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Abstract

We investigate the topology of the real locus of a separated Deligne—Mumford stack of
finite type over the real numbers. Specifically, we propose a natural generalization of the
classical Smith—Thom inequality for real varieties to real Deligne—Mumford stacks, and
establish this conjecture in several cases. In the process, we develop methods for studying
the real locus of various types of real algebraic stacks. This requires a combination of

techniques from group theory, algebraic geometry, and topology.

1 Introduction

1.1 Smith—Thom inequality for real algebraic varieties. Let X be a real alge-
braic variety, by which we mean a finite type scheme over R. The topological space
X(C) is endowed with an involution ox: X(C) — X (C) such that X (R) is equal to set
of fixed point X (C)?X of the involution ox.

One of the foundational result in real algebraic geometry (see [Flo52; Bor60; Tho65;
DIKO0O0b; Man17] for various proofs) is the Smith-Thom inequality

PH(X(R)) =) dimH(X(R),Z/2) <Y dimH/(X(C),Z/2) = h*(X(C)). (1)
i>0 i>0

It allows one to bound the cohomology of X (R) in terms of the one of X (C), usually
much easier to compute. Here, and in the sequel, h*(Y") denotes the dimension of the

cohomology ring H*(Y,Z/2) of a topological space Y.

1.2 Failure of the naive Smith—Thom inequality for real algebraic stacks. In
recent years, there has been increasing interest in moduli problems over R, particularly
in determining whether (1) attains equality for the associated coarse moduli space.

Notable cases include moduli spaces of stable vector bundles on a curve [BS22|, Hilbert



schemes of points on a surface [Fu23; KR24|, and symmetric powers of varieties [BD17;
Fralg].

Note, however, that such a study says something about the real moduli space as-
sociated to the moduli problem only if this real moduli spaces arises as the real locus
of the coarse moduli space, a phenomenon which in fact seems rare. For instance, if
A is the coarse moduli space of elliptic curves, then A;(R) = R parametrizes complex
elliptic curves that admit a real structure up to complex isomorphism, whereas the real
moduli space of real elliptic curves has two connected components (there are exactly
two real models for a complex elliptic curve that can be defined over R).

To bypass this limitation, and start a systematic approach to study the topology
of real moduli spaces, one is led to consider real algebraic stacks. If X is such a stack,
then X(R) is a category rather than a set. To obtain a topological space in a way that
generalizes the euclidean topology on X (R) when X is a real variety, one considers the
set |X(R)]| of isomorphism classes of X'(R), and defines a natural topology on |X(R)| as
in [GF22b]. A similar procedure defines a topology on the set |X(C)| of isomorphism
classes of X(C) (if X is separated Deligne-Mumford, the latter coincides with the
topology on |X(C)| induced by the coarse moduli space).

The advantage of this perspective is that when the algebraic stack X represents a
moduli problem—parametrizing equivalence classes of certain algebraic objects (such
as genus g curves or sheaves on a fixed variety)—the set |X(R)| corresponds to the real
isomorphism classes of the real objects. For instance, |M,(R)| represents the space of
isomorphism classes of real algebraic curves of genus g.

It is then natural to wonder whether the foundational inequality (1) generalizes to
this setting. In other words: do we have A*(|]X(R)|) < h*(]X(C)|) for each algebraic

stack X' over R? This is not the case, as the elliptic curve example shows.

Example 1.1. Let X = A; be the moduli stack of elliptic curves. The j-invariant gives
an homeomorphism |X(C)| = C, while |X(R)| has two connected components both
homeomorphic to R, one corresponding to elliptic curves with a connected real locus
and the other to those with a disconnected real locus. In particular, h*(|X(R)|) = 2,
which is larger than A*(|X'(C)|) = 1.

The aim of this paper is twofold. First, we propose a conjectural alternative to the
Smith-Thom inequality, expected to hold for all real Deligne-Mumford stacks X" (see
Conjecture 1.2 below). Second, we develop several techniques to study the topological
space | X' (R)| associated with such a real stack X'. These techniques, which allow us to

verify the conjecture in numerous examples, appear to be of independent interest.



1.3 Conjectural Smith—Thom inequality for real algebraic stacks. The main
challenge in extending the Smith-Thom inequality (1) to algebraic stacks is that, al-
though |X(C)| is equipped with an involution ox: |X(C)| — |X(C)| which generalizes

complex conjugation on the complex locus of a real variety, the natural map
[X(R)[ — [X(C)[7 (2)

is, even in easy examples, neither injective (Example 6.4) nor surjective (Example 6.5).

The failure of surjectivity of |X'(C)|?* is due to the existence of isomorphism classes
of objects € X(C) which are isomorphic to their complex conjugate, but not defined
over R.

The failure of injectivity is measured by the following observation: for z € X'(R), the
fibre of (2) above the image of x in |X'(C)|?¥ is in canonical bijection with the first Galois
cohomology group H!(Gal(C/R), Aut(zc)). Therefore, in a sense, the topological space
|X(C)] is too small to fully encode information about |X(R)|, as it does not capture,
for instance, the automorphisms of objects in X'(C). To take these into account, we
consider the inertia stack m: Zy — X, whose complex locus consists of pairs (x, @),
where z € X(C) and ¢ is an automorphism of x. The fiber of m over an object
x € X(C) is given by the constant group scheme of automorphisms of z.

With these considerations in mind, we propose the following conjectural generaliza-

tion of the Smith-Thom inequality (1) to real Deligne-Mumford stacks.

