated, as the following theorem shows.

Let Γ be a finite group scheme over R, with associated real structure σΓ : Γ(C) !
Γ(C). Define Z1(G,Γ) as the set of γ ∈ Γ(C) with σΓ(γ) · γ = e. Recall that
the non-abelian Galois cohomology group H1(G,Γ) can be canonically identified with
Z1(G,Γ)/ ∼ where ∼ is the equivalence relation γ ∼ βγσ(β)−1 for β ∈ Γ(C). Choose a
set of representative H ⊂ Z1(G,Γ) for this equivalence relation, such that e ∈ H. For
γ ∈ H, define an involution σγΓ : Γ(C) ! Γ(C) as σγΓ(g) := γσΓ(g)γ

−1.
Let X be a quasi-projective scheme over R with real structure σX : X(C) ! X(C),

acted upon from the left by the finite group scheme Γ over R. For γ ∈ H, define
an involution σγX : X(C) ! X(C) as σγX(x) = γ · σ(x). By Galois descent, the pair
(X(C), σγX) corresponds to a quasi-projective scheme Xγ over R. Similarly, for γ ∈ H,
the pair (Γ(C), σγΓ) corresponds to a finite group scheme Γγ over R. Note that

Xγ(R) = X(C)σ
γ
X and Γγ(R) = Γ(C)σ

γ
Γ for each γ ∈ H.

Theorem 1.5. Consider the above notation. There is a canonical homeomorphism

|[X/Γ](R)| ∼−−!
∐
γ∈H

Xγ(R)/Γγ(R). (4)

We use Theorem 1.5 to prove Conjecture 1.2 in a number of examples, such as stacky
symmetric products and quotients of abelian varieties by −1 (see Section 1.4.3 below).
Theorem 1.5 will also used in the proof of Conjecture 1.2 for stacky quotients of curves
by a finite group (which is abelian or acts faithfully, cf. Theorem 1.9 below).

Remark 1.6. In the notation of Theorem 1.5, assume that X is smooth over R. Then
the topological space |[X/Γ](R)| can naturally be enhanced with the structure of a real
analytic orbifold (cf. [GF22a, Section 2.2.3]). For this orbifold structure on |[X/Γ](R)|,
the homeomorphism (4) is an isomorphism of real analytic orbifolds, see Corollary 6.2.

Remark 1.7. Theorem 1.5 suggests a different formulation of Conjecture 1.2. Indeed,
in the notation of Theorem 1.5, assume that X is smooth over R. One may try to
bound the orbifold cohomology ring of [X/Γ](R), which by Theorem 1.5 and Remark
1.6 is the direct sum of the Γσγ -equivariant cohomology ring of Xγ(R) for γ ∈ H1(G,Γ),
in terms of the the orbifold cohomology of [X/Γ](C), i.e. the Γ-equivariant cohomology
of X(C). In Section 10.1 we make the question whether such a bound exists precise.

5



1.4.2 Positive results for quotient stacks of dimension ≤ 1. Let us first focus on Con-
jecture 1.2 for finite quotient stacks, and explain our main results in this setting. We
start with the zero-dimensional case.

Proposition 1.8. Let Γ be a finite R-group scheme and set X := [Spec(R)/Γ]. Then
the inequality (3) holds for X .

In this case, one show that |X (R)| and |IX (C)| are discrete topological spaces, in
bijection with H1(Gal(C/R),Γ(C)) and Γ(C)/Γ(C) respectively, where Γ(C) acts on
itself by conjugation. Thus, the inequality (3) reduces to a group theoretic statement
(see Lemma 5.1).

We then move to dimension one. A real curve is a one-dimensional variety over R
(see Section 2), not necessarily proper.

Theorem 1.9. Let X be a real curve, and let Γ be a finite group scheme over R which
acts on X over R. Assume one of the following conditions:

1. The action of Γ on X is faithful.

2. The group scheme Γ is abelian.

Then Conjecture 1.2 holds for the quotient stack X = [X/Γ].

The proof of Theorem 1.9 is rather indirect, in the sense that we do not compare
directly the topology of |[X/Γ](R)| with

∣∣I[X/Γ](C)∣∣, but rather we compute separately
h∗(|[X/Γ](R)|) and h∗(

∣∣I[X/Γ](C)∣∣) by combining local and global methods. Then we
compare the two numbers by using the classical Smith–Thom inequality and the group
theoretic inequality of Lemma 5.1.

Remark 1.10. Either one of the conditions in Theorem 1.9 guarantees that |IX (C)| !
|X (C)| is the union of a trivial topological covering with the inclusion of a finite set of
points, which allows one to compute the topology of |IX (C)| in terms of the topology
of |X (C)|. Possibly, one could remove these conditions by refining the techniques.

1.4.3 Positive results for higher dimensional quotient stacks. Next, we study Conjec-
ture 3 in higher dimensions. In fact, constructing examples of stacks of arbitrary di-
mension, which satisfy the conjecture and are not schemes, is relatively straightforward.
For instance, if X and Y are separated Deligne–Mumford stacks of finite type over R
for which Conjecture 1.2 holds, then it also holds for their product X ×R Y (by the
Künneth formula and the fact that inertia commutes with products).
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The following theorem provides further evidence for the conjectural Smith–Thom
inequality (3) in arbitrary dimension, by verifying it for certain higher-dimensional
quotient stacks that do not arise as products of lower-dimensional examples.

Theorem 1.11. Let X be a Deligne–Mumford stack over R. Assume that one of the
following two conditions holds:

1. We have X = [(X ×X)/Z/2] for a real variety X, where 1 ∈ Z/2 acts on X ×X

by permuting the factors.

2. We have X = [A/⟨−1⟩], where A is an abelian variety over R and −1: A ! A

the multiplication by −1 homomorphism.

Then Conjecture 1.2 holds for X .

1.5 Topology of split gerbes over a real variety. A nice example of a real Deligne–
Mumford stack which is not the quotient of a real variety by a finite group scheme over
R, is any split gerbe over a real variety, i.e., a stack of the form X = [U/H], where U is
a real variety and H ! U a non-constant, finite étale group scheme over U (and where
the action of H on U over U is the trivial action). This example seems important in the
study of the topology of real Deligne–Mumford stacks in general, and of Conjecture 1.2
in particular, as any Deligne–Mumford stack X over R admits a stratification {Xn}n≥0

by stabilizer order, where the automorphism groups in the stratum Xn have order
exactly n. The stacks Xn are gerbes over their coarse moduli spaces Xn ! Mn, hence
étale locally on Mn of the form [Un/Hn], where Hn ! Un is a finite étale group scheme
of order n.

We develop a technique for computing |[U/H](R)|. As before, let G := Gal(C/R).

Theorem 1.12. Let U be a geometrically connected R-variety such that U(R) ̸= ∅. Let
H ! U be a finite étale group scheme and set X := [U/H]. The following holds.

1. The canonical map f : |X (R)| ! U(R) is a topological covering over each con-
nected component of U(R), with fibre H1(G,Hp(C)) above a point p ∈ U(R).

2. Let C be a connected component of U(R), and fix p ∈ C. The image of the natural
map π1(C, p) ! π1(U(C), p) lies in the subgroup of elements g ∈ π1(U(C), p)
whose action on Hp(C) is G-equivariant. In particular, the group π1(C, p) acts
naturally on H1(G,Hp(C)).

3. The covering space associated to the above action of π1(C, p) on H1(G,Hp(C)) is
canonically isomorphic to the covering space f−1(C) ! C.
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To prove Theorem 1.12, we study the interaction between the action of the topo-
logical fundamental group of the connected components of U(R) and the action of the
algebraic fundamental group of U . In particular, we prove that once one knows the
action of G on Hp(C) for one fixed p ∈ U(R), one can compute the action of G on
Hq(C) for all other q ∈ U(R) by just knowing the action of G on a topological paths
connecting p and q in U(C), see Proposition 8.3. This might be of independent interest.

In Section 9, we translate Theorem 1.12 in more group theoretic terms, see Proposi-
tion 9.2, and with this translation we prove the Smith-Thom inequality (1.2) for various
concrete gerbes over Gm and over an Enriques surface.

Remark 1.13. In Theorem 4.12 we prove something more general than the first item
in Theorem 1.12. Namely, consider a Deligne–Mumford stack X such that the coarse
moduli map X !M is a gerbe. Then the induced map |X (R)| !M(R) is open and a
topological covering over each connected component of its image, see Theorem 4.12.

1.6 Organization of the paper. The paper is organized as follows. In Section 2 we
fix some convention and notation. In Section 3, we prove some preliminary result of
the topology of the complex inertia and we compute it in some example. In Section
4, we prove some preliminary result of the topology of the real locus and we verify
the Smith-Thom conjecture in dimension 0. In Section 6, we give a formula for the
real locus of a quotient stack and we use it to verify the Smith-Thom conjecture in
many examples. In Section 7, we prove the Smith-Thom conjecture for a large class of
curves. In Section 8, we study the topology of a split gerbe and we use this to prove
the Smith-Thom conjecture in various examples. Finally, in Section 10, we propose two
variants of the Smith-Thom conjecture.

1.7 Acknowledgements. We thank Will Sawin for explaining to us the proof of
Lemma 5.1. We thank Olivier Benoist, Matilde Manzaroli and Florent Schaffhauser for
helpful discussions. Special thanks to Matilde Manzaroli for helping us with the pictures
in the paper. This research was partly supported by the grant ANR–23–CE40–0011 of
Agence National de la Recherche. The second author has received funding from the
ERC Consolidator Grant FourSurf No101087365.

2 Notation and conventions

We indicate an algebraic stack by a calligraphic letter, such as X ,Y,Z. Algebraic
spaces and schemes are usually indicated by roman capitals, such as X,Y, Z. For an

8



algebraic stack X , we let IX ! X denote the inertia stack over X , and X ! MX the
coarse moduli space. We let IX := MIX denote the coarse moduli space of the inertia
stack. The morphism IX ! X induces a morphism IX !MX .

When X is an algebraic stack over a scheme S, we let |X (S)| denote the set of
isomorphism classes of the groupoid X (S). For an object x ∈ X (S), we let [x] ∈ |X (S)|
denote its isomorphism class. For an algebraic stack X over R, and an object x ∈ X (R),
let xC ∈ X (C) denote the pull-back of x along Spec(C) ! Spec(R).

A curve over R (resp. C) will be a reduced, separated one-dimensional scheme of
finite type over R (resp. C). A curve X over R will also be called a real curve. Note
that we do not assume that X is proper. For a smooth curve X over R, any connected
component C ⊂ X(R) is homeomorphic to either the circle S1 = {z ∈ C | |z| = 1} or
the open interval (0, 1). By abuse of notation, we call C a circle in the first case, and
an open interval in the second case.

For n ∈ Z≥1, we let µn be the R-group scheme with µn(S) = {x ∈ OS(S) | xn = 1}
for a scheme S over R.

For a topological space X (such that dimH∗(X,Z/2) is finite), we define h∗(X) =

dimH∗(X,Z/2). For instance, h∗(S1) = 2. If Y is any space of endowed with an action
of G and x, y ∈ Y , we let Path(x, y) be the set of topological paths in Y from x to y and
observe that G induces a bijection σY : Path(x, y) ! Path(σ(x), σ(y)). In particular, if
x, y are fixed by G, the involution σY : Path(x, y) ! Path(x, y) defined an action of G
on Path(x, y). If γ ∈ Path(x, y), we let γ−1 ∈ Path(y, x) be the inverse path of γ.

3 Topology of the complex inertia

3.1 Topology of the complex locus. For a Deligne–Mumford stack X locally of
finite type over C, we view the set of isomorphism classes |X (C)| of the groupoid
X (C) as a topological space, by equipping it with the quotient topology induced by the
surjective morphism U(C) ! |X (C)|, where U is a scheme and U ! X a surjective
étale morphism. It is easy to show that this topology on |X (C)| does not depend on
the choice of étale presentation U ! X .

Lemma 3.1. For a separated Deligne–Mumford stack locally of finite type over C with
coarse moduli space X !M , the map |X (C)| !M(C) is a homeomorphism.

Proof. As the map |X (C)| ! M(C) is clearly a bijection, it remains to prove that it
is continuous and open. Continuity is straightforward, so we need to prove |X (C)| !
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M(C) is open. For this, we choose étale maps Vα ! M for α in some index set I,
such that

∐
α Vα !M is surjective, and such that for each α there exists a finite group

Γα acting on a scheme Uα over C, such that X ×M Vα is isomorphic to [Uα/Γα] (cf.
[AV02]). Define U ′ =

∐
α Uα. Any open set W ⊂ |X (C)| is the image of an open set

W ′ ⊂ U ′(C) under the natural map U ′(C) ! |X (C)|. The image of W ′ in
∐
α Vα(C) is

open as Vα = Uα/Γα for each α. Since
∐
α Vα(C) ! M(C) is open, it follows that the

image of W ′ in M(C) is open, which is exactly the image of W in M(C).

3.2 Topology of the complex inertia. Let X be an algebraic stack of finite type
over C. The diagonal morphism ∆: X ! X ×CX is of finite type, see [LMB00, Lemme
(4.2)]. Therefore, for each scheme S over C and each x ∈ X (S), the automorphism
group algebraic space AutS(x) of x over S is of finite type over S.

If the algebraic stack X is Deligne–Mumford, the diagonal ∆: X ! X ×C X is
quasi-finite (see [LMB00, Lemme (4.2)]). In particular, if X is separated and Deligne–
Mumford, then ∆ is finite. We conclude the following (well-known) lemma.

Lemma 3.2. Let X be a separated Deligne–Mumford stack of finite type over C. For
each scheme S over C and each x ∈ X (S), the automorphism group algebraic space
AutS(x) is finite over S.

Lemma 3.3. Let X be a separated Deligne–Mumford stack of finite type over C, with
inertia π : IX ! X . Let MX (resp. IX ) be the coarse moduli space of X (resp. IX ), cf.
Section 2. The morphism on coarse moduli spaces IX !MX induced by π is finite and
surjective.

Proof. Pick a finite surjective morphism Z ! X where Z is a scheme; such a morphism
exists by [LMB00, Theorem 16.6]. Define W = Z ×X IX . The morphisms W ! Z and
Z !MX are both finite and surjective, hence the composition W ! Z !MX is finite
surjective. This agrees with the composition W ! IX ! MX , so that IX ! MX is
finite surjective, provin the lemma.

Corollary 3.4. Let X be a separated Deligne–Mumford stack of finite type over C. The
morphism of complex spaces IX (C) !MX (C) is closed with finite fibers.

Proof. This follows from Lemma 3.3 in view of the well-known fact that the morphism
of analytic spaces X(C) ! Y (C) induced by a finite surjective morphism X ! Y of
finite type schemes X,Y over C is closed with finite fibers.