Conjecture 1.2. Let X be a separated Deligne—Mumford stack of finite type over R,
with inertia stack Iy — X. Then the following inequality holds:

> dimH(|X(R)[,Z/2) <) dim H(|Zx(C)[, Z/2). (3)

>0 >0

When X is a scheme, the map Zy — X is an isomorphism, hence (3) reduces to the
usual Smith-Thom inequality (1). Moreover, we construct various examples of stacks
which are not schemes for which the inequality (3) is an equality. As we explain below,
we prove Conjecture 1 in various cases.

We warn the reader that, in general, there is no natural closed embedding of | X (R)|
into |Zx(C)|. For example, take an elliptic curve E over R such that h*(E(R)) = 4, and
consider the stacky quotient X := [E/(—1)], where —1: E — F is the multiplication
by —1. Then one can show (see Section 6.7) that |[X¥(R)| ~ E(R) ][ E(R), and that

Zx(©) = E©) I (Iaerez{=h)):
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Note that inequality (3) holds in this case (and is an equality): we have h*(|X'(R)| =

8 and h*(|Zx(C)|) =4 +4 =8.
Since Conjecture 1.2 is purely topological in nature, it is natural to consider a more
general formulation within the category of topological groupoids with involution. We

provide a precise statement of this generalized conjecture in Section 10.2.

Remark 1.3. Let X be a separated Deligne-Mumford stack of finite type over R.
If p: |Zx(C)| — |X(C)| is the map induced by =, then we have H'(|Zx(C)|,Z/2) =
HY(|X(C)|, p«Z/2). Therefore, defining Fy = p.Z/2, the inequality (3) becomes equiv-
alent to the inequality dim H*(|X(R)|,Z/2) < dimH*(|X(C)|, Fx). The latter might

be closer in analogy to the classical inequality (1).

Remark 1.4. When the Deligne-Mumford stack X over R is smooth, the space | X (R)|
carries a natural real analytic orbifold structure; see [GF22a, Section 2.2.3]. This orb-
ifold structure on |X'(R)| is analogous to the natural complex analytic orbifold structure
on |X(C)|. It is natural to ask whether the classical Smith-Thom inequality (1) admits

an analogue in terms of orbifold cohomology. We explore this question in Section 10.1.

1.4 Topology of real quotient stacks. A distinctive feature of the Smith—Thom
inequality is its inherently global nature. Since varieties are locally contractible, the
inequality holds trivially at the local level. In contrast, the inequality proposed in Con-
jecture 1.2 does not seem locally trivial. Indeed, for any separated Deligne—-Mumford
stack & over R and any = € X'(R), there exists a real algebraic variety U, a finite group
scheme I' over R, a point y € U(R) and an étale map [U/I'] — X such that y maps to
x (see [AV02, Lemma 2.2.3| and its proof). Even for [U/T'], Conjecture 1.2 does not
appear to be straightforward.



1.4.1 Topology of real quotient stacks. As it turns out, the topology of a real quotient
stack can be quite complicated, as the following theorem shows.

Let T" be a finite group scheme over R, with associated real structure op: I'(C) —
['(C). Define Z'(G,T) as the set of v € I'(C) with or(y) - = e. Recall that
the non-abelian Galois cohomology group H!(G,T') can be canonically identified with
ZY(G,T')/ ~ where ~ is the equivalence relation v ~ Sya(3)~! for § € I'(C). Choose a
set of representative H C Z'(G,T') for this equivalence relation, such that e € H. For
v € H, define an involution of.: I'(C) — I'(C) as o(g) = vor(g)y "

Let X be a quasi-projective scheme over R with real structure ox: X(C) — X(C),
acted upon from the left by the finite group scheme I' over R. For v € H, define
an involution ¢} : X(C) — X(C) as o} (z) = v-o(x). By Galois descent, the pair
(X(C),0%) corresponds to a quasi-projective scheme X, over R. Similarly, for v € H,
the pair (I'(C), o}) corresponds to a finite group scheme I'y over R. Note that

X,(R) = X(C)°%  and I'y(R) = F(C)“; for each ~ € H.
Theorem 1.5. Consider the above notation. There is a canonical homeomorphism

[X/TI®R) = [T X-(R)/T4(R). (4)

yeEH

We use Theorem 1.5 to prove Conjecture 1.2 in a number of examples, such as stacky
symmetric products and quotients of abelian varieties by —1 (see Section 1.4.3 below).
Theorem 1.5 will also used in the proof of Conjecture 1.2 for stacky quotients of curves

by a finite group (which is abelian or acts faithfully, cf. Theorem 1.9 below).

Remark 1.6. In the notation of Theorem 1.5, assume that X is smooth over R. Then
the topological space |[X/T'](R)| can naturally be enhanced with the structure of a real
analytic orbifold (cf. [GF22a, Section 2.2.3]). For this orbifold structure on |[X/I'|(R)],

the homeomorphism (4) is an isomorphism of real analytic orbifolds, see Corollary 6.2.

Remark 1.7. Theorem 1.5 suggests a different formulation of Conjecture 1.2. Indeed,
in the notation of Theorem 1.5, assume that X is smooth over R. One may try to
bound the orbifold cohomology ring of [X/T'|(R), which by Theorem 1.5 and Remark
1.6 is the direct sum of the I'?v-equivariant cohomology ring of X.,(R) for v € H!(G,T),
in terms of the the orbifold cohomology of [X/I'|(C), i.e. the I'-equivariant cohomology

of X(C). In Section 10.1 we make the question whether such a bound exists precise.