Lemma 3.5. Let X be a separated Deligne–Mumford stack locally of finite type over
C, such that |Aut(x)| is constant for x ∈ X (C). The following holds.
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1. The coarse moduli space map X !M is a gerbe.

2. The inertia IX ! X is finite étale over X .

Proof. To prove that X ! M is a gerbe, by [Stacks, Tag 06QJ], it suffices to show
that IX ! X is flat. Thus, we need to show that for any scheme T and morphism
T ! Y, the automorphism group algebraic space Aut(x)T ! T is flat over T . We
know that Aut(x)T is finite over T , see Lemma 3.2. Moreover, for each t ∈ T (C), the
group scheme Aut(x)t = Aut(xt) over C is reduced. To prove that Aut(x)T is flat over
T , it suffices to show that it has constant fibre cardinality which holds by assumption.
This proves that X ! M is a gerbe and that IX ! X is flat; as IX ! X is finite by
Lemma 3.3, we deduce that IX ! X is finite étale (a finite flat group scheme of order
invertible in the base is finite étale).

Example 3.6. Let X = [A1/(Z/2)] over C, where 1 ∈ Z/2 acts by multiplication by
−1. Let S ⊂ A1 × Z/2 be the stabilizer group scheme over A1. Then Sx = 0 for
x ̸= 0 ∈ A1, and S0 = Z/2. In particular, the map S ! A1, which is the base change
of IX ! X along A1 ! X , is a finite but non-flat over A1, so that IX ! X is not flat.

Proposition 3.7. Let X be a scheme of finite type over C. Let Γ be a finite group
acting on X over C. Define X = [X/Γ]. Let q : X(C) ! X(C)/Γ = MX (C) be the
quotient map.

1. There is a canonical bijection

|IX (C)| = {(x ∈ X(C), γ ∈ Γx} /
{
(x, γ) ∼ (gx, gγg−1), g ∈ Γ

}
. (5)

2. Consider the canonical map |π| : |IX (C)| ! |X (C)| = X(C)/Γ. For each x ∈
MX (C) = X(C)/Γ, there is a canonical bijection

|π|−1 (x) =

 ∐
y∈q−1(x)

Γy

 /Γ.

Here, g ∈ Γ acts on
⊔
y∈q−1(x) Γy as follows: for y ∈ q−1(x), γ ∈ Γy, we define

g · (y, γ) = (gy, gγg−1).

3. For x ∈MX (C) and fixed y′ ∈ q−1(x), there are bijections

|π|−1 (x) =

 ∐
y∈q−1(x)

Γy

 /Γ ∼= Γy′/Γy′ , (6)
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of which the second one is in general non-canonical.

Proof. Let S ! X be the stabilizer group scheme attached to the action of Γ on X

over C. Then
S(C) = {(x, γ) ∈ X(C)× Γ | γx = x} .

The group Γ acts on the scheme S by

g · (x, γ) = (gx, gγg−1), g ∈ Γ, (x, γ) ∈ S,

and we have a canonical isomorphism of stacks IX = [S/Γ]. In particular, |IX (C)| =
S(C)/Γ from which (5) follows. This proves item 1. Item 2 is clear.

To prove item 3, it remains to provide the second bijection in (6). This holds, since
for each y1, y2 ∈ q−1(x), there exists g ∈ Γ such that gy1 = y2 and gΓy1g−1 = Γy2 .

Remark 3.8. 1. In the notation of Proposition 3.7, assume that Γ acts freely on X.
Then Γy = {e} for each y ∈ q−1(x), and Γ acts freely on q−1(x). Hence |π|−1 (x)

is a singleton.

2. In the notation of Proposition 3.7, assume that Γ is abelian. There is a canonical
bijection between (

⊔
y∈q−1(x) Γy)/Γ and Γy = Γy′ ⊂ Γ for any y, y′ ∈ q−1(x).

3.3 Examples. The goal of this subsection is to calculate the topology of IX (C) for
certain low-dimensional algebraic quotient stacks X over C.

Example 3.9. Let Γ be a finite group, and let BΓ = [Spec(C)/Γ]. Then |IX (C)| =
Γ/Γ, where Γ acts on itself by conjugation. In particular h∗(|IX (C)|) = |Γ/Γ|.

Examples 3.10. 1. Let X := A1 and Γ := Z/2 acting on X by sending x to −x.
Then I[X/Γ](C) ≃ C

∐
{0}. In particular h∗(I[X/Γ](C)) = 2.

2. Let X := A1 and Γ := Z/2 × Z/2 acting on X by (a, b) ∗ x to (−1)abx. Then
I[X/Γ](C) ≃ A1

∐
A1
∐
{0}

∐
{0}. In particular h∗(I[X/Γ](C)) = 4.

Examples 3.11. 1. Let X := A2 and Γ := Z/2, such that 1 ∈ Z/2 = Γ acts on X

by (x, y) 7! (y, x). Then I[X/Γ](C) ≃ A2
∐

A1. In particular h∗(I[X/Γ](C) = 2.

2. Let X := A2 and Z/2×Z/2. We let Z/2 acts on X by exchanging the coordinates
and we let Γ act on X via the addition map Z/2 × Z/2 ! Z/2. Then, we have
I[X/Γ](C) ≃ A2

∐
A2
∐

A1
∐

A1. In particular, h∗(I[X/Γ](C)) = 4.
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Example 3.12. Let U a connected scheme over C and H ! U a finite étale group
scheme over U . Consider the trivial action of H on U . Then I[U/H](C) ≃ H(C)/H(C).
where H(C)/H(C) := {(p, h) ∈ U(C) × Hp(C)}/ ∼ with ∼ the equivalence relation
(p, h) ∼ (p′, h′) if p = p′ and h is conjugated to h′ in Hp(C). In particular, when H is
abelian one has I[U/H](C) ≃ H(C). We post-pone the discussion on its Betti number
until Section 8, since here the situation is more complicated.

Example 3.13. Let Γ be an abelian group acting faithfully on a variety X and assume
that the set Z := {x ∈ X(C) such that StabΓ(x) ̸= {0}} is finite. Then, we have
I[X/Γ](C) ≃ X(C)/Γ

∐(∐
x∈Z Stab(x)− {e}

)
.

4 Topology of real DM stacks

The goal of this section is to provide some preliminary definitions and prove some
preliminary results on the topology of |X (R)| when X is a separated Deligne–Mumford
stack of finite type over R.

4.1 Generalities on the real locus of a real DM stack. The main object of study
in this paper is as follows.

Definition 4.1. A real DM stack is a separated Deligne–Mumford stack of finite type
over R.

For a real DM stack X , the set of isomorphism classes |X (R)| of its real locus
X (R) has a natural topology, generalizing the euclidean topology on X(R) when X is
a scheme. Indeed, we have the following theorem.

Theorem 4.2. Let X be a real DM stack. There exists a scheme U over R and a
surjective étale morphism U ! X such that U(R) ! |X (R)| is surjective.

Proof. See [GF22a, Theorem 2.9] or [GF22b, Theorem 7.4].

Definition 4.3. (cf. [GF22b, Definition 7.5]) Let X be a real DM stack. The real
analytic topology on |X (R)| is defined as follows. Choose a scheme U over R and
a surjective étale morphism U ! X such that U(R) ! |X (R)| is surjective. Then
consider the real analytic topology on U(R), and give |X (R)| the quotient topology
induced by the surjection U(R) ! |X (R)|.

Proposition 4.4. The real analytic topology is independent of the choice of an étale
presentation that is essentially surjective on real points.
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Proof. See [GF22b, Proposition 7.6].

Throughout this paper, whenever we consider the set |X (R)| of isomorphism classes
of real points of a real Deligne–Mumford stack X , we always view it as a topological
space via the real analytic topology.

4.2 Fibres of the map to the real locus of the coarse moduli space. We will
only need the following proposition in the case of stacky curves, but we state it in
arbitrary dimension, since the proof is the same.

Proposition 4.5. Let X be a a separated Deligne–Mumford stack of finite type over R,
with coarse moduli space p : X ! M . Let f : |X (R)| ! M(R) denote the map induced
by p, and let x ∈ X (R) with isomorphism class [x] ∈ |X (R)| (cf. Section 2).

1. There is a canonical bijection f−1(f([x])) = H1(G,Aut(xC)).

2. We have #H1(G,Aut(xC)) = #H1(G,Aut(x′C)) for each pair of objects x, x′ ∈
X (R) whose induced objects xC, x′C ∈ X (C) are isomorphic in X (C).

Proof. Since two objects in X (C) are isomorphic if and only if their images in M(C)
are the same, the second item is a consequence of the first item. The first item follows
from [Gro60, Section 4].

This naturally leads us to the following:

Definition 4.6. Let X be a separated Deligne–Mumford stack of finite type over R,
with coarse moduli space p : X ! M . For a point m ∈ M(R) which is in the image of
f : |X (R)| ! M(R), we define H1(G,m) = #H1(G,Aut(xC)), where x ∈ X (R) is such
that [x] ∈ |X (R)| lies in f−1(m) ⊂ |X (R)|.

By Proposition 4.5, this is well-defined, in the sense that we have H1(G, x) =

#H1(G,Aut(x′C)) for any x′ ∈ X (R) such that [x′] ∈ f−1(m).

4.3 Covering map between the real locus of the stack and the real locus of
the coarse moduli space. The main result of this section is Theorem 4.12 below,
which gives a general criterion for the map of topological spaces |X (R)| ! M(R),
induced by the morphism X ! M of a stack to its coarse moduli space, to be a
topological covering. The proof is slightly technical; the reader may wish to skip the
proof on a first reading. Before we can start with the proof, we need some preliminary
results and definitions.
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Lemma 4.7. Let f : X ! Y be a morphism of schemes X,Y which are locally of finite
type over R. Assume that f is étale. Then the induced map fR : X(R) ! Y (R) is a
local homeomorphism.

Proof. Consider the map of complex analytic spaces fC : X(C) ! Y (C). This map is
a local homeomorphism by [Gro71, Exposé XII, Proposition 3.1 & Remarque 3.3]. For
x ∈ X(R), let U ⊂ X(C) be a G-stable open neighbourhood (where G = Gal(C/R))
such that V = fC(U) is open in Y (C) and fC|U : U ! V is a homeomorphism. Note that
V ⊂ Y (C) is stable under the action of G on Y (C). Indeed, for v ∈ V and g ∈ G, we
have v = fC(u) for u ∈ U , and since gu ∈ U we get gv = gfC(u) = fC(gu) ∈ fC(U) = V .
The map fC|U : U ! V is a homeomorphism of topologicalG-spaces, thus the restriction
fR|UG = fC|UG : U ∩X(R) = UG ! V G = V ∩ Y (R) is a homeomorphism.

Lemma 4.8. Let f : X ! Y be a map of topological spaces, let π : Y ′ ! Y be a
local homeomorphism with Im(π) = Im(f). Assume that the base change f ′ : X ′ :=

X×Y Y
′ ! Y ′ is a topological covering over its image. Then f is a topological covering

over its image.

Proof. Note that Im(π) ⊂ Y is open in Y because π is a local homeomorphism. Up to
pulling everything back along the inclusion Im(π) ⊂ Y , we may assume that f and π

are surjective. Let U ′ ⊂ Y ′ and U ⊂ Y be opens such that the map π : Y ′ ! Y induces
a homeomorphism π|U ′ : U ′ ∼−! U , and such that (f ′)−1(U ′) ! U ′ is a trivial topological
covering (i.e. homeomorphic over U ′ to a disjoint union of copies of U ′). Consider the
induced map ρ : X ′ ! X, and note that ρ((f ′)−1(U ′)) ⊂ f−1(U), and that the map
ρ : (f ′)−1(U ′) ! f−1(U) is a homeomorphism. Hence f−1(U) is homeomorphic over U
to a disjoint union of copies of U . Since π is surjective, this proves the lemma.

Let π : H ! U be a locally trivial family of finite topological G-groups. This means
that π is a finite topological covering, that there are involutions σ : H ! H,σ : U ! U

commuting with π, and that there is a continuous group law m : H ×U H ! H, an
inversion i : H ! H and identity e : U ! H all compatible with the involutions σ;
moreover, we require that for each x ∈ U there exists an open neighbourhood x ∈ V ⊂ U

such that H|V ∼= V × Γ as families of topological groups, for a finite group Γ.

Definition 4.9. Let, as above, π : H ! U be a locally trivial family of finite topological
G-groups. We define

Z1(G,H) :=
{
(u, g) ∈ U ×H | u ∈ UG, g ∈ Hu and gσ(g) = e

}
,

H1(G,H) := Z1(G,H)/ ∼
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where (u, g) ∼ (u′, g′) if u = u′ and there exists h ∈ Hu such that g′ = hgσ(h)−1. We
equip Z1(G,H) with the subspace topology coming from U×H and we equip H1(G,H)

with the quotient topology coming from Z1(G,H).

Lemma 4.10. Let π : H ! U be a locally trivial family of finite topological G-groups.
There is a natural surjective map H1(G,H) ! UG, and for V ⊂ UG open such that
H|V ∼= V × Γ as families of topological G-groups over V , for a finite G-group Γ, we
have H1(G,H)|V = H1(G,H|V ) ∼= H1(G,Γ)× V . In particular, the natural map

H1(G,H) −! UG

is a topological covering, with fibre H1(G,Hu) for u ∈ UG.

Proof. Clear.

Lemma 4.11. Let H ! U be a finite étale group scheme over a scheme U of finite type
over R. Consider the associated quotient stack [U/H], and also the associated locally
trivial family of finite G-groups H(C) ! U(C). There is a canonical homeomorphism

|[U/H](R)| ∼−! H1(G,H(C))

of spaces over U(R), where the space on the right hand side is defined in Definition 4.9.

Proof. Note that |[U/H](R)| parametrizes pairs (u, P ) where u : Spec(R) ! U is an
R-point and P is a Hu-torsor over R. Such a pair (u, P ) corresponds to an element
γ(u, P ) ∈ H1(G,Hu(C)) ⊂ H1(G,H) (see e.g. Lemma 6.1). This gives the bijection
fibrewise over U(R), and this bijection is a homeomorphism by Lemma 10.14.

Theorem 4.12. Let X be a separated Deligne–Mumford stack of finite type over R,
such that |Aut(y)| is constant for y ∈ X (C). Let X ! M be the coarse moduli space
of X . Then the induced map |X (R)| ! M(R) is open, and a topological covering over
each connected component of its image.

Proof. By Lemma 3.2, we know that X ! M is a gerbe, and that IX ! X is finite
étale. The proof proceeds in two steps.

Step 1: If the proposition holds for gerbes X ! M which have a section, then it
holds for all gerbes X ! M . Indeed, we let U ! X be a surjective étale morphism
where U is a scheme over R, such that U(R) ! |X (R)| is surjective. We then look at
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the base change Y := X ×M U , which fits in a 2-cartesian diagram

Y //

��

U

��

X //M.

Observe that the map |Y(R)| ! |X (R)|×M(R)U(R) is a homeomorphism. Since X !M

is étale (as it is étale locally on M of the form [U/H] ! U for a finite flat group scheme
H ! U , and H ! U is étale since IX ! X is étale, so that [U/H] ! U is étale), the
composition U ! X !M is étale. Therefore, by Lemma 4.7, the map U(R) !M(R) is
a local homeomorphism, whose image is the image of |X (R)| ! M(R). Consequently,
by Lemma 4.8, if the base change |Y (R)| ! U(R) of |X (R)| ! M(R) by the local
homeomorphism U(R) ! M(R) is a covering map over each connected component of
its image, then the same holds for |X (R)| !M(R). Step 1 follows.

Step 2: |X (R)| ! M(R) is a topological covering when X ! M has a section.
Indeed, assuming that X ! M has a section, we have X = [U/H] for a scheme U
of finite type over R and a finite flat group scheme H ! U , which is étale because
IX ! X is étale. We have |[U/H](R)| ∼= H1(G,H(C)) as spaces over U(R) by Lemma
4.11, and H1(G,H(C)) ! U(R) is a topological covering by Lemma 4.10.

5 Smith–Thom for classifying stacks

As a first example of the Smith–Thom inequality, we verify it in the case of a classifying
stack over a point. Let Γ be a finite group scheme over R, given by a finite group Γ(C)
and an involution σ : Γ(C) ! Γ(C), and consider the stack X = [Spec(R)/Γ].

Proof of Proposition 1.8. Recall that, by definition,

|X (R)| = {isomorphism classes of Γ-torsors over R}.

This is a finite discrete set, which is well-know for being in bijection with H1(G,Γ) (see
for example Lemma 6.1). In particular, h∗(|X (R)|) = #H1(G,Γ). On the other hand,
by Example 3.3, we have

IX (C) = Γ(C)/Γ(C) so that h∗(X (C)) = #Γ(C)/Γ(C).

So the Smith–Thom inequality for X follows from the following group theoretic lemma,
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whose proof has been suggested to us by Will Sawin.

Lemma 5.1. Let Γ be a finite group with an action of G. Then the following inequality
holds:

#H1(G,Γ) ≤ #Γ/Γ.

Proof. Let σ : Γ ! Γ be the involution corresponding to the G-action. Let σ-conj be
the equivalence relation on Γ induced by the action of Γ on its self by σ-conjugacy
(i.e. h acts by h(g) = hgσ(h−1). For every h ∈ Γ, we let Stabσ(h) (resp. [h]σ) be the
stabilizer (resp. the orbit) of h for the σ-conjugacy action and Stab(h) (resp. [h]), the
stabilizer (resp. the orbit) for the conjugacy action.

We claim the following chain of inequalities and equalities:

#H1(G,Γ) ≤ #(Γ/σ-conj) = #(Γ/Γ)G ≤ #(Γ/Γ).

Since the first and the last inequalities follow from the inclusions H1(G,Γ) ⊆ (Γ/σ-conj)
and (Γ/Γ)G ⊆ Γ/Γ, we just need to prove the middle equality.

For this, define

S := {(g, h) ∈ Γ× Γ such that g = hgσ(h)−1} ⊆ Γ× Γ

and observe that the projections p1, p2 : S ! Γ into the first and the second factor
induce surjective maps p1 : S ! (Γ/σ-conj) and p2 : S ! (Γ/Γ)G.

We now compute #S in two different ways, once using p1 and once p2.
For any [g]σ ∈ (Γ/σ-conj), one has

p−1
1 ([g]σ) =

{
(g′, h) such that g′ ∈ [g]σ and g′ = hg′σ(h)−1

}
=

=
∐

g′∈[g]σ

{h ∈ Γ such that g′ = hg′σ(h)−1} =
∐

g′∈[g]σ

Stabσ(g′).

In particular
#S =

∑
[g]σ∈(Γ/σ-conj)

( ∑
g′∈[g]σ

#Stabσ(g′)
)
.

Since for every g′ ∈ [g] one has

#Stabσ(g) = #Stabσ(g′) and #Stabσ(g′) = #Γ/#[g]σ
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we get

#S =
∑

[g]σ∈(Γ/σ-conj)

( ∑
g′∈[g]σ

#Γ/#[g]σ
)
=

∑
[g]σ∈(Γ/σ-conj)

#Γ = #Γ#(Γ/σ-conj) (7)

On the other hand, for any [h] ∈ (Γ/Γ)G, one has

p−1
2 ([h]) =

{
(g, h′) such that [h′] = [h] and σ(h′) = g−1h′g

}
=

=
∐
h′∈[h]

{g ∈ Γ such that σ(h′) = g−1h′g}.

Observe that

#{g ∈ Γ such that σ(h′) = g−1h′g} = #Stab(h′) = #Stab(h)

so that
#p−1

2 ([h]) =
∑
h′∈[h]

#Stab(h) =
∑
h′∈[h]

#Γ/#[h] = #Γ.

Hence,
#S =

∑
[h]∈(Γ/Γ)σ

#p−1
2 ([h]) =

∑
[h]∈(Γ/Γ)σ

#Γ = #Γ#(Γ/Γ)σ. (8)

Combining Equations (7) and (8), we get the result.

6 Topology of a real quotient stack

In this section, we fist describe the topology of the real points of the quotient stack
[X/Γ] of a real varietyX on which a finite R-group Γ acts, and prove Theorem 1.5. Then
we use this description it to verify the Smith–Thom inequality 1.2 in many examples.

6.1 The real locus of a quotient stack over the real numbers. In this section,
we calculate |X (R)| when X = [X/Γ] is the stacky quotient of a quasi-projective scheme
X by a finite group scheme Γ over R.

6.1.1 Group schemes over the reals and torsors. Let Γ be a finite group scheme over
R. Let G = ⟨σ⟩ := Gal(C/R). Let σΓ : Γ(C) ! Γ(C) be the action of G on Γ(C)
corresponding to Γ. Define

Z1(G,Γ) := {γ ∈ Γ(C) such that γσΓ(γ) = e} ⊂ Γ(C).
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Recall (see e.g. [Ser94, Chapitre I, §5]) that there is a canonical identification

H1(G,Γ) = Z1(G,Γ)/ ∼

where ∼ is the equivalence relation that identifies γ1, γ2 ∈ Γ(C) if there exists a β ∈ Γ(C)
such that γ2 = β−1γ1σΓ(β).

Choose a set of representative H ⊂ Z1(G,Γ) for the equivalence relation ∼ on
Z1(G,Γ), so that the composition H ⊂ Z1(G,Γ) ! H1(G,Γ) is a bijection; we choose
H such that e ∈ H. For each γ ∈ H, we define an involution

φγ : Γ(C) ! Γ(C) as φγ(g) = σ(g) · γ−1.

We consider the resulting G-set (Γ(C), φγ). Note that left multiplication defines an
action of the G-group (Γ(C), σΓ) on the G-set (Γ(C), φγ). In particular, if Pγ is the
R-scheme associated to (Γ(C), φγ), we get an action of the R-group scheme Γ on the
R-scheme Pγ that turns the latter into a Γ-torsor.

Lemma 6.1. The following map is bijective:

H1(G,Γ) = H ! {isomorphism classes of Γ-torsors over Spec(R)},

γ 7! Pγ .

Proof. This is well-known.

6.1.2 The topology of the real locus of a quotient stack. We continue with the above
notation. Define an involution

σγΓ : Γ(C) ! Γ(C) as σγΓ(g) := γσΓ(g)γ
−1.

Let X be a quasi-projective scheme over R with real structure σX : X(C) ! X(C),
acted upon from the left by the finite group scheme Γ over R. For γ ∈ H, define an
involution σγX : X(C) ! X(C) as σγX(x) = γ · σ(x). The pair (X(C), σγX) corresponds
to a quasi-projective scheme Xγ over R. Similarly, for γ ∈ H, the pair (Γ(C), σγΓ)
corresponds to a finite group scheme Γγ over R. Note that

Xγ(R) = X(C)σ
γ
X and Γγ(R) = Γ(C)σ

γ
Γ for each γ ∈ H.

Proof of Theorem 1.5. Recall that we need to prove that there exists a canonical home-
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omorphism
|[X/Γ](R)| ∼−!

∐
γ∈H

Xγ(R)/Γγ(R).

To prove this, we first observe that the action of Γ(C) on X(C) is compatible with the
action of σγX and σγΓ. Indeed, for x ∈ X(C) and g ∈ Γ(C), we have:

σγX(g · x) = γ · σX(g · x) = γ · σΓ(g) · σX(x) = γ · σΓ(g) · γ−1 · γ · σX(x) = σγΓ(g) · σ
γ
X(x).

Therefore, we obtain an action of the G-group (Γ(C), σγΓ) on the G-space (X(C), σγX).
In particular, the subgroup

Γγ(R) = Γ(C)σ
γ
Γ ⊂ Γ(C)

of elements fixed under σγΓ acts on the fixed space Xγ(R) = X(C)σ
γ
X ⊂ X(C).

Fix γ ∈ H and take any x ∈ Xγ(R)/Γγ(R). Choose a y ∈ Xγ(R) that lifts x and
consider the Γ(C)-equivariant morphism

fy : Γ(C) ! X(C), g 7! g · y.

This morphism is compatible with the G-action φγ on Γ(C) and with the G-action σX
on X(C), hence it gives rise to a Γ-equivariant morphism

fy : Pγ ! X

of schemes over R. Define

α(x) := (Pγ , fy) ∈ |[X/Γ](R)|

= {pairs (P, f) | P a Γ-torsor, f a Γ-equivariant morphism P ! X} /∼=.

We first show that α is well defined, i.e. that it does not depends on the choice of the
lift y of X. If z ∈ Xγ(R) is another that lift x, then there exists a g ∈ Γγ such that
y = g · z. Since g ∈ Γγ(R) = Γ(C)σ

γ
Γ , the morphism g : Pγ ! Pγ sending h to hg is an

isomorphism of torsors over R, fitting into a commutative diagram:

Pγ X

Pγ X.

fy

g

fz

In particular, we have an equality of isomorphism classes [(Pγ , fy)] = [(Pγ , fz)] ∈

21



|[X/Γ](R)|. We conclude that we get a canonical map

α : |[X/Γ](R)| −!
∐
γ∈H

Xγ(R)/Γγ(R), (9)

and it is straightforward to show that α is bijective. It remains to prove that the
bijection α is a homeomorphism.

To see this, note that for each γ ∈ H, we have a natural morphism

Xγ −! [X/Γ]. (10)

Namely, to give such a map is to give:

(1) a Γ×R Xγ-torsor P ! Xγ over Xγ , and

(2) a Γ×R Xγ equivariant morphism P ! X ×R Xγ of schemes over Xγ .

As for (1), we put P = Pγ ×R Xγ , which is a Γ ×R Xγ-torsor by base-changing the
Γ-torsor structure of Pγ ! Spec(R) along Xγ ! Spec(R). As for (2), we consider the
morphism

Pγ ×R Xγ −! X ×R Xγ (11)

defined via Galois descent by the map

Γ(C)×X(C) −! X(C)×X(C), (g, x) 7! (gx, x),

which is indeed compatible with the anti-holomorphic involution (g, x) 7! (φγ(g), σγX(x))

on the left hand side and the anti-holomorphic involution (x, y) 7! (σX(x), σ
γ
X(y)) on

the right hand side. Since the map (11) is Γ ×R Xγ-equivariant, it yields the desired
morphism (10).

We obtain a morphism
U :=

∐
γ∈H

Xγ −! [X/Γ],

and, by the fact that the map α in (9) is a bijection (which has already been shown),
the induced map

U(R) =
∐
γ∈H

Xγ(R) −! |[X/Γ](R)| (12)
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is surjective. By definition of the real analytic topology on |[X/Γ](R)|, see Definition 4.3,
and by independence of the étale surjective cover essentially surjective on real points,
see Proposition 4.4, it follows that the topology on |[X/Γ](R)| is the quotient topology
coming from the surjection (12) and the real analytic topology on U(R) =

∐
γ Xγ(R).

As the diagram ∐
γ∈H Xγ(R)

��

∐
γ∈H Xγ(R)

��

|[X/Γ](R)| α //
∐
γ∈H Xγ(R)/Γγ

commutes, and as each quotient Xγ(R)/Γγ carries the the quotient topology coming
from Xγ(R) ! Xγ(R)/Γγ , this proves that α is a homeomorphism as wanted.

In the above notation, assume that X is smooth over R. Then the topological space
|[X/Γ](R)| can naturally be enhanced with the structure of a real analytic orbifold, see
[GF22a, Section 2.2.3]. The proof of Theorem 1.5 shows that the following holds.

Corollary 6.2. Assume that the quasi-projective scheme X is smooth over R. Then
the homeomorphism (4) in Theorem 1.5 is an isomorphism of real analytic orbifolds.

Proof. As in the proof of Theorem 1.5, we consider the natural surjective morphism

U :=
∐
γ∈H

Xγ −! [X/Γ]

which is essentially surjective on R-points. Define X = [X/Γ]. Then

U ×X U ∼=
∐

γ,γ′∈H
Xγ ×X Xγ′ =: R.

For γ ∈ H, let Rγ for be a scheme such that Rγ ∼= Xγ×XXγ . Since (Xγ×XXγ′)(R) = ∅
for γ ̸= γ′ ∈ H, we get R(R) =

∐
γ∈H Rγ(R). Thus,∐

γ∈H
Rγ(R) ⇒

∐
γ∈H

Xγ(R) ! |X (R)|

is a presentation of |X (R)| by a groupoid object in the category of real analytic mani-
folds, proving the corollary.

6.2 Smith–Thom for various quotient stacks. In this section we apply Theorem
1.5 to prove the Smith–Thom inequality (3) in a number of examples.

23



Example 6.3. Let Γ be any finite R-group scheme. Take X = Spec(R) with the
trivial action of Γ. Then Theorem 1.5 just says that |[X/Γ](R)| is the disjoint union of
#H1(G,Γ) points, which also follows directly from the definitions and Lemma 6.1. We
already verified the Smith–Thom inequality (3) in Proposition 1.8.