1.4.2 Positive results for quotient stacks of dimension < 1. Let us first focus on Con-
jecture 1.2 for finite quotient stacks, and explain our main results in this setting. We

start with the zero-dimensional case.

Proposition 1.8. Let I' be a finite R-group scheme and set X = [Spec(R)/T'|. Then
the inequality (3) holds for X.

In this case, one show that |X(R)| and |Zx(C)| are discrete topological spaces, in
bijection with H!(Gal(C/R),T(C)) and I'(C)/T(C) respectively, where I'(C) acts on
itself by conjugation. Thus, the inequality (3) reduces to a group theoretic statement
(see Lemma 5.1).

We then move to dimension one. A real curve is a one-dimensional variety over R

(see Section 2), not necessarily proper.

Theorem 1.9. Let X be a real curve, and let I' be a finite group scheme over R which

acts on X over R. Assume one of the following conditions:

1. The action of I' on X 1is faithful.

2. The group scheme I is abelian.
Then Conjecture 1.2 holds for the quotient stack X = [X/T].

The proof of Theorem 1.9 is rather indirect, in the sense that we do not compare
directly the topology of |[X/T|(R)| with ‘I[ x/11(C)|, but rather we compute separately
h*(|[X/T](R)|) and h*(|Z;x/r)(C)|) by combining local and global methods. Then we

compare the two numbers by using the classical Smith—Thom inequality and the group

theoretic inequality of Lemma 5.1.

Remark 1.10. Either one of the conditions in Theorem 1.9 guarantees that |Zy (C)| —
|X(C)] is the union of a trivial topological covering with the inclusion of a finite set of
points, which allows one to compute the topology of |Zx(C)| in terms of the topology

of |X(C)|. Possibly, one could remove these conditions by refining the techniques.

1.4.83 Positive results for higher dimensional quotient stacks. Next, we study Conjec-
ture 3 in higher dimensions. In fact, constructing examples of stacks of arbitrary di-
mension, which satisfy the conjecture and are not schemes, is relatively straightforward.
For instance, if X and ) are separated Deligne-Mumford stacks of finite type over R
for which Conjecture 1.2 holds, then it also holds for their product X xg ) (by the

Kiinneth formula and the fact that inertia commutes with products).



The following theorem provides further evidence for the conjectural Smith—Thom
inequality (3) in arbitrary dimension, by verifying it for certain higher-dimensional

quotient stacks that do not arise as products of lower-dimensional examples.

Theorem 1.11. Let X be a Deligne—Mumford stack over R. Assume that one of the

following two conditions holds:

1. We have X = [(X x X)/Z/2] for a real variety X, where 1 € Z/2 acts on X x X
by permuting the factors.

2. We have X = [A/(—1)], where A is an abelian variety over R and —1: A — A

the multiplication by —1 homomorphism.

Then Conjecture 1.2 holds for X.

1.5 Topology of split gerbes over a real variety. A nice example of a real Deligne—
Mumford stack which is not the quotient of a real variety by a finite group scheme over
R, is any split gerbe over a real variety, i.e., a stack of the form X = [U/H|, where U is
a real variety and H — U a non-constant, finite étale group scheme over U (and where
the action of H on U over U is the trivial action). This example seems important in the
study of the topology of real Deligne-Mumford stacks in general, and of Conjecture 1.2
in particular, as any Deligne-Mumford stack X over R admits a stratification {&X,},~,
by stabilizer order, where the automorphism groups in the stratum X, have ord:er
exactly n. The stacks A, are gerbes over their coarse moduli spaces X,, — M,, hence
étale locally on M,, of the form [U,,/H,], where H, — U, is a finite étale group scheme
of order n.
We develop a technique for computing |[U/H](R)|. As before, let G := Gal(C/R).

Theorem 1.12. Let U be a geometrically connected R-variety such that U(R) # (). Let
H — U be a finite étale group scheme and set X = [U/H|. The following holds.

1. The canonical map f: |X(R)| — U(R) is a topological covering over each con-
nected component of U(R), with fibre HY (G, H,(C)) above a point p € U(R).

2. Let C be a connected component of U(R), and fix p € C. The image of the natural
map 1 (C,p) — m(U(C),p) lies in the subgroup of elements g € m (U(C),p)
whose action on Hy(C) is G-equivariant. In particular, the group m(C,p) acts
naturally on H(G, H,(C)).

3. The covering space associated to the above action of m1(C,p) on HY(G, H,(C)) is

canonically isomorphic to the covering space f~1(C) — C.



To prove Theorem 1.12, we study the interaction between the action of the topo-
logical fundamental group of the connected components of U(R) and the action of the
algebraic fundamental group of U. In particular, we prove that once one knows the
action of G on H,(C) for one fixed p € U(R), one can compute the action of G' on
H,(C) for all other ¢ € U(R) by just knowing the action of G' on a topological paths
connecting p and ¢ in U(C), see Proposition 8.3. This might be of independent interest.

In Section 9, we translate Theorem 1.12 in more group theoretic terms, see Proposi-
tion 9.2, and with this translation we prove the Smith-Thom inequality (1.2) for various

concrete gerbes over G,, and over an Enriques surface.

Remark 1.13. In Theorem 4.12 we prove something more general than the first item
in Theorem 1.12. Namely, consider a Deligne-Mumford stack X such that the coarse
moduli map X — M is a gerbe. Then the induced map |X'(R)| — M(R) is open and a

topological covering over each connected component of its image, see Theorem 4.12.