Example 6.4. Let X := A1
R. Let Γ := Z/2 endowed with the trivial G-action. We let

Γ act on X via the map sending x to −x. To compute X := [A1
R/Γ], we start observing

that H1(G,Γ) has two elements 1, γ. One computes that X(R)/Γ = (R/±1) ≃ R≥0

and also Xγ(R)/Γ = (iR)/± 1 ≃ iR≥0. Hence, by Theorem 1.5,

|X (R)| = R≥0

∐
iR≥0.

In conclusion, we find that h∗(|X (R)|) = 2, so that, since h∗(IX (C)) = 2 by Example
3.10.1, we see that the Smith–Thom inequality (3) holds and it is an actual equality. For
completeness, we also describe the natural map f : |[A1

R/Γ](R)| ! X/Γ(R) (see Figure
2). Identifying X/Γ(C) with C via the map z 7! z2, one sees that (X/Γ)(R) = R ⊆ C.
Under this identification, f induces homeomorphisms X(R)/Γ = R≥0

z 7!z2−−−! R≥0 and

X(R)γ/Γ = iR≥0
z 7!z2−−−! R≤0. Hence #f−1(x) = 1 for every x ̸= 0 and #f−1(0) = 2 as

predicted by Proposition 4.5.

(A1/Z/2)(R)

|[A1/Z/2](R)|

Figure 2: The morphism |[A1/(Z/2)](R)| ! (A1/(Z/2))(R)

Example 6.5. LetX := A1
R. Let Γ := Z/2×Z/2 endowed with theG-action exchanging

the coordinates. We let Γ act on A1
R via (a, b) ∗ x := (−1)a+bx. To compute |X (R)| :=

[A1
R/Γ], we start observing that H1(G,Γ) = 0. Hence

|X (R)| = X(R)/Γ(R) = X(R) = R

since Γ(R) acts trivially on X(C). In conclusion we find that h∗(|X (R)|) = 1, so that,
since h∗(IX (C)) = 6 by Example 3.10.2, the Smith–Thom inequality (3) holds and it is a
strict inequality. For completeness, we also describe the natural map f : |[A1

R/Γ](R)| !
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X/Γ(R) (see Figure 3). As in the previous Example 6.4, one identifies X/Γ(R) with
R ⊆ C. Under this identification, the map f : R ! R becomes the absolute value map,
so that it is not surjective, #f−1(x) = 2 for every x > 0 and #f−1(0) = 1 as predicted
by Proposition 4.5.

(A1/(Z/2))(R)

|[A1/(Z/2)](R)|

Figure 3: The morphism |[A1/(Z/2× Z/2)](R)| ! (A1/(Z/2× Z/2))(R)

Examples 6.6. Let X = A2
R.

1. Let Γ := Z/2 endowed with the trivial G-action. To compute the real locus of
X := [A2

R/Γ], we start observing that H1(G,Γ) has two elements 1, γ. By Theorem
1.5,

|X (R)| = X(R)/Γ(R)
∐

Xγ(R)/Γ(R)

One computes thatX(R)/Γ andXγ(R) are two half-planes, so that h∗(|X (R)| = 2,
h∗(IX (C)) = 2 by Example 3.11.1, we see that the Smith–Thom inequality (3) holds
and it is an equality.

2. Let Γ := Z/2×Z/2 endowed with the G-action exchanging the coordinates. We let
Γ act on A2

R via its G-equivariant quotient Z/2, acting by exchange of coordinates.
To compute X := [A2

R/Γ], we start observing that H1(G,Γ) = 0, so that, by
Theorem 1.5,

|X (R)| = X(R)/Γ(R) = R2,

since Γ(R) acts trivially on X(C). In conclusion, we get that h∗(|X (R)| = 1.
Since h∗(IX (C)) = 4 by Example 3.11.2, we see that the Smith–Thom inequality
(3) holds and it is a strict inequality.

Example 6.7. Let A be a real abelian variety of dimension g, so that A(R) ≃ (S1)g ×
(Z/2)k for some 0 ≤ k ≤ g compatibly with the group structure. Consider the inversion
[−1] : A! A and write Γ := Z/2. Let X := [A/Z/2] where Z/2 acts via [−1] and let γ
be the unique non trivial element of H1(G,Γ) By Theorem 1.5,

|X (R)| := A(R)/[−1]
∐

Aγ(R)/[−1].
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By construction Aγ is the quadratic twist of A, hence A(R) ∼= Aγ(R) as topological
G-spaces. In particular, we get

|X (R)| ≃ (S1)g × (Z/2)k
∐

(S1)g × (Z/2)k,

hence h∗(|X (R)|) = 2g+k+1. By Example 3.13, we have

IX (C) ≃ A(C)/[−1]
∐ ∐

x∈A(C)[2]

{x}.

Since A(C)/[−1] ≃ A(C) and #A(C)[2] = 22g, we get h∗(IX (C)) = 22g + 22g = 22g+1.
Since k ≤ g, the inequality (3) is verified and it is an equality if and only if A is
maximal.

Example 6.8. Let Y be a real algebraic variety, let Γ := Z/2 act on Y × Y by
exchanging the coordinates and let X := [(Y × Y )/Γ]. If γ in the non trivial element
of H1(G,Γ), by Theorem 1.5, one has

|X (R)| ≃ (Y (R)× Y (R))/Γ
∐

(Y × Y )γ(R)/Γ ≃ (Y (R)× Y (R))/Γ
∐

Y (C)/G.

Observe that
|X (C)|G ≃ (Y (R)× Y (R))/Γ

∐
Y (R)

Y (C)/G,

where i : Y (R) ↪! |X (C)|G embeds diagonally in Y (R)×Y (R) and naturally in Y (C)/G.
If f : |X (R)| ! (Y (R) × Y (R)/Γ)(R) is the natural morphism, the exact sequence of
sheaves

0 ! Z/2 ! f∗Z/2 ! i∗Z/2 ! 0,

shows that
h∗(|X (R)|) ≤ h∗(|X (C)|G) + h∗(Y (R)). (13)

On the other hand,
|IX (C)| ≃ |X (C)|

∐
Y (C).

while by the classical Smith–Thom inequality for |X (C)|
∐
Y (C), we get

h∗(|X (C)|G) + h∗(Y (R)) ≤ h∗(|X (C)|) + h∗(Y (C)) = h∗(|IX (C)|).

Combining this with (13), we get that the Smith–Thom inequality (3) is satisfied.
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7 Smith–Thom for real stacky curves

In this section we prove Theorem 1.9. The proof is rather indirect, in the sense that
we do not compare directly the topology of |[X/Γ](R)| with I[X/Γ](C), but rather we
compute separately h∗(|[X/Γ](R)|) and h∗(I[X/Γ](C)) and then we compare the two
numbers by using the classical Smith–Thom inequality and Lemma 5.1.

In Section 7.1 we compute h∗(I[X/Γ](C)), in Section 7.2 h∗([X/Γ](R)) and finally in
Section 7.3 we combine the two computations to prove Theorem 1.9.

7.1 Inertia of complex stacky curves. Let X be a smooth one-dimensional scheme
of finite type over C, and let Γ be a finite abelian group which acts on X over C. We let
K ⊂ Γ be the kernel of the homomorphism Γ ! AutC(X) associated to the Γ-action,
and define Q := Γ/K. This gives a short exact sequence of finite abelian groups

0 ! K ! Γ ! Q! 0.

The restriction of the action on X of Γ to K yields the trivial action of K on X, and
the induced action of Q on X is faithful. Let

M =M[X/Γ] =M[X/Q] = X/Q

be the coarse quotient of X by Q.

Proposition 7.1. Assume that the subgroup K ⊂ Γ is contained in the center of Γ, so
that for every x ∈ X(C) there is an inclusion K ⊆ Γx/Γx. Let ∆ ⊂ M[X/Γ](C) be the
branch locus of the quotient map q : X(C) ! X(C)/Q, and choose a lift yx ∈ X(C) of
each x ∈ ∆. There is a canonical homeomorphism

|I[X/Γ](C)| =
(
K ×M[X/Γ](C)

)∐ ∐
x∈∆

(Γyx/Γyx −K)

that commutes with the canonical projections onto M[X/Γ].

Proof. We may assume that X is connected. It suffices to show that the map I[X/Γ] !
M[X/Γ] has #K disjoint sections. Indeed, I[X/Γ] !M[X/Γ] is finite by Lemma 3.3, hence
for each irreducible component Z ⊂ I[X/Γ] of dimension one, the restriction Z !M[X/Γ]

is a finite morphism of curves, hence an isomorphism if it admits a section; moreover,
over the open subset of M[X/Γ] where the stabilizer group is exactly K, the fibres of
I[X/Γ] !M[X/Γ] have cardinality exactly #K by Proposition 7.1.
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Write X = [X/Γ]. Let S ⊂ X ×C Γ be the stabilizer group scheme associated to the
action of Γ on X over C, so that S can be described pointwise as

S = {(x, g) ∈ X ×C Γ | g · x = x} .

Then Γ acts on S by γ · (x, g) = (γ · x, γgγ−1) for γ ∈ Γ and (x, g) ∈ S. Moreover we
have a canonical isomorphism IX = [S/Γ] (see e.g. [Jar, Exercise 3.2.12]).

Since K is contained in the center of Γ, to any k ∈ K one can associate the following
well defined section sk of the canonical map IX !MX :

sk : X/Γ =MX −! IX = S/Γ, [x] 7! [(x, k)]. (14)

By construction, the sections sk and sk′ are disjoint for k ̸= k′ ∈ K, and so the
proposition follows.

Proposition 7.2. Assume that K ⊂ Γ is contained in the center of Γ. Then

h∗(|IX (C)|) = #K · h∗(M(C))

+

(∑
x∈∆

#(Γyx/Γyx)

)
−#∆ ·#K.

(15)

If, in addition, Γyx is abelian for each x ∈ ∆, then

h∗(|IX (C)|) = #K · h∗(|I[X/Q](C)|). (16)

Proof. By Proposition 7.1, we have

h∗(|IX (C)|) = #K · h∗(M(C)) +
∑
x∈∆

(#(Γyx/Γyx)−#K) , (17)

and (17) implies (15).
Applying (17) to the quotient stack [X/Q] gives

h∗(|I[X/Q](C)|) = h∗(M(C)) +
∑
x∈∆

(#(Qyx/Qyx)− 1) . (18)

If Γyx is abelian for each x ∈ ∆, then one has

Γyx/Γyx = Γyx , Qyx/Qyx = Qyx , #K ·#Qyx = #Γyx .
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Hence (16) follows from (17) and (18) and we are done.

Example 7.3. Consider the moduli stack A1 of elliptic curves over C, with coarse
moduli space A1 ! A1 = A1

C. Then dimH∗(A1(C), FA1) = 8. Indeed, we let ℓ ≥ 3

be a prime number and let A1[ℓ] be the moduli space of elliptic curves with level ℓ
structure; it is equipped with a SL2(Fℓ)-action such that A1 = [SL2(Fℓ) \ A1[ℓ]]. In
this case, we have K = ⟨−1 · Id⟩ ⊂ SL2(Fℓ) = Γ, and Γ/K = PSL2(Fℓ). The locus
∆ ⊂ A1(C) of isomorphism classes of elliptic curves with automorphism group larger
than {±1} consists of two points, with respective automorphism groups Z/4 and Z/6.
Thus, Proposition 7.2 implies that dimH∗(A1(C), FA1) = 2 + 4 + 6− 2 · 2 = 8.

Remark 7.4. Propositions 7.1 and 7.2 have a natural analogue in the complex analytic
setting. In fact, these analogues generalize to the case where Γ is a discrete group, not
necessarily finite, acting properly discontinuously on a complex manifold. For example,
consider the complex analytic stack Aan

1 as the quotient stack Aan
1 = [Sp2(Z) \ H]

where H is the upper half plane. In this case, K ⊂ Sp2(Z) is the abelian subgroup of
order two generated by −1 times the identity matrix, and Q = PSL2(Z). Moreover,
the coarse moduli space of Aan

1 is C, and there is one isomorphism class of elliptic
curves with automorphism group Z/4, one with automorphism group Z/6, and all
other isomorphism classes have automorphism group Z/2. Thus, the complex analytic
analogue of Proposition 7.2 implies as before that dimH∗(C, FAan

1
) = 2+4+6−2·2 = 8.

7.2 Topology of real stacky curves. Recall from Definition 4.6, that if X a Deligne–
Mumford stack with coarse moduli space p : X !M and if f : |X (R)| !M(R) is the
map induced on the real points, for x ∈ M(R) we denote by H1(G, x) the cardinality
of H1(G,Aut(z)), where z ∈ X (R) is such that [z] ∈ f−1(x).

7.2.1 Local geometry. We start by study the local topology of a stacky curve around a
point with non-trivial stabilizer.

Lemma 7.5. Let X be a smooth curve over R. Let H be a finite R-group scheme that
acts on X over R. Assume that H acts faithfully on X over R.

1. For each x ∈ X(R), there exists an integer n ≥ 1 such that the stabilizer group
scheme Hx is isomorphic to µn.

2. For x ∈ X(R), the number H1(G, [x]) = #H1(G,Hx(C)) is equal to 1 (resp. 2) if
n is odd (resp. even).

Proof. Let Γ = H(C). Since the action of Γ is faithful, there are only finitely many
points x ∈ X(R) with non trivial stabilizer Γx. Since the statement is trivial for points
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with trivial stabilizer, we focus on the points x with Γx ̸= 0. Choose a G and Γ stable
open neighbourhood U of x not containing any other point with non-trivial stabilizer
andG-biholomorphic to an open disk centered in x endowed with the standardG-action.
Since the group of biholomorphism of the disk with one fixed point is isomorphic to S1,
we see that Γx is cyclic isomorphic to Z/n for some integer n. Moreover a generator γ
acts a γ(z) = eiθz if z is a local parameter around x. Since the G-action is compatible
with the action of Γ, this forces a G-equivariant isomorphism Γx ≃ µn.

The second item follows from the first and the fact that |H1(G,µn)| is 1 is n is odd
and 2 if n is even.

7.2.2 Global geometry. We now study the possible shapes of the connected components
of the real points of a real stacky curve.

Proposition 7.6. Let X be a smooth curve over R. Let H be a finite étale group
scheme over R which acts on X over R. Let C ⊂ |[X/H](R)| be a connected component
of |[X/H](R)|. Then C homeomorphic to either an interval in R of the form (0, 1), (0, 1]

or [0, 1], or to the circle S1 =
{
(x, y) ∈ R2 | x2 + y2 = 1

}
. If X is proper then only the

possilibities [0, 1] and S1 can occur.

We actually prove something slighlty more general in the following Lemma 7.7.
Observe that Proposition 7.6 follows from Theorem 1.5 and Lemma 7.7.