1.6 Organization of the paper. The paper is organized as follows. In Section 2 we
fix some convention and notation. In Section 3, we prove some preliminary result of
the topology of the complex inertia and we compute it in some example. In Section
4, we prove some preliminary result of the topology of the real locus and we verify
the Smith-Thom conjecture in dimension 0. In Section 6, we give a formula for the
real locus of a quotient stack and we use it to verify the Smith-Thom conjecture in
many examples. In Section 7, we prove the Smith-Thom conjecture for a large class of
curves. In Section 8, we study the topology of a split gerbe and we use this to prove
the Smith-Thom conjecture in various examples. Finally, in Section 10, we propose two

variants of the Smith-Thom conjecture.
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2 Notation and conventions

We indicate an algebraic stack by a calligraphic letter, such as X,), Z. Algebraic

spaces and schemes are usually indicated by roman capitals, such as X,Y, Z. For an



algebraic stack X, we let Zy — X denote the inertia stack over X, and X — My the
coarse moduli space. We let Iy := Mz, denote the coarse moduli space of the inertia
stack. The morphism Zy — X induces a morphism Iy — My.

When X is an algebraic stack over a scheme S, we let |X(S)| denote the set of
isomorphism classes of the groupoid X (S). For an object = € X(.5), we let [z] € |X(9)]
denote its isomorphism class. For an algebraic stack X over R, and an object x € X(R),
let zc € X(C) denote the pull-back of z along Spec(C) — Spec(R).

A curve over R (resp. C) will be a reduced, separated one-dimensional scheme of
finite type over R (resp. C). A curve X over R will also be called a real curve. Note
that we do not assume that X is proper. For a smooth curve X over R, any connected
component C' C X (R) is homeomorphic to either the circle S = {z € C||z| =1} or
the open interval (0,1). By abuse of notation, we call C' a circle in the first case, and
an open interval in the second case.

For n € Z>1, we let u, be the R-group scheme with p,(S) = {z € Og(S) | 2" =1}
for a scheme S over R.

For a topological space X (such that dim H*(X,Z/2) is finite), we define h*(X) =
dim H*(X,7Z/2). For instance, h*(S') = 2. If Y is any space of endowed with an action
of G and z,y € Y, we let Path(z, y) be the set of topological paths in Y from z to y and
observe that G induces a bijection oy : Path(x,y) — Path(c(z),o(y)). In particular, if
x,y are fixed by G, the involution oy : Path(z,y) — Path(x,y) defined an action of G
on Path(z,y). If v € Path(z, y), we let 7~ € Path(y, ) be the inverse path of ~.

3 Topology of the complex inertia

3.1 Topology of the complex locus. For a Deligne-Mumford stack X locally of
finite type over C, we view the set of isomorphism classes |X(C)| of the groupoid
X (C) as a topological space, by equipping it with the quotient topology induced by the
surjective morphism U(C) — |X(C)|, where U is a scheme and U — X a surjective
étale morphism. It is easy to show that this topology on |X(C)| does not depend on

the choice of étale presentation U — X.

Lemma 3.1. For a separated Deligne—Mumford stack locally of finite type over C with
coarse moduli space X — M, the map |X(C)| — M(C) is a homeomorphism.

Proof. As the map |X(C)| — M(C) is clearly a bijection, it remains to prove that it

is continuous and open. Continuity is straightforward, so we need to prove |X'(C)| —



M(C) is open. For this, we choose étale maps V,, — M for a in some index set I,
such that [], Vo — M is surjective, and such that for each o there exists a finite group
I’y acting on a scheme U, over C, such that X x,; V, is isomorphic to [U,/Is] (cf.
[AV02]). Define U’ = [[, Us. Any open set W C |X(C)] is the image of an open set
W' C U’(C) under the natural map U’(C) — |X(C)|. The image of W' in [], Vo(C) is
open as V, = Uy /Iy for each . Since [[, Vo(C) — M(C) is open, it follows that the
image of W’ in M(C) is open, which is exactly the image of W in M(C). O

3.2 Topology of the complex inertia. Let X be an algebraic stack of finite type
over C. The diagonal morphism A: X — X x¢ X is of finite type, see [LMB00, Lemme
(4.2)]. Therefore, for each scheme S over C and each x € X(S), the automorphism
group algebraic space Autg(x) of x over S is of finite type over S.

If the algebraic stack X is Deligne-Mumford, the diagonal A: X — X x¢ X is
quasi-finite (see [LMB00, Lemme (4.2)]). In particular, if X is separated and Deligne—

Mumford, then A is finite. We conclude the following (well-known) lemma.

Lemma 3.2. Let X be a separated Deligne—Mumford stack of finite type over C. For
each scheme S over C and each x € X(S), the automorphism group algebraic space
Autg(z) is finite over S. O

Lemma 3.3. Let X be a separated Deligne—Mumford stack of finite type over C, with
inertia m: Ly — X. Let My (resp. Ix) be the coarse moduli space of X (resp. Zx), cf.
Section 2. The morphism on coarse moduli spaces Iy — My induced by 7 is finite and

surjective.

Proof. Pick a finite surjective morphism Z — X where Z is a scheme; such a morphism
exists by [LMBO00, Theorem 16.6]. Define W = Z Xy Zx. The morphisms W — Z and
Z — My are both finite and surjective, hence the composition W — Z — My is finite
surjective. This agrees with the composition W — Iy — My, so that Iy — My is

finite surjective, provin the lemma. O

Corollary 3.4. Let X be a separated Deligne—Mumford stack of finite type over C. The
morphism of complex spaces Iy (C) — My (C) is closed with finite fibers.