Lemma 7.7. Let X be a smooth curve over R. Let H be a finite étale group scheme
over R acting on X over R. Then each connected component of X(R)/H(R) is homeo-
morphic to the interval [0, 1] ⊂ R, to the interval (0, 1], to the interval (0, 1), or to the
circle S1 ⊂ R2.

Proof. We may assume that H acts faithfully on X.
First, assume that X is proper, so that X(R) is compact and let C be a connected

component of X(R) with stabilizer StabH(R)(C) in H(R). We start proving that

C/StabH(R)(C) ≃ S1 or C/StabH(R)(C) ≃ [0, 1] (19)

Recall that every connected Riemann surface S admits a unique complete Riemann
metric g with constant curvature being negative (genus ≥ 2), zero (genus zero) or posi-
tive (genus one). Moreover, for genus ≥ 2 the group Bihol(S) coincides with the group
Isom(S, g)+ of orientation preserving isometries of the Riemannian manifold (S, g).
In genus zero we have, for the subgroup PGL2(R) ⊂ PGL2(C) = Bihol(P1(C)), that
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PGL2(R) = SO3(R) acts as isometries on P1(C) ∼= S2. The automorphism group of
any complex elliptic curve preserves its Riemannian metric.

In particular, as H acts faithfully on X, there are natural inclusions

StabH(R)(C) ⊂ H(R) ⊂ Isom(X(C)) ⊂ Homeo(X(C))

where Isom(X(C)) is the group of isometries with respect to the Riemannian metric of
X(C). Consider the connected component

C ⊂ X(R) ⊂ X(C).

We endow C with the Riemannian metric induced by the embedding C ⊂ X(C). Then
C is a compact one-dimensional Riemannian manifold, and hence isometric to a circle
of some length L: we have C ∼= R/LZ with the standard Riemannian metric. In
particular, Isom(C) ∼= O(2). By the above, we have StabH(R)(C) ⊂ Isom(X(C)),
and hence StabH(R)(C) ⊂ Isom(C) ∼= O(2). So, StabH(R)(C) is a finite subgroup of
O(2) = Isom(S1) with S1 = {z ∈ C | |z| = 1}, hence it is generated by multiplications
by some root of unity and, possibly, by the standard complex conjugation on S1. Hence
we get (19).

Let C1, . . . , Cn be the connected components of X(R); each Ci is homeomorphic to
S1. Then I := {1, . . . , n} admits a partition I = I1 ⊔ I2 ⊔ · · · ⊔ Ik with k ≤ n such
that the Ij are the orbits for the induced action of H(R) on I. For each j ∈ {1, . . . , k},
choose an element ij ∈ Ij . Let H(R)j = StabH(R)(Cij ) be the stabilizer of Cij in the
group H(R). Then

X(R)/H(R) =

(
n∐
i=1

Ci

)
/H(R) =

k∐
j=1

∐
i∈Ij

Ci

 /H(R)

 ∼=
k∐
j=1

Cij/H(R)j .

Thus, the lemma in the case where X is proper follows from (19).
In the general case, consider the smooth projective compactification X ↪! Y of

X. The action of H on X extends to an action of H on Y , and the natural map
X(R)/H(R) ! Y (R)/H(R) is an open embedding whose complement is a finite set
(possibly empty). By what has already been proved, each connected component of
Y (R)/H(R) is homeomorphic to [0, 1] or S1. By removing the points in ∆(R) ⊂ Y (R),
where ∆ = Y − X, we see that each connected component of X(R)/H(R) is homeo-
morphic to [0, 1], (0, 1], (0, 1) or S1, and we are done.
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7.2.3 Map to the coarse moduli space. Finally, we study the map from a real stacky
curve to its moduli space.

Let X be a smooth curve over R. Let H be a finite R-group scheme that acts on X
over R, with associated real structure σ : H(C) ! H(C). Define RQ ⊂ Z1(G,Q) and
Assume that H acts faithfully on X over R. Let p : [X/H] ! X/H =M be the coarse
moduli space map, with induced map f : |[X/H](R)| !M(R).

Lemma 7.8. Let C ⊂M(R) be a connected component. Assume that for each m ∈ C,
we have h1(G,m) = 1. Then the map f−1(C) ! C is a homeomorphism.

Proof. Since the action is faithful and X is smooth, the map f : |[X/H](R)| ! M(R)
is surjective as it is closed and its image contains a dense open subset. In particular,
f−1(C) ! C is surjective. Moreover, for m ∈ C, we have #f−1(m) = h1(G,m), see
Proposition 4.5, which equals 1 by assumption. The lemma follows.

Proposition 7.9. Let C ⊂M(R) be a connected component and let S = {x1, . . . , xn} ⊆
C be the finite set of points such that h1(G, xi) ̸= 1. Assume that S ̸= ∅.

1. If C is an interval, then for every homeomorphism φ : C
∼−! (0, 1), there exists an

homeomorphism

ψ : f−1(C)
∼−−! (0, y1]

∐
[y1, y2]

∐
· · ·
∐

[yn−1, yn]
∐

[yn, 1)

such that the following diagram commutes:

f−1(C)

��

ψ
// (0, y1] ⊔ [y1, y2]

∐
· · ·
∐
[yn−1, yn]

∐
[yn, 1)

��

C
φ

// (0, 1),

where the vertical arrows are the canonical ones and yi = φ(xi).

2. If C is a circle, then for every homeomorphism φ : C
∼−! S1, there exists a home-

omorphism

ψ : f−1(C)
∼−−! [eiθ1 , eiθ2 ]

∐
· · ·
∐

[eiθn−1 , eiθn ]
∐(

[0, eiθ1 ]
∐
0∼1

[eiθn , 1]

)
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such that the following diagram commutes:

f−1(C)

��

ψ
// [eiθ1 , eiθ2 ]

∐
· · ·
∐
[eiθn−1 , eiθn ]

∐(
[0, eiθ1 ]

∐
0∼1[e

iθn , 1]
)

��

C
φ

// S1,

where the vertical arrows are the canonical ones and φ(xj) = eiθj .

Proof. The map f : f−1(C) ! C is surjective, see the proof of Lemma 7.8. By
Proposition 4.5 and Lemma 7.5, for each connected component K ⊂ M(R), the map
f−1(K) ! K is an isomorphism outside S ⊂ K and has two fibers above each point
of S . The proposition follows readily from this and from Proposition 7.6.

7.3 Smith–Thom for real stacky curves.

Proof of Theorem 1.9. The action of H on X corresponds to a homomorphism

H −! AutR(X), (20)

where the latter denotes the automorphism group scheme of X over R. Let K ⊂ H be
the kernel of (20), and let Q = H/K be the quotient of H by K. The canonical map
Q ! AutR(X) is a closed immersion. In particular, the group Q(C) acts faithfully on
X(C). Let [X/H] ! M be the coarse moduli space; we have M(C) = X(C)/H(C) =
X(C)/Q(C).

Consider the real structure σ : X(C) ! X(C). Choose a set of representatives
RH ⊂ Z1(G,H) for H1(G,H) = Z1(G,H)/ ∼. For γ ∈ RH , let σγ : X(C) ! X(C) be
the involution x 7! γ · σ(x). Choose RQ ⊂ Z1(G,Q) and define σµ : X(C) ! X(C) for
µ ∈ RQ similar to the way we chose RH ⊂ Z1(G,H) and defined µγ for γ ∈ RH .

Step 1: If H is abelian, and if the Smith–Thom inequality (3) holds for the quotient
stack [X/Q], then it also holds for [X/H].

Proof. Assume the Smith–Thom inequality (3) for [X/Q], and consider the canonical
map

g : |[X/H](R)| −! |[X/Q](R)| . (21)
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By Theorem 1.5, we have a commutative diagram of the form

|[X/H](R)|

≀
��

g
// |[X/Q](R)|

≀
��∐

[γ]∈H1(G,H)X(C)σγ/H(C)σγ //
∐

[µ]∈H1(G,Q)X(C)σµ/Q(C)σµ ,

where the map on the bottom is induced by the canonical map H1(G,H) ! H1(G,Q).
Since

X(C)σγ/H(C)σγ = X(C)σµ/Q(C)σµ

for each [γ] ∈ H1(G,H) mapping to [µ] ∈ H1(G,K), this proves that the map g in (21)
is a topological covering over each connected component of its image. Moreover, the
exact sequence of pointed sets

0 ! K(R) ! H(R) ! Q(R) ! H1(G,K) ! H1(G,H) ! H1(G,Q)

shows that the degree of g over a connected component of its image is bounded by∣∣H1(G,K(C))
∣∣.

By Proposition 7.6, each connected component C of |[X/H](R)| is homeomorphic
to a circle or an interval. If C is a circle then, by the above, g−1(C) consists of at most
H1(G,K(C)) circles, so that

h∗(g−1(C)) ≤ 2 ·#H1(G,K(C)).

Similarly, if C is an interval, then g−1(C) is an union of at most H1(G,K(C)) intervals,
so that

h∗(g−1(I)) ≤ #H1(G,K(C))
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Therefore, we have:

h∗(|[X/H](R)|) =
∑

C∈π0(|[X/Q](R)|)

h∗
(
g−1(C)

)
=

∑
C circle

h∗
(
g−1(C)

)
+

∑
C interval

h∗
(
g−1(C)

)
(a)
≤

∑
C circle

2 ·#H1(G,K(C)) +
∑

C interval

#H1(G,K(C))

= #H1(G,K(C)) · h∗(|[X/Q](R)|)
(b)
≤ #K(C) · h∗(|I[X/Q](C)|)
(c)
= h∗(|I[X/H](C)|),

where (a) holds by the previous discussion, (b) by the assumption that the Smith–Thom
inequality (3) holds for [X/Q] and the fact that #H1(G,K(C)) ≤ #K(C), while (c)

holds by Proposition 7.2 which we can apply since H is abelian. This proves what we
want.

Let ∆ ⊂ M(C) = X(C)/Q be the branch locus of the quotient map q : X(C) !

X(C)/Q. For each x ∈ ∆ choose an element yx ∈ X(C) such that q(yx) = x. Define

∆′ :=
{
x ∈ ∆ ∩M(R) | H1(G, x) > 1

}
,

where H1(G, x) = #H1(G,Hy(C)) for some y ∈ q−1(x), see Definition 4.6.

Step 2: The Smith–Thom inequality (3) holds when when the action of H on X over
R is faithful (i.e. H = Q).

Proof. Consider the map f : |X (R)| ! M(R), and note that f is surjective. Let C ⊂
M(R) be a connected component which is homeomorphic to a circle. By Proposition
7.9, f−1(C) is homeomorphic to a circle if H1(G, x) = 1 for each x ∈ C, and f−1(C)

is homeomorphic to the union of #(C ∩∆′) intervals if ∆′ ∩ C ̸= ∅. In particular, we
have:

h∗
(
f−1(C)

)
=

2 if C ∩∆′ = ∅,

#(C ∩∆′) if C ∩∆′ ̸= ∅.

Let I ⊂M(R) be a connected component which is homeomorphic to the open interval
(0, 1). By Proposition 7.9, f−1(I) is homeomorphic to the union of #(I ∩ ∆′) + 1
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intervals. In particular, we have:

h∗(f−1(I)) = #(I ∩∆′) + 1

Therefore, we have:

h∗(|X (R)|) =
∑

C∈π0(M(R)) circle

h∗(f−1(C)) +
∑

I∈π0(M(R)) interval

h∗(f−1(C))

(a)
=

∑
C∩∆′=∅

2 +
∑

C∩∆′ ̸=∅

#(C ∩∆′) +
∑
I

(
#(C ∩∆′) + 1

)

=

( ∑
C∩∆′=∅

2 +
∑
I

1

)
+

 ∑
C∩∆′ ̸=∅

#(C ∩∆′) +
∑

I∩∆′ ̸=∅

#(C ∩∆′)


≤ h∗(M(R)) +

∑
x∈∆

1

(b)
≤ h∗(M(R)) +

∑
x∈∆

(#(Hyx(C)/Hyx(C))− 1)

(c)
≤ h∗(M(C)) +

∑
x∈∆

(#(Hyx(C)/Hyx(C))− 1)

(d)
= h∗(|IX (C)|),

where (a) follows from the previous discussion, (b) from #(Hyx(C)/Hyx(C)) ≥ 2, (c)
from the Smith-Thom inequality 1 for M(C) and finally (d) from Proposition 7.2. This
proves Step 2.

By combining Steps 1 and 2, the theorem follows.

8 Topology of a split gerbe over a real variety

Let U be a geometrically connected scheme locally of finite type over R. To simplify
the discussion, we assume that U(R) ̸= ∅. Let H ! U be a finite étale group scheme
over U . For every x ∈ U(R), we write xC ∈ U(C) for the associated geometric point
and Hx (resp. HxC) for the fiber of H ! U over x (resp. xC). The scheme Hx is a group
scheme over Spec(R) so that HxC is the constant group scheme over C associated to a
finite group which, by abuse of notation, we will also denote by HxC . The finite group
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HxC is endowed with an action of G, hence with an involution

σx : HxC ! HxC . (22)

Let X = [U/H] be the associated classifying stack, where H acts trivially on U .
Recall that the natural quotient map U ! X is a section of the coarse moduli space
map X ! U/H = U , so that, in particular, the map f : |X (R)| ! U(R) is surjective.

In this section we explain how to compute the topology of X (R), by comparing it
with U(R). To state the main result, recall that, since H(C) ! U(C) is a topological
cover, if p ∈ U(C) there is a natural action of π1(U(C), p) on Hp(C).

Theorem 8.1. Let U be a geometrically connected R-variety such that U(R) ̸= ∅. Let
H ! U be a finite étale group scheme and set X := [U/H]. The following holds.

1. The canonical map f : |X (R)| ! U(R) is a topological covering over each con-
nected component of U(R), with fibre H1(G,Hp(C)) above a point p ∈ U(R).

2. Let C be a connected component of U(R), and fix p ∈ C. The image of the natural
map π1(C, p) ! π1(U(C), p) lies in the subgroup of elements g ∈ π1(U(C), p)
whose action on Hp(C) is G-equivariant. In particular, the group π1(C, p) acts
naturally on H1(G,Hp(C)).

3. The covering space associated to the above action of π1(C, p) on H1(G,Hp(C)) is
canonically isomorphic to the covering space f−1(C) ! C.

The rest of the section is devoted to the proof of Theorem 8.1 and to some of its
corollaries. We begin with some preliminaries; the actual proof of Theorem 8.1 is carried
out in Section 8.2.