Proof. This follows from Lemma 3.3 in view of the well-known fact that the morphism
of analytic spaces X(C) — Y (C) induced by a finite surjective morphism X — Y of
finite type schemes X,Y over C is closed with finite fibers. OJ

Lemma 3.5. Let X be a separated Deligne—Mumford stack locally of finite type over
C, such that |Aut(z)| is constant for x € X(C). The following holds.
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1. The coarse moduli space map X — M 1is a gerbe.

2. The inertia Ly — X is finite étale over X.

Proof. To prove that X — M is a gerbe, by [Stacks, Tag 06QJ], it suffices to show
that Zy — X is flat. Thus, we need to show that for any scheme T and morphism
T — Y, the automorphism group algebraic space Aut(z)y — T is flat over T. We
know that Aut(z)r is finite over T, see Lemma 3.2. Moreover, for each t € T'(C), the
group scheme Aut(x); = Aut(z;) over C is reduced. To prove that Aut(z)p is flat over
T, it suffices to show that it has constant fibre cardinality which holds by assumption.
This proves that X — M is a gerbe and that Zy — X is flat; as Zy — X is finite by
Lemma 3.3, we deduce that Zy — X is finite étale (a finite flat group scheme of order

invertible in the base is finite étale). O

Example 3.6. Let X = [A!/(Z/2)] over C, where 1 € Z/2 acts by multiplication by
—1. Let S C A! x Z/2 be the stabilizer group scheme over Al. Then S, = 0 for
r#0¢€ Al and Sy = Z/2. In particular, the map S — Al which is the base change
of Zy — X along A — X, is a finite but non-flat over A!, so that Zy — X is not flat.

Proposition 3.7. Let X be a scheme of finite type over C. Let I' be a finite group
acting on X over C. Define X = [X/I']. Let q: X(C) — X(C)/T = Mx(C) be the

quotient map.

1. There is a canonical bijection
Zx(C)| = {(x € X(C),y € Tu} / {(z,7) ~ (92,979 1), 9 €T} (5)

2. Consider the canonical map || : |Zx(C)| — |X(C)| = X(C)/I'. For each z €
My (C) = X(C)/I, there is a canonical bijection

w7 @)= [I /T
yeq' ()
Here, g € T" acts on | |
9+ (W) = (9y,9797").
3. For x € Mx(C) and fived y' € ¢~'(x), there are bijections

yeq—1(x) Ly as follows: fory € g Yx), v € Ty, we define

w7 @)= [T Ty|/T=Ty/Ty, (6)

yE€q—1(x)

11
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of which the second one is in general non-canonical.

Proof. Let S — X be the stabilizer group scheme attached to the action of I' on X
over C. Then
S(C) ={(z,7) € X(C) xT' [ y& = x} .

The group I' acts on the scheme S by

g (x,7)=(9z,9v9""), g€l (z,7) €S,

and we have a canonical isomorphism of stacks Zy = [S/I']. In particular, |Zx(C)| =
S(C)/T from which (5) follows. This proves item 1. Item 2 is clear.
To prove item 3, it remains to provide the second bijection in (6). This holds, since

for each y1,y2 € ¢~!(x), there exists g € I such that gy = y2 and gy, g7 =T,,. O

Remark 3.8. 1. In the notation of Proposition 3.7, assume that I" acts freely on X.
Then I'y, = {e} for each y € ¢~ *(z), and I acts freely on ¢~*(z). Hence 7|~ (z)

is a singleton.

2. In the notation of Proposition 3.7, assume that I" is abelian. There is a canonical

bijection between (| | yI'y)/T and T’y =T’y C T for any y,y' € ¢ ().

yeq(z

3.3 Examples. The goal of this subsection is to calculate the topology of Ix(C) for

certain low-dimensional algebraic quotient stacks X over C.

Example 3.9. Let I" be a finite group, and let BI' = [Spec(C)/I']. Then |Zx(C)| =
I'/T', where I' acts on itself by conjugation. In particular h*(|Zx(C)|) = |T'/I|.

Examples 3.10. 1. Let X := Al and T' := Z/2 acting on X by sending z to —z.
Then I[x/r)(C) = C[{0}. In particular h*(I;x/)(C)) = 2.
2. Let X = A and T' := Z/2 x Z/2 acting on X by (a,b) * x to (—1)%x. Then
Iix/r(C) ~ AT TTATTT{0} [1{0}. In particular h*(Ijx,ri(C)) = 4.
Examples 3.11. 1. Let X := A% and I' :== Z/2, such that 1 € Z/2 =T acts on X
by (x,y) — (y,x). Then Ijx/r(C) ~ A2[TAL. In particular h*(Ijx/r(C) = 2.

2. Let X := A? and Z/2 x Z/2. We let Z/2 acts on X by exchanging the coordinates
and we let " act on X via the addition map Z/2 x Z/2 — Z/2. Then, we have
I[X/p]((C) ~ A? HA2 HAl HAI. In particular, h* (I[X/p]((C)) =4.

12



Example 3.12. Let U a connected scheme over C and H — U a finite étale group
scheme over U. Consider the trivial action of H on U. Then Ijy;/p)(C) ~ H(C)/H(C).
where H(C)/H(C) = {(p,h) € U(C) x H,(C)}/ ~ with ~ the equivalence relation
(p,h) ~ (p', 1) if p=p’ and h is conjugated to h' in Hy,(C). In particular, when H is
abelian one has I|y/ g (C) ~ H(C). We post-pone the discussion on its Betti number

until Section 8, since here the situation is more complicated.

Example 3.13. Let I be an abelian group acting faithfully on a variety X and assume
that the set Z = {x € X(C) such that Stabp(z) # {0}} is finite. Then, we have

I1xr)(C) = X (C)/T I (I1,ez Stab(z) — {e}).

4 Topology of real DM stacks

The goal of this section is to provide some preliminary definitions and prove some
preliminary results on the topology of |X'(R)| when X is a separated Deligne-Mumford
stack of finite type over R.

4.1 Generalities on the real locus of a real DM stack. The main object of study

in this paper is as follows.

Definition 4.1. A real DM stack is a separated Deligne-Mumford stack of finite type

over R.

For a real DM stack X, the set of isomorphism classes |X'(R)| of its real locus
X (R) has a natural topology, generalizing the euclidean topology on X (R) when X is

a scheme. Indeed, we have the following theorem.

Theorem 4.2. Let X be a real DM stack. There exists a scheme U over R and a
surjective étale morphism U — X such that U(R) — |X(R)| is surjective.

Proof. See [GF22a, Theorem 2.9] or [GF22b, Theorem 7.4]. O

Definition 4.3. (cf. [GF22b, Definition 7.5]) Let X be a real DM stack. The real
analytic topology on |X(R)| is defined as follows. Choose a scheme U over R and
a surjective étale morphism U — X such that U(R) — |X(R)| is surjective. Then
consider the real analytic topology on U(R), and give |X(R)| the quotient topology
induced by the surjection U(R) — |X(R)|.

Proposition 4.4. The real analytic topology is independent of the choice of an étale

presentation that is essentially surjective on real points.
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Proof. See [GF22b, Proposition 7.6]. O

Throughout this paper, whenever we consider the set | X (R)| of isomorphism classes
of real points of a real Deligne-Mumford stack X, we always view it as a topological

space via the real analytic topology.

4.2 Fibres of the map to the real locus of the coarse moduli space. We will
only need the following proposition in the case of stacky curves, but we state it in

arbitrary dimension, since the proof is the same.

Proposition 4.5. Let X be a a separated Deligne—Mumford stack of finite type over R,
with coarse moduli space p: X — M. Let f: |X(R)| — M(R) denote the map induced
by p, and let © € X(R) with isomorphism class [z] € |X(R)| (cf. Section 2).

1. There is a canonical bijection f~1(f([x])) = HY(G, Aut(zc)).

2. We have #HY(G, Aut(zc)) = #HY (G, Aut(z()) for each pair of objects x,a’ €
X (R) whose induced objects xc,z € X(C) are isomorphic in X(C).

Proof. Since two objects in X(C) are isomorphic if and only if their images in M (C)
are the same, the second item is a consequence of the first item. The first item follows
from |Gro60, Section 4. O

This naturally leads us to the following:

Definition 4.6. Let X be a separated Deligne-Mumford stack of finite type over R,
with coarse moduli space p: X — M. For a point m € M(R) which is in the image of
f: |X(R)] — M(R), we define H (G, m) = #H(G, Aut(xc)), where z € X (R) is such
that [z] € |[X(R)| lies in f~1(m) C |X(R)].

By Proposition 4.5, this is well-defined, in the sense that we have H'(G,z) =
#H' (G, Aut(zf)) for any 2’ € X(R) such that [2/] € f~(m).

4.3 Covering map between the real locus of the stack and the real locus of
the coarse moduli space. The main result of this section is Theorem 4.12 below,
which gives a general criterion for the map of topological spaces |X(R)| — M(R),
induced by the morphism X — M of a stack to its coarse moduli space, to be a
topological covering. The proof is slightly technical; the reader may wish to skip the
proof on a first reading. Before we can start with the proof, we need some preliminary

results and definitions.
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Lemma 4.7. Let f: X — Y be a morphism of schemes X,Y which are locally of finite
type over R. Assume that f is étale. Then the induced map fr: X(R) — Y(R) is a

local homeomorphism.

Proof. Consider the map of complex analytic spaces fc: X(C) — Y (C). This map is
a local homeomorphism by [Gro71, Exposé XII, Proposition 3.1 & Remarque 3.3|. For
z € X(R), let U C X(C) be a G-stable open neighbourhood (where G = Gal(C/R))
such that V' = fc(U) isopen in Y(C) and fc|y: U — V is a homeomorphism. Note that
V C Y(C) is stable under the action of G on Y (C). Indeed, for v € V and g € G, we
have v = fc(u) for u € U, and since gu € U we get gv = gfc(u) = fe(gu) € fc(U) =V.
The map fc|y: U — V is a homeomorphism of topological G-spaces, thus the restriction
frlye = felpe: UNX(R) =UY — VG =V NY(R) is a homeomorphism. O

Lemma 4.8. Let f: X — Y be a map of topological spaces, let m:Y' — Y be a
local homeomorphism with Im(w) = Im(f). Assume that the base change f': X' =
X xyY' — Y is a topological covering over its image. Then f is a topological covering

over its image.