8.1 Action of fundamental groups. Fix p ∈ U(R) and write C for the connected
component of U(R) containing p. Recall that H ! U corresponds to an action
πét
1 (U, pC) on HpC ,

ρp : π
ét
1 (U, pC) ! Aut(HpC),

compatible with the group structure of HpC , where πét
1 (U, pC) is the étale fundamental

group of U at the geometric point pC.
Since U is geometrically connected, the natural morphisms UC ! U ! Spec(R)

induce a short exact sequence of groups

1 ! πét
1 (UC, pC) ! πét

1 (U, pC) ! G! 1. (23)
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Restricting ρp to πét
1 (UC, pC), we get an action of πét

1 (UC, pC) on HpC ,

ρCp : π
ét
1 (UC, pC) ! Aut(HpC),

which corresponds to the étale UC-group scheme HC ! UC. Recall that πét
1 (UC, pC)

identifies with the profinite completion of usual fundamental group π1(U(C), p) so that,
in particular, there is a map π1(U(C), p) ! πét

1 (UC, pC). We denote again by

ρCp : π1(U(C), p) ! Aut(HpC)

the restriction of ρCp : πét
1 (UC, p) ! Aut(HpC) along the map π1(U(C), p) ! πét

1 (UC, pC);
this representation of πét

1 (UC, p) corresponds to the topological covering H(C) ! U(C).
Viewing p as a morphism of schemes p : Spec(R) ! U , we get a morphism π1(p) : G =

π1(Spec(R), p) ! πét
1 (U, p) which splits (23), and hence yields an isomorphism

πét
1 (U, p) ≃ πét

1 (UC, pC)⋊G. (24)

This yields an action of G = ⟨σ⟩ on πét
1 (UC, pC) by the usual formula σ · α = σασ−1

for α ∈ πét
1 (UC, pC) (where we view G as a subgroup G ⊂ πét

1 (U, pC)), and this action is
compatible with the action of G on π1(U(C), pC) defined as follows: for α ∈ π1(U(C), p),
we have σ · α = (σU )∗(α), where σU is complex conjugation on U(C).

Restricting ρp to G via π1(p), we get an action of G on HpC which identifies with
the natural involution σp on HpC , see (22). Now consider the morphism π1(C, p) !

π1(U(C), p) and, by abuse of notation, write

ρCp : π1(C, p) ! Aut(HpC) (25)

for the restriction of ρCp to π1(C, p).

Lemma 8.2. The above action (25) of π1(C, p) on HpC commutes with σp, in the sense
that σp(γ · x) = γ · σp(x) for γ ∈ π1(C, p) and x ∈ HpC. In particular, it preserves
Z1(G,HpC) = {x ∈ HpC | x · σp(x) = e} ⊂ HpC, and the induced action of π1(C, p) on
Z1(G,HpC) descends to an action of π1(C, p) on H1(G,HpC).

Proof. We need to show that for every α ∈ π1(C, p), one has

ρCp (α) ◦ σp = σp ◦ ρCp (α) as maps HpC ! HpC . (26)

Via the isomorphism (24), we write each element β ∈ πét
1 (U, pC) as a pair β = (β1, β2)
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with β1 ∈ πét
1 (UC, pC) and β2 ∈ G. Denote by α the image of α in πét

1 (UC, pC). Then
the equation (26) can be rewritten as

ρp(α, e)
−1 ◦ ρp(e, σ) ◦ ρp(α, e) = ρp(1, σ).

Since ρp is a group homomorphism we have

ρp(α, e)
−1 ◦ ρp(e, σ) ◦ ρp(α, e) = ρp((α

−1, e) · (e, σ) · (α, e)).

By the definition of the semi-direct product group structure, we have

(α−1, e) · (e, σ) · (α, e) = (α−1σ−1ασ, σ).

The image α ∈ π1(U(C), p) of α ∈ π1(C, p) satisfies (σU )∗(α) = α ◦ σU = α. For the
image α ∈ πét

1 (UC, pC), one therefore has σ · α = σ−1ασ = α. Hence, we get

ρp(α, e)
−1 ◦ ρp(e, σ) ◦ ρp(α, e) = ρp((α

−1, e)(e, σ)(α, e)) = ρp(e, σ),

and the proof is concluded.

8.2 Change of base point. In the previous section we fixed a p ∈ U(R) to study
Hp, but it will be important for us to understand how Hp change with the point. The
main result of Section 8.2 is the following.

Proposition 8.3. Let U be a geometrically connected scheme of finite type over R.
Let Y ! U be an étale cover. For p ∈ U(R), consider the natural anti-holomorphic
G-action σp : YpC ! YpC. Let p, q ∈ U(R) and choose a topological path γq,p from q to p
in U(C). Consider the element ωq,p := (γq,p ◦σU ) ∗ γ−1

q,p ∈ π1(U(C), p) (where ∗ denotes
the composition of paths). Then the following diagram commutes:

YqC

σq

��

(γq,p)∗
// YpC

σp

��

YqC YpC

ωq,p

��

YqC
(γq,p)∗

// YpC .

Here, ωq,p = (γq,p ◦ σU ) ∗ γ−1
q,p ∈ π1(U(C), p) acts on YpC as an element of π1(U(C), p),

and (γq,p)∗ : YqC
∼−! YpC is the canonical isomorphism induced by the path γq,p.
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Example 8.4. Let U ⊆ Gm be an open subset whose real part contains [−1, 0) and
(0, 1] and let π : E ! U be a family of smooth elliptic curves. Let p = 1 ∈ U(R) and
assume that Yp is a maximal real elliptic curve. Define a local system F := π∗Z/2 of
finite dimension Z/2-modules on Uét, and let

Y −! U

be the associated finite étale cover. Thus,

Yq̄ = H1(Eq(C),Z/2) for q ∈ U(R).

Since Ep is a maximal real elliptic curve, the action of G on YpC = H1(Ep(C),Z/2) is
trivial.

1. Assume that the action of the standard loop γ around 0 (viewed as an element
of πét

1 (UC, pC)) on H1(Ep(C),Z/2) is not trivial (this happens for example for the
family whose affine equation is y2 = (x2 − t)(x + 2) where t is the coordinate
of U). Let q = −1 and choose as γq,p the standard "half circle" around 0, so
that ωq,p = γ, hence it acts non-trivially on πét

1 (UC, pC). Since the action of G
on H1(Ep(C),Z/2) is trivial, we deduce from Proposition 8.3 that the action of
G on H1(Eq(C),Z/2) is not trivial. In particular, the real elliptic curve Eq is not
maximal.

2. Assume that the action of πét
1 (UC, pC) on H1(Ep(C),Z/2) is trivial (this hap-

pens for example for the family whose affine equation is y2 = x(x + 2)(x + 3)

where t is the coordinate of U). Let q = −1. Since πét
1 (UC, pC) acts trivially

on H1(EpC(C),Z/2), for every choice of path γq,p from −1 to 1, the loop ω acts
trivially on H1(Ep(C),Z/2), so that from Proposition 8.3, we deduce that Eq is
maximal.

Before going to the proof of Proposition 8.3 of let us drawn some consequences.

Corollary 8.5. Let U be a geometrically connected scheme locally of finite type over R,
and let H ! U be a finite étale group scheme. Let C ⊂ U(R) be a connected component.
For p, q ∈ C, there is an isomorphism HpC ≃ HqC of finite G-groups. In particular, up
to bijection, the set H1(G,HqC) does not depend on the choice of q ∈ C.

Proof. Since p, q are inside the same connected component of U(R), we can choose a
path γq,p : [0, 1] ! U(C) that is fixed by (σU )∗, i.e., γp,q lifts to a path γp,q : [0, 1] !
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U(R). In particular,

ωq,p = (γq,p ◦ σU ) ∗ γ−1
q,p = γq,p ∗ γ−1

q,p = e ∈ π1(U(C), p).

Thus, the corollary follows from Proposition 8.3.

Proof of Theorem 8.1. By Theorem 4.12, Proposition 4.5 and Corollary 8.5 the mor-
phism f−1(C) ! C is finite étale with fibers H1(G,HpC). The corresponding action of
π1(C, p) on H1(G,HpC) identifies with the action ρCp of Lemma 8.2 which is induced,
via the morphism π1(C, p) ! π1(U(C), pC), by the action of π1(C, p) on HpC .

8.2.1 Proof of Proposition 8.3. For any path γq,p : [0, 1] ! U(C) from q to p, and any
point y ∈ YqC , we let γ̃yq,p be the unique path in Y (C) that lifts γq,p and that satisfies
γ̃yq,p(0) = y. This yields an isomorphism

(γq,p)∗ : YqC
∼−! YpC , y 7! γ̃yq,p(1).

To ease notation, write σ = σU , the natural anti-holomorphic involution U(C) ! U(C),
and denote the natural anti-holomorphic involution on Y (C) also by σ. By construction,
we have:

σ((γq,p)∗(y)) = σ(γ̃yq,p(1)) and ωq,p · (γq,p)∗(σ(y)) = ωq,p · γ̃σ(y)q,p .

Observe that
σ(γ̃yq,p(1)) =

(
σ∗(γ̃

y
p,q)
)
(1)

and that σ∗(γ̃
y
p,q) is a path in Y (C) that lifts σ∗(γq,p) and that starts at σ(y). In other

words,

σ ((γq,p)∗(y)) = ˜σ∗(γq,p)
σ(y)

(1).

On the other hand, by construction of the action of π1(U(C), p) on YpC , one has

ωq,p ·
(
γ̃q,p

σ(y)(1)
)
= ˜ωq,p ∗ γq,p

σ(y)
(1).

But ωq,p ∗ γq,p = σ∗(γq,p) by definition of ωq,p, hence the proof is concluded.
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9 Interpretation in terms of the homotopy exact sequence

In order to do efficiently computations, we interpret Proposition 8.3 in terms of splitting
of the homotopy exact sequence (23).

9.1 Splitting of semi-direct products. Possibly, one can remove this section. I
believe it is not used. We start recall some properties of splitting of semi-direct products.
Let now Γ be any group with an action of G, consider the semi-direct product Γ ⋊ G

of G so that there is an exact sequence

0 ! Γ ! Γ⋊G
π−! G! 0. (27)

There is an obvious section s of π, namely the one sending σ to (e, σ). Under this
section, the action of G on Γ, can be recovered as the conjugation action by (e, σ).

There might be many more splittings. Indeed the map

{ϵ ∈ Γ such that σ(ϵ)ϵ = 1} ≃−! {splittings of π} (28)

sending ϵ to the map defined by sϵ(σ) = (ϵ, σ) is a bijection. Since we are mainly
interested in studying objects up to conjugation, let us remark that (28) induces a
bijection

{ϵ ∈ Γ such that σ(ϵ)ϵ = 1}/ ∼ ≃−! {splittings of π}/conj,

where ϵ ∼ ϵ′ if there exists γ ∈ Γ such that ϵ = γϵ′σ(γ)−1, and where conj denotes the
equivalence relation by conjugation.

Example 9.1. Let Γ = Z endowed with the action of G by inversion. Then the set of
splitting of (27), is in bijection with Z. On the other hand, the set of splitting up to
conjugation is only made by two elements, since (n, σ) in conjugated to (m,σ) if and
only if n and m have the same parity.

The splitting sϵ of (27) induces, by conjugation via (ϵ, σ), the action on Γ given by
σϵ(γ) = ϵ−1σ(γ)ϵ.

9.2 Galois formalism. Write Fset for the category of finite sets and, for a scheme Z,
Fét(Z) for the category of finite étale covers of Z.

Consider the notation of Section 8. Thus, U is a geometrically connected scheme
locally of finite type over R, with U(R) ̸= ∅; the morphism H ! U is a finite étale
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group scheme over U , and for every x ∈ U(R), we write xC ∈ U(C) for the associated
geometric point. Recall that for every q ∈ U(R), the group πét

1 (U, qC) (resp. πét
1 (UC, qC))

is the automorphism of the functor

(−)qC : Fét(U) ! Fset (resp. (−)CqC : Fét(UC) ! Fset)

sending Y ! U (resp. Y ! UC) to the geometric fiber YqC . By the general formalism
of Galois categories, every isomorphism of functors

ϕ : (−)qC
≃−! (−)pC ,

induces an isomorphism
φ : πét

1 (U, qC)
≃−! πét

1 (U, pC)

in such a way that the action of G (= πét
1 (Spec(R))) on HpC is induced by the action

of πét
1 (U, pC) on HpC and the composition

G = πét
1 (Spec(R)) π1(q)−−−! πét

1 (U, qC)
φ−! πét

1 (U, pC).

Since both π1(p) and φ ◦ π1(q) are splitting of the exact sequence

0 ! πét
1 (UC, pC) ! πét

1 (U, pC) ! G! 0,

to understand the action of G on HqC , one has to understand how the different splittings
of this sequence are related. This is the main result of the section.

9.2.1 Paths and splittings of the homotopy exact sequence. Let p, q ∈ U(R). Let

γq,p : [0, 1] ! U(C)

be a path from q to p. The isomorphisms

(γq,p)∗ : YqC ≃ YpC

induced by γq,p fit together to give an isomorphism φC
q,p : (−)CqC

≃−! (−)CpC of fiber
functors. This in turn, induces an isomorphism

φC
q,p : π

ét
1 (UC, qC)

≃−! πét
1 (UC, pC),
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well defined up to conjugation, extending the usual isomorphism π1(U(C), q) ! π1(U(C), p)
defined by α 7! γq,pαγ

−1
q,p . Write

ω := (σU )∗(γq,p) ∗ γ−1
q,p ∈ π1(U(C), p).

By abuse of notation, let ω ∈ πét
1 (UC, pC) be the image of ω under the natural morphism

π1(U(C), p) ! πét
1 (UC, pC).

Proposition 9.2. In the above notation, consider the map f : G ! πét
1 (UC, pC) ⋊ G

defined as the composition

f : G
π1(q)−−−! πét

1 (U, qC)
φq,p−−! πét

1 (U, pC) ≃ πét
1 (UC, pC)⋊G,

where the isomorphism on the right is defined by the splitting of the homotopy exact
sequence (23) induced by the section π1(p) : G! πét

1 (U, pC). Then

f(σ) = (ω, σ).

Proof. Let Y ! U be a finite connected étale cover. By Proposition 8.3, the action of
G = πét

1 (Spec(R)) on YpC induced by the action of πét
1 (U, pC) on YpC and the composition

G
π1(q)−−−! πét

1 (U, qC)
φq,p−−! πét

1 (U, pC)

identifies with the natural action of G on YpC up to multiplying by ω. To be precise,
after identifying YpC and YqC using γq,p, one has σq = ω · σp. Hence, if we consider the
isomorphism

πét
1 (U, pC) ≃ πét

1 (UC, pC)⋊G

induced by π1(p), the image of section corresponding to π1(q) is (ω, σ).

Remark 9.3. At the level of the geometric fundamental group, a similar procedure
can be applied. Define an involution σγq,pU : π1(U(C), q) ! π1(U(C), q) by

σ
γq,p
U (α) = ω−1σU (α)ω, α ∈ π1(U(C), q).