Proof. Note that Im(7w) C Y is open in Y because 7 is a local homeomorphism. Up to
pulling everything back along the inclusion Im(7) C Y, we may assume that f and 7
are surjective. Let U’ C Y' and U C Y be opens such that the map 7: Y’ — Y induces
a homeomorphism 7|y : U = U, and such that (f')~1(U’) — U’ is a trivial topological
covering (i.e. homeomorphic over U’ to a disjoint union of copies of U’). Consider the
induced map p: X’ — X, and note that p((f")~1(U")) C f~}(U), and that the map
p: (f)~1(U") — f~Y(U) is a homeomorphism. Hence f~!(U) is homeomorphic over U

to a disjoint union of copies of U. Since 7 is surjective, this proves the lemma. OJ

Let m: H — U be a locally trivial family of finite topological G-groups. This means
that 7 is a finite topological covering, that there are involutions o: H — H,0: U — U
commuting with 7, and that there is a continuous group law m: H xg H — H, an
inversion ¢: H — H and identity e: U — H all compatible with the involutions o;
moreover, we require that for each x € U there exists an open neighbourhood x € V.C U

such that H|y 2 V x I as families of topological groups, for a finite group I'.

Definition 4.9. Let, as above, m: H — U be a locally trivial family of finite topological
G-groups. We define

ZYG,H) = {(u,g) €U x H|uEe U% g e H, and go(g) =e},
HY(G, H) = 7(G, H)/ ~
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where (u,g) ~ (v/,¢') if u = v/ and there exists h € H, such that ¢’ = hgo(h)~!. We
equip Z'(G, H) with the subspace topology coming from U x H and we equip H!(G, H)
with the quotient topology coming from Z!(G, H).

Lemma 4.10. Let w: H — U be a locally trivial family of finite topological G-groups.
There is a natural surjective map HY (G, H) — U, and for V. .C U® open such that

Hly 2V x T as families of topological G-groups over V, for a finite G-group T', we
have HY(G, H)|y = HY(G, H|y) 2 HY(G,T) x V. In particular, the natural map

HY(G,H) — U®
is a topological covering, with fibre HY(G, H,) for u € UC.
Proof. Clear. OJ

Lemma 4.11. Let H — U be a finite étale group scheme over a scheme U of finite type
over R. Consider the associated quotient stack [U/H], and also the associated locally

trivial family of finite G-groups H(C) — U(C). There is a canonical homeomorphism
[U/H](R)| = H'(G, H(C))
of spaces over U(R), where the space on the right hand side is defined in Definition 4.9.

Proof. Note that |[U/H](R)| parametrizes pairs (u, P) where u: Spec(R) — U is an
R-point and P is a H,-torsor over R. Such a pair (u, P) corresponds to an element
y(u, P) € HY(G, H,(C)) c HYG, H) (see e.g. Lemma 6.1). This gives the bijection

fibrewise over U(R), and this bijection is a homeomorphism by Lemma 10.14. O

Theorem 4.12. Let X be a separated Deligne—-Mumford stack of finite type over R,
such that |Aut(y)| is constant for y € X(C). Let X — M be the coarse moduli space
of X. Then the induced map |X(R)| — M(R) is open, and a topological covering over

each connected component of its image.

Proof. By Lemma 3.2, we know that X — M is a gerbe, and that Zy — X is finite
étale. The proof proceeds in two steps.

Step 1: If the proposition holds for gerbes X — M which have a section, then it
holds for all gerbes X — M. Indeed, we let U — X be a surjective étale morphism
where U is a scheme over R, such that U(R) — |X(R)| is surjective. We then look at
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the base change ) := X x; U, which fits in a 2-cartesian diagram

]

X —— M.

—_—

Observe that the map |V(R)[ — [X'(R)|X p7r)U(R) is a homeomorphism. Since X — M
is étale (as it is étale locally on M of the form [U/H| — U for a finite flat group scheme
H — U, and H — U is étale since Zy — X is étale, so that [U/H| — U is étale), the
composition U — X — M is étale. Therefore, by Lemma 4.7, the map U(R) — M (R) is
a local homeomorphism, whose image is the image of |X(R)| — M(R). Consequently,
by Lemma 4.8, if the base change |Y(R)| — U(R) of |X¥(R)| — M(R) by the local
homeomorphism U(R) — M (R) is a covering map over each connected component of
its image, then the same holds for |X'(R)| — M (R). Step 1 follows.

Step 2: |X(R)| — M(R) is a topological covering when X — M has a section.
Indeed, assuming that X — M has a section, we have X = [U/H] for a scheme U
of finite type over R and a finite flat group scheme H — U, which is étale because
Ty — X is étale. We have |[U/H](R)| = H'(G, H(C)) as spaces over U(R) by Lemma
4.11, and HY(G, H(C)) — U(R) is a topological covering by Lemma 4.10.

5 Smith—-Thom for classifying stacks

As a first example of the Smith—Thom inequality, we verify it in the case of a classifying
stack over a point. Let I' be a finite group scheme over R, given by a finite group I'(C)
and an involution o: I'(C) — I'(C), and consider the stack X = [Spec(R)/I].

Proof of Proposition 1.8. Recall that, by definition,
|X(R)| = {isomorphism classes of I'-torsors over R}.

This is a finite discrete set, which is well-know for being in bijection with H!(G,T') (see
for example Lemma 6.1). In particular, h*(|X(R)|) = #H'(G,T). On the other hand,
by Example 3.3, we have

Tx(C) = T(C)/T(C) sothat h*(X(C)) = #£I(C)/I(C).

So the Smith—Thom inequality for X" follows from the following group theoretic lemma,
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whose proof has been suggested to us by Will Sawin. O

Lemma 5.1. Let T' be a finite group with an action of G. Then the following inequality
holds:
#HY(G,T) < #T/T.