We have ω ∈ π1(U(C), p) right, and not in π1(U(C), q)? Since the action of σU on
π1(U(C), q) is well-defined up to conjugation, the actions of σγq,pU and σU on Fét(UC)

are isomorphic. With this new involution, the isomorphism

φp,q : π1(U(C), p) ≃−! π1(U(C), q)
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becomes equivariant.

Examples 9.4. Let U = Gm and take p = 1 ∈ Gm(R). In this case, the étale
fundamental group is given by

πét
1 (U, pC) ≃ Ẑ ⋊G,

where G acts on Ẑ by inversion.

1. Take q = 2 and choose γq,p as the natural path contained in the real part con-
necting q to p. In this case, ω is the trivial loop, so the image of the section
corresponding to π1(q) is identified with (0, e).

2. Again, take q = 2, but this time let γq,p be a loop not contained in the real part,
such that ω is nontrivial (for example, the path shown on the left in Figure 4).
By construction, the class of ω in π1(U(C), p) ≃ Z is 2, so under this choice of γ,
the image of the section π1(q) is (2, e). Although different from the previous case,
we note that (2, e) is conjugate to (0, e) in Z⋊G (see Example 9.1), meaning that
the conjugacy class of the section remains unchanged.

3. Take q = −1 and choose γq,p as the "half-circle path" from −1 to 1, as depicted
on the right in Figure 4. In this case, γ corresponds to the class of 1 in Z, so
the image of the section π1(q) is (1, e). Since (1, e) is not conjugate to (0, e), this
section is genuinely different from the previous ones, even up to conjugation.

0 1 2 −1 0 1

Figure 4: Two paths in Gm(R)

9.3 More examples of stacks satisfying Smith–Thom. In this section, we use
Theorem 8.1 and the previous discussions to verify the Smith–Thom inequality in a
number of cases.
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9.3.1 Cover of the multiplicative group. Let U = Gm and take p = 1 ∈ Gm(R). In this
case, the étale fundamental group is given by

πét
1 (U, pC) ≃ Ẑ ⋊G,

where G acts on Ẑ by inversion. Consider the natural projection π1 : Ẑ ⋊ G ! Z/2,
which corresponds to the cover (−)2 : Gm ! Gm. Since G acts trivially on the fiber
over 1 in this cover but nontrivially on the fiber over −1, the element corresponding to
the section associated with −1 takes the form ϵ−1 := (n, σ), where n is odd.

For the remainder of this section, we let G = Z/2 act on Z/2⊕ Z/2 by exchanging
the coordinates.

Example 9.5. Let π1 : Ẑ⋊Z/2 ! Z/2 be the morphism given by the natural projection
Ẑ ⋊G! Z/2. We let Ẑ ⋊ Z/2 act on Z/2⊕Z/2 via the action of Z/2, and denote the
corresponding group scheme by H ! U .

On the one hand, since the action of G on the fiber of the cover Gm
2−! Gm over 1

is trivial, the action of G on H1 is also trivial. Consequently, the preimage of (0,+∞)

under the map

|[U/H](R)| ! U(R) (29)

consists of the disjoint union of 4 = |H1(G,H1)| copies of (0,+∞). On the other hand,
since the action of G on the fiber of π1 over −1 is nontrivial, G acts on H1 by exchanging
the coordinates. This implies that H1(G,H1) = 1, so the preimage of (−∞, 0) under
the map (29) consists of a single copy of (−∞, 0). In summary, |[U/H](R)| consists
of five copies of R: one lying over (−∞, 0) and four lying over (0,+∞); see Figure 5.
Therefore, we obtain

h∗(|[U/H](R)|) = 5.

To compute I[U/H](C), recall from Example 3.12 that I[U/H](C) = H(C). In this case,
H(C) has three connected components (corresponding to the three orbits of πét

1 (UC) act-
ing on Z/2×Z/2), each of which is finite étale over C∗. Hence, H(C) ≃ C∗∐C∗∐C∗,

so that h∗(I[U/H](C)) = 6. Thus, the Smith–Thom inequality (3) holds.

Example 9.6. Let ρ : Ẑ ⋊ Z/2 ! Z/2 be the morphism defined as the sum of the
natural maps Ẑ ! G ! Z/2 and G ! Z/2. We let Ẑ ⋊ Z/2 act on Z/2 ⊕ Z/2 via
the action of Z/2, and denote the corresponding group scheme by H ! U . Since the
action of G on the fiber of the projection π1 : Ẑ ⋊ Z/2 ! Z/2 over 1 is trivial, the
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|[Gm/H](R)|

Gm(R)

Figure 5: The morphism |[Gm/H](R)| ! Gm(R)

action of G on H1 is nontrivial, whereas the action on H−1 is trivial. As in the previous
example, |[U/H](R)| consists of five copies of R. However, in this case, four of them lie
over (−∞, 0), while one lies over (0,+∞). The Smith–Thom inequality (3) is verified
in exactly the same manner as in the previous example.

9.3.2 Enriques surfaces. Let U be an Enriques surface such that U(R) ̸= ∅, so that its
K3 cover h : V ! U is defined over R. To simplify the discussion, we also assume that
V (R) ̸= ∅. Fix a point p ∈ U(R) in the image of h : V (R) ! U(R). Then, the section
π1(p) induces an isomorphism

πét
1 (U, pC) ≃ Z/2⋊G,

such that the K3 cover h : V ! U corresponds to the projection onto the first factor,

π1 : Z/2⋊G! Z/2.

For every q ∈ U(R), the group G acts trivially on VqC if and only if q is in the image of
h : V (R) ! U(R). Consequently, the element ϵq corresponding to the section associated
with q is given by

ϵq =

(0, 0) if q is in the image of h : V (R) ! U(R),

(1, 0) otherwise.

For the remainder of this section, we let Z/2 act on Z/2 ⊕ Z/2 by exchanging the
coordinates.

Example 9.7. Assume that U(R) is the union of four copies of P2(R) and two spheres
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S2, and that the map h : V (R) ! U(R) is surjective (such Enriques surfaces exist, as
shown in [DIK00a, Table 8, p. 180]).

Let π1 : Z/2×G! Z/2 be the projection onto the first coordinate, and let Z/2×G
act on Z/2 ⊕ Z/2 via this map. Denote by H ! U the corresponding group scheme.
Since h : V (R) ! U(R) is surjective, for every q ∈ U(R), the image of the section π1(q)
is (0, e). Consequently, the action of G on HqC is trivial, implying that

H1(G,HqC) = Z/2× Z/2.

Now, let C be a connected component homeomorphic to S2. Since S2 is simply
connected, the cover f−1(C) ! C is trivial. Thus, the preimage of each C under the
map

f : |[U/H](R)| ! U(R)

consists of four copies of S2.
On the other hand, let C be a connected component homeomorphic to P2(R). The

natural map π1(C) ! π1(U(C)) is an isomorphism, as there is at least one spherical
connected component in the real locus of the K3 cover over C (see the discussion in
[DK96, Section 3.5]). Thus, the cover f−1(C) ! C has three connected components,
corresponding to the orbits

{(0, 0)}, {(1, e)}, {(0, e), (1, 0)}

of the action of π1(U(C)) on

H1(G,HqC) = Z/2× Z/2.

Since the π1(C)-action on {(0, e), (1, 0)} is nontrivial, the corresponding cover is home-
omorphic to the universal cover S2 ! P2(R). Hence, f−1(C) is homeomorphic to the
disjoint union of two copies of P2(R) and one S2.

In conclusion, |[U/H](R)| is homeomorphic to the disjoint union of:

• Four copies of S2
∐

P2(R)
∐

P2(R), each lying over a P2(R), and

• Two copies of
∐

1≤i≤4 S
2, each lying over an S2.

In particular, we obtain

h∗(|[U/H](R)|) = 4 · (2 + 3 + 3) + 2 · 8 = 48.
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The inertia I[U/H](C) ! U(C) corresponds to the cover associated with the action of
π1(U(C)) on HpC , which has three connected components, corresponding to the orbits

{(0, 0)}, {(1, e)}, {(0, e), (1, 0)}.

Hence, I[U/H](C) is the disjoint union of two copies of U(C) and one copy of its K3
cover. In particular,

h∗(I[U/H](C)) = 16 · 2 + 24 = 56.

Thus, the Smith–Thom inequality (3) is verified.

Example 9.8. Retaining the notation of Example 9.7, we now assume that the image
of the map V (R) ! U(R) consists of only three copies of P2(R) and a single S2 (such
Enriques surfaces exist by [DIK00a, Table 8, p. 180]).

The description of the cover f−1(C) ! C remains the same for the connected
components in the image of V (R) ! U(R). However, it differs for the connected
components C1 and C2, which are respectively homeomorphic to S2 and P2(R) but are
not in the image. The final configuration is illustrated in Figure 6, where the dark disks
represent copies of P2(R), and the light spheres represent copies of S2.

|[U/H](R)|

U(R)

Figure 6: The morphism |[U/H](R)| ! U(R)

To justify this, choose a point qi ∈ Ci. Since qi is not in the image of V (R) ! U(R),
the action of G on Vqi,C is nontrivial. Consequently, the image of the section π1(qi) is

49



(1, e), implying that G acts on Hqi,C by exchanging the coordinates. In particular,

H1(G,Hqi,C) = 0

so that f−1(Ci) ! Ci is an isomorphism. As in the previous example, one verifies that
the Smith–Thom inequality holds in this case as well.

10 Variants of the Smith–Thom inequality for stacks

Let X be a real Deligne–Mumford stack. In the previous sections, we studied the topo-
logical space |X (R)| and proposed a conjectural bound on the sum of its Betti numbers.
While we believe this to be the most compelling problem related to X (as understanding
the geometry of real moduli spaces of objects could facilitate the classification of their
topological types), other interesting directions remain to be explored. In this section,
we investigate two such directions.

First, within the algebraic framework, it is known (see [GF22a]) that if X is smooth,
the space |X (R)| is not merely a topological space but also carries additional structure as
a real analytic orbifold. This suggests the natural question of whether a Smith–Thom-
type inequality can be formulated for the orbifold cohomology of |X (R)|. The main
difficulty in doing so is that, in general, the orbifold cohomology Hiorb(|X (R)|) is nonzero
in arbitrarily high degrees, making it unclear how to extend the conjectural inequality
(3) to this setting. In Section 10.1, we propose a way to address this issue for quotient
stacks by exploiting results of Quillen on equivariant cohomology rings, see [Qui71].

Second, in a more topological direction, it is well known that the classical Smith–Thom
inequality (1) is not specific to real algebraic varieties but applies to any topological
space equipped with an involution σ, where X(R) is replaced by the fixed locus of σ.
This naturally leads to the question of whether (3) admits a generalization to all topo-
logical groupoids X equipped with an involution. The main challenge in this approach
is identifying a suitable analogue of the fixed locus of the involution, that coincides
with X (R) when X is the topological groupoid with involution associated to a real
DM stack with étale presentation U ! X . We explore this question and formulate a
precise conjecture in Section 10.2.

10.1 Orbifold cohomology version of Smith–Thom. Let X be a real smooth
Deligne–Mumford stack. In this case the space |X (R)| can be naturally enriched with
the structure of a real analytic orbifold, see [GF22a, Section 2.2.3].

50



It seems natural to wonder whether the classical Smith–Thom inequality (1) has an
analogue for the orbifold cohomology groups Hiorb(|X (R)|,Z/2) and Hiorb(|X (R)|,Z/2)
of |X (R)| and |X (C)|. We refer the reader to [MP99] for the generalities on orbifold
cohomology. For the sequel, it will be usefull to recall what is the orbifold cohomology
of a quotient.

Remark 10.1. If a topological orbifold X is obtained as a quotient of a topological
space X by the action of a finite group Γ, by [MP99, Section 1.3], one has

Hiorb(X ,Z/2) ≃ HiΓ(X,Z/2),

where HiΓ(X,Z/2) is the Γ-equivariant cohomology of X.

As already mentioned, in general, the groups Hiorb(|X (R)|,Z/2) and Hiorb(|X (R)|,Z/2)
can be non-zero for infinitely many i.

Example 10.2. Let X := Spec(R) and Γ := Z/2 viewed as a constant group scheme
over R. By Remark 10.1, one has

Hiorb(|[X/Z/2](C)|,Z/2) ≃ Hi(Γ,Z/2)

while
Hiorb(|[X/Z/2](R)|,Z/2) ≃ Hi(Γ,Z/2)⊕Hi(Γ,Z/2)

as follows from Remark 10.1 and Theorem 1.5 and [MP99, Section 1.3]. In particular,
they are both non zero every integer i ≥ 0.

Even if it does not make sense to compare the sum of all the dimensions of all the
cohomology groups, one can ask the following vague question.

Question 10.3. Let X be a smooth separated Deligne–Mumford stack over R. Is there
a uniform natural bound on the growth rate of H≤i

orb(X (R),Z/2) when i ! ∞ in terms
of the growth rate of H≤i

orb(X (C),Z/2), that does not depend on the real model X of XC?

In this section we do it for quotient stacks, where the orbifold cohomology can be
identified with equivariant cohomology by Remark 10.1.

10.1.1 Quillen’s theorem on Poincaré series. In order to do so, we need to recall a
result of Quillen on the structure of the Poincaré series of equivariant cohomology. Let
Γ be a finite group and let X be a topological Γ-space such that H•(X,Z/2) is a finite
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dimensional F2-vector space. By [Qui71, Corollary 2.2], the equivariant cohomology
ring H∗

Γ(X,Z) is a finitely generated graded F2-algebra. Let

PΓ(X)(t) :=
∞∑
i=0

dimF2

(
HiΓ(X,Z/2)

)
· ti ∈ Z[[t]],

the associated Poincaré series. If X is just a point, we write PΓ(t) := PΓ(X)(t).
Recall from [Qui71, Proposition 2.5, Theorem 7.7] the following theorem.

Theorem 10.4 (Quillen). Let eΓ(X) := maxn∈N
(
∃A ⊆ Γ | A ∼= (Z/2)n and XA ̸= ∅

)
.

Then there exists a polynomial QΓ(X)(t) ∈ Z[t] with QΓ(X)(1) ̸= 0 such that

PΓ(X)(t) =
QΓ(X)(t)∏eΓ(X)
i=1 (1− t2i)

∈ Q(t).

In particular, if a subspace Y ⊆ X is stable under the action of a subgroup H ⊆ Γ,
then the rational function

f(t) =
PH(Y )(t)

PΓ(X)(t)
∈ Q(t)

has no pole at 1. Consequently, one obtains a rational number f(1) ∈ Q, and f(1) = 0 is
zero if and only if eH(Y ) < eΓ(X). Morally, the rational number f(1) can be thought as
the ratio between the total H-equivariant Betti number of Y and the total Γ-equivariant
Betti number of X.

10.1.2 An orbifold Smith–Thom conjecture for quotient stacks. Let Γ be a finite group
and σ : Γ ! Γ an involution; we call such a pair a finite G-group. As usual, define
Z1(G,Γ) as the set of γ ∈ Γ(C) such that σΓ(γ) ·γ = e, so that H1(G,Γ) = Z1(G,Γ)/ ∼
where ∼ is the equivalence relation that identifies γ1, γ2 ∈ Γ if there exists a β ∈ Γ such
that γ2 = β−1γ1σ(β). Choose a set of representative H ⊂ Z1(G,Γ) for this equivalence
relation; we choose H such that e ∈ H. For γ ∈ H, define an involution

σγ : Γ ! Γ, σγ(g) = γσ(g)γ−1.

Let X a quasi-projective variety over R, and Γ×X(C) ! X(C) a G-equivariant action
of Γ on X(C). Recall from Corollary 1.5 that

|[X/Γ](R)| =
∐
γ∈H

Xγ(R)/Γσγ .
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By Theorem 10.4, for γ ∈ H, the rational function

Pγ,Γ(X, t) :=
PΓσγ (Xγ(R))(t)
PΓ(X(C))(t)

∈ Q(t)

has no pole at 1, and we obtain a rational number Pγ,Γ(X, 1) ∈ Q.
Since the orbifold cohomology of a quotient space, identifies with equivariant coho-

mology (see Remark 10.1), one can ask the following, which make precise Question 10.3
in this setting.

Question 10.5. Let Γ = H(C) for a finite group scheme H over R acting on a quasi-
projective variety X over R. Does there exist a natural number C > 0, independent of
the real model H ×R X ! X of the action Γ×C XC ! XC, such that

∑
[γ]∈H1(G,Γ)

Pγ,Γ(X, 1) =
∑

[γ]∈H1(G,Γ)

PΓγ (Xγ(R))(t)
PΓ(X(C))(t)

∣∣∣∣
t=1

≤ C ?

Example 10.6. Assume that Γ acts freely onX(C). Then (X/Γ)(R) =
∐

[γ]Xγ(R)/Γσγ

by Theorem 1.5, and Γσγ acts freely on Xγ(R) for each γ. Therefore, in this case,

∑
[γ]∈H1(G,Γ)

Pγ,Γ(X, 1) =
∑

[γ]∈H1(G,Γ)

h∗(Xγ(R)/Γγ)
h∗(X(C)/Γ)

=
h∗((X/Γ)(R))
h∗((X/Γ)(C))

≤ 1,

where the first and the second equality follows from the freeness of the action (see
[Bor60, 3.4, Pag. 54] for the first and Lemma 4.5 for the second), while the third
inequality holds by the classical Smith–Thom inequality (1).

While Example 10.6 seems to suggest that one could take C = 1 in Question 10.5,
this is not the case, as for example one easily see in Example 10.2, where the ratio is 2.

10.1.3 The zero dimensional case. Assume now that X = Spec(R). In this case, we
can make even more precise Question 10.5, since it is implied by the following.

Question 10.7. Let Γ be a group and let σ : Γ ! Γ be an involution. Do we have

PΓσ(t)

PΓ(t)

∣∣∣∣
t=1

≤ |Γ| ?

To give a non-trivial example of a finite group for which Question 10.7 has a positive
answer, we prove:
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Proposition 10.8. Let Γ := S4 be symmetric group on four letters. Consider Γ as a
G-module via the trivial action, where G = Gal(C/R) = Z/2. Then

∑
[γ]∈H1(G,Γ)

Pγ,Γ({pt} , 1) =
∑

[γ]∈H1(G,Γ)

PΓσγ (t)

PΓ(t)

∣∣∣∣
t=1

= 3.

Proof of Proposition 10.8. First observe that the elements γ1 := e, γ2 := (12), γ3 :=

(12)(34) form a complete set of representatives of the equivalence classes in H1(G,S4).
In particular

|H1(G,S4)| = 3. (30)

Next observe that

Sγ1
4 = S4; Sγ2

4 = {e, (1, 2), (3, 4), (12)(34)} ≃ Z/2× Z/2 and

Sγ3
4 = {e, (12), (34), (12)(34), (13)(24), (14)(23), (1423), (1324)} ≃ D8,

where D8 is the dihedral group with 8 elements.
Next, we compute the Poincaré series of Sγi

4 for each i = 1, 2, 3.

Lemma 10.9. One has the following equalities of rational functions:

1. PZ/2×Z/2 =
1

(1−t)2 ;

2. PD8 = 1
(1−t)2 ;

3. PS4 = 1+t2

(1−t)2(1+t+t2) .

Before proving Lemma 10.9, let us show that it implies the Proposition 10.8. From
Lemma 10.9 one deduce that

PΓγ1 (t)

PΓ(t)
= 1 and

PΓγ2 (t)

PΓ(t)
=

1 + t+ t2

1 + t2
=
PΓγ3 (t)

PΓ(t)
,

so that, combined with (30), one has

h∗([X/Γ])

h∗([X/Γ]C)
=

(1 + 3/2 + 3/2)

3
=

4

3
,

which what we wanted. We are left to show Lemma 10.9.

Proof of Lemma 10.9. Let us recall that if A =
∑

i∈NAi is a graded F2-algebra, we can
consider its Poincaré series

PA(t) :=
∑
i≥0

dim(Ai),
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so that PN (t) = PH∗(N,F2)(t) for every group N . If f ∈ A is an homogeneous element
of degree d, then

PA(t) =
PA/(f)(t)

(1− td)
, (31)

In particular if A is freely degenerated by x1 . . . xn with xi of degree ji, one has

PA(t) =
∏

1≤i≤n

1

(1− tji)
(32)

To prove item 1, note that, by the Kunneth-Formula

H∗(Z/2× Z/2,Z/2) ≃ H∗(Z/2,Z/2)⊗H∗(Z/2,Z/2) ≃ F2[x, y]

with x, y of degree 1. Hence item 1 of Lemma 10.9 follows from (32).
By [Han93, Theorem 5.5],

H∗(D8,Z/2) ≃
F2[x, y, z]

(x(x+ y))
with deg(x) = 1, deg(y) = 1, deg(z) = 2.

Since x(x+ y) is an homogenous element of degree 2, we get

PH∗(D8,Z/2)(t) = PF2[x,y,z](t)(1− t2) =
1

(1− t)2(1− t2)
(1− t2) =

1

(1− t)2
,

where the first equality follows from (31) and the second from (32). This proves item
3 of Lemma 10.9.

By [Nak62, Theorem 4.1]

H∗(S4,Z/2) ≃
F2[x, y, z]

(xz)
with deg(x) = 1,deg(y) = 2, deg(z) = 3.

Since xz is an homogeonous element of degree 4, we get

H∗(S4,Z/2) = PF2[x,y,z](t)(1−t
4) =

1

(1− t)(1− t2)(1− t3)
(1−t4) = 1 + t2

(1− t)2(1 + t+ t2)

where the first equality follows from (31) and the second from (32). This finishes the
proof of Lemma 10.9.

10.2 Smith–Thom inequality for topological groupoids with involution. As
already mentioned, the statement (and the proof) of the Smith-Thom inequality (1.2)
is purely topological, in the sense that it holds for every topological space endowed with
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an involution σ, replacing X(R) with the fixed locus of σ.
In this section we generalize Conjecture 1.2 from real algebraic stack to more general

topological stack endowed with an involution, which we see as an analogous to move
from algebraic varieties to topological spaces.

10.2.1 Topological groupoids. Recall that a topological groupoid is a groupoid object
in the category of topological spaces. Explicitly, a topological groupoid X = [X1 ⇒

X0] consist of two topological spaces, X0 (the space of objects) and X1 (the space of
arrows), and a collection of continuous maps s : X1 ! X0 (source), t : X1 ! X0 (target),
c : X1 ×X0 X1 ! X1 (composition), e : X0 ! X1 (unit) and i : X1 ! X1 (inversion).
These maps satisy a number of conditions to ensure that one obtains a groupoid by
letting X0 be the set of objects, X1 the set of arrows, s(f) and t(f) the source and
target of an arrow f ∈ X1, c(f, g) = f ◦ g the composition of arrows f, g ∈ X1, e(x) the
identity x! x of an object x ∈ U and i(f) = f−1 the inverse of an arrow f .

Example 10.10. Every complex Deligne–Mumford stack gives rise to a topological
groupoid in the following way. Let X be a complex Deligne–Mumford stack, so that
there exists an étale surjective presentation π : U ! X by a scheme. Let R be a scheme
with R ∼= U×X U , so that the two projection maps U×X U ! U yield two maps R! U

that turn [R⇒ U ] into a groupoid scheme. Then X = [R(C) ⇒ U(C)] is a topological
groupoid. Moreover, any r ∈ R(C) corresponds to an element (x, y, α) ∈ (U ×X U)(C)
consisting of x, y ∈ U(C) and an isomorphism α : π(x)

∼−! π(y). Consider the functor

F : X ! X (C)

that sends x ∈ U(C) to π(x) ∈ X (C) and r = (x, y, α) to the isomorphism α : π(x)
∼−!

π(y). Then F : X ! X (C) is an equivalence of categories.

10.2.2 Topological groupoids with involution. Let X = [X1 ⇒ X0] be a topological
groupoid. An involution σ : X ! X consists of involutions σ : X1 ! X1 and σ : X0 !

X0 that are compatible with s, t and all the other structure maps of the topological
groupoid. Every real DM stack give rise to a topological groupoid involution (X , σ) in
the following way.

Example 10.11. Let X be a real DM stack, and choose a scheme U over R and an
étale surjective morphism U ! X . Let R be a scheme with R ∼= U ×X U , so that
we get a groupoid scheme [R ⇒ U ], see Example 10.10. Since U and R are schemes
locally of finite type over R, U(C) and R(C) admit natural anti-holomorphic involutions
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σ : U(C) ! U(C) and σ : R(C) ! R(C), compatible with the structure maps of the
groupoid. Hence [R(C) ⇒ U(C)] is a topological groupoid with involution.

10.2.3 Fixed locus of an involution. Let X = [X1 ⇒ X0] be a topological groupoid
and assume that X is equipped with an involution σ : X ! X . Thus, σ corresponds
to involutions σ : X1 ! X1 and σ : X0 ! X0 that are compatible with the structure
maps of the topological groupoid.

We now proceed defining the correct analogue of the fixed point of σ, in a way
that, in the setting of Example 10.11 recovers the topological space |X (R)|. Define
Ob(X σ) ⊂ X0 × X1 as the subspace of pairs (x, φ) ∈ X0 × X1 such that φ is an
isomorphism x

∼−! σ(x) with σ(φ) ◦ φ = id. Then Ob(X σ) is the set of objects of
a topological groupoid X σ, whose arrows between (x, φ) ∈ Ob(X σ) and (y, ψ) ∈
Ob(X σ) are given by isomorphisms f : x! y in X1 such that ψ ◦ f = σ(f) ◦ φ.

Definition 10.12. Define |X σ| = Ob(X σ)/∼= and equip it with the quotient topology.

Example 10.13. Let X = [R(C) ⇒ U(C)] be the topological groupoid with involution
associated to a real Deligne-Mumford stack X = [U/R] as in Examples 10.10 and 10.11.
Recall that any r ∈ R(C) = (U ×X U) (C) corresponds to a triple r = (x, y, α) with
x, y ∈ U(C) and α : π(x)

∼−! π(y) an isomorphism, where π is the map U ! X .
We have Ob(X σ) = {ω = (x, (x, σ(x), φ)) ∈ U(C)×R(C) | σ(φ) ◦ φ = id}. For such
ω = (x, (x, σ(x), φ)), we get an element π(x) ∈ X (C) and an isomorphism φ : π(x)

∼−!
π(σ(x)) such that σ(φ) ◦ φ = id. By Galois descent (cf. [Gro60]), this yields an object
F (ω) ∈ X (R). Similarly, any arrow f : ω ! ω′ in X σ is given by an arrow f =

(x, x′, α) ∈ R(C) such that φ′ ◦ α = σ(α) ◦ φ as maps π(x) ! π(σ(x′)), and this yields
an arrow F (f) : F (ω) ! F (ω′) in X (R), again by Galois descent. The resulting functor

F : X σ ! X (R)

is an equivalence of categories. In particular, we get a bijection |F | : |X σ| ∼−! |X (R)|.

Let X be a separated Deligne–Mumford stack of finite type over R. Choose a
surjective étale morphism U ! X where U is a scheme, and let R be a scheme with
R ∼= U ×X U . Let X be the topological groupoid [R(C) ⇒ U(C)] equipped with its
natural involution σ : X ! X .

Lemma 10.14. Consider the natural bijection |F | : |X σ| ! |X (R)|, see Example
10.13. Consider |X σ| as a topological space via Definition 10.12, and consider |X (R)|
as a topological space via Definition 4.3. Then the bijection |F | is a homeomorphism.
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Proof. By taking fibre products, one reduces to the case where U(R) ! |X (R)| is surjec-
tive (cf. Theorem 4.2). We consider the canonical continuous map U(R) ! Ob(X σ) ⊂
U(C)×R(C) defined by sending x ∈ U(R) to (x, id); indeed, since σ(x) = x, the iden-
tity defines an isomorphism φ : π(x) ! π(σ(x)) with σ(φ) ◦ φ = id. The composition
U(R) ! Ob(X σ) ! Ob(X σ)/∼= = |X σ| is surjective and closed, and factors through
a homeomorphism U(R)/R(R) ∼−! |X σ|, proving the lemma.

10.2.4 A Smith–Thom conjecture for topological groupoids. Let IX = [Y1 ⇒ Y0] be the
inertia groupoid of X , so that Y0 is the space of (x, φ) ∈ X0 × X1 with φ ∈ Aut(x),
and Y1 is the space of isomorphisms (x, φ) ∼−! (y, ψ) for (x, φ), (y, ψ) ∈ Y0. Let |IX | be
the set of isomorphism classes of objects in Y0.

We can now state a Smith–Thom conjecture for topological groupoids, which, by
Examples 10.11 and 10.13 and Lemma 10.14, generalizes Conjecture 1.2.

Conjecture 10.15. Let X = [X1 ⇒ X0] be a topological groupoid with finite stabilizer
groups, equipped with an involution σ : X ! X . Assume that |X σ| and |IX | have
finite dimensional Z/2-cohomology. Then, we have:

dimH∗(|X σ| ,Z/2) ≤ dimH∗(|IX | ,Z/2).
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