Proof. Let o0: ' — I' be the involution corresponding to the G-action. Let o-conj be
the equivalence relation on I' induced by the action of I' on its self by o-conjugacy
(i.e. h acts by h(g) = hgo(h™1). For every h € T, we let Stab, (h) (resp. [h],) be the
stabilizer (resp. the orbit) of h for the o-conjugacy action and Stab(h) (resp. [h]), the
stabilizer (resp. the orbit) for the conjugacy action.

We claim the following chain of inequalities and equalities:
#H'(G,T) < #(I'/o-conj) = #(I'/T) < #(I/T).

Since the first and the last inequalities follow from the inclusions H!(G,T') C (I'/o-conj)
and (I'/T)% C T'/T, we just need to prove the middle equality.
For this, define

S :={(g,h) € T x I such that g = hgo(h)™*} CT x T

and observe that the projections pi,ps : S — I into the first and the second factor
induce surjective maps p; : S — (I'/o-conj) and py : S — (I'/T)C.
We now compute #S in two different ways, once using p; and once ps.

For any [g], € (I'/o-conj), one has
Py ([9)s) = {(¢'sh) such that ¢’ € [g], and ¢’ = hg'o(h)~'} =

= JJ {heT suchthat ¢’ =hg'oc(h)'} = J] Stabs(g).
g'€lglo g'€lglo

In particular

#5= > () #Stabs(g)).

[9]o€(T /o-conj)  g'€[gls

Since for every ¢’ € [g] one has

#Stab,(g) = #Stab,(¢g') and #Stab,(g") = #I'/#[9]o
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we get

#S= Y (Y #D/#e)= D, #I =#I#(I/o-conj)

[9]o€(T/o~conj)  g'€[g]o [9]o €(I'/o-conj)
On the other hand, for any [h] € (I'/T")¥, one has
py '([h]) = {(g, ') such that [i'] = [h] and o(K') = g~ 'Wg} =
= H {g € T such that o(h') = g~ 'h'g}.

h'€[h]

Observe that
#{g € T such that o(h') = g~ 'h'g} = #Stab(h’) = #Stab(h)

so that
#py ' ([B]) = Y #Stab(h) = > #T/#[h] = #T.

h'e[h] h'e[h]

Hence,

#5 =Y #py (W)= D #T =#T#T/T).

[he(T/T)” [hle(T/T)7

Combining Equations (7) and (8), we get the result.

6 Topology of a real quotient stack

In this section, we fist describe the topology of the real points of the quotient stack

[X/T] of areal variety X on which a finite R-group I' acts, and prove Theorem 1.5. Then

we use this description it to verify the Smith—Thom inequality 1.2 in many examples.

6.1 The real locus of a quotient stack over the real numbers. In this section,

we calculate |X(R)| when X = [X/I'] is the stacky quotient of a quasi-projective scheme

X by a finite group scheme I' over R.

6.1.1 Group schemes over the reals and torsors. Let I' be a finite group scheme over

R. Let G = (o) = Gal(C/R). Let or: I'(C) — I'(C) be the action of G on I'(C)

corresponding to I'. Define

7ZG,T) == {y € T(C) such that yor(y) = e} C T(C).
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Recall (see e.g. [Ser94, Chapitre I, §5]) that there is a canonical identification
H'(G, 1) =ZY(G,T)/ ~

where ~ is the equivalence relation that identifies v1,v2 € I'(C) if there exists a 8 € I'(C)
such that vy = 87 1yi0r(B).

Choose a set of representative H C Z'(G,T) for the equivalence relation ~ on
ZY(G,T), so that the composition H C Z'(G,T) — HY(G,T) is a bijection; we choose
H such that e € H. For each v € H, we define an involution

@:T(C)-T(C) as  ¢"(g)=a(g) -y "

We consider the resulting G-set (I'(C), ). Note that left multiplication defines an
action of the G-group (I'(C),or) on the G-set (I'(C),¢”). In particular, if P, is the
R-scheme associated to (I'(C), ¢7), we get an action of the R-group scheme I' on the

R-scheme P, that turns the latter into a I'-torsor.

Lemma 6.1. The following map is bijective:

HY(G,T) = H — {isomorphism classes of I'-torsors over Spec(R)},
v Py

Proof. This is well-known. O

6.1.2 The topology of the real locus of a quotient stack. We continue with the above

notation. Define an involution
op: T(C) — T(C) as ot (g) = yor(g)y L.

Let X be a quasi-projective scheme over R with real structure ox: X(C) — X(C),
acted upon from the left by the finite group scheme I' over R. For v € H, define an

involution ¢} : X(C) — X (C) as o} (z) = v+ o(x). The pair (X(C),0%) corresponds

to a quasi-projective scheme X, over R. Similarly, for v € H, the pair (I'(C), o)

corresponds to a finite group scheme I'; over R. Note that
X,(R) = X(C)°* and T,(R)=T(C)’" foreach ~ € H.

Proof of Theorem 1.5. Recall that we need to prove that there exists a canonical home-
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omorphism

X/TI®R) = [T X(R)/T5(R).
yeEH

To prove this, we first observe that the action of I'(C) on X (C) is compatible with the
action of o} and of.. Indeed, for z € X(C) and g € I'(C), we have:

ox(g-x) =7~ 0ox(g-x) =7 -or(g)-ox(x) =v-00(g) v "7 -ox(x) =0l (g) ok ().

Therefore, we obtain an action of the G-group (I'(C), o7\) on the G-space (X (C),o%).

In particular, the subgroup
I'y(R) = T(C)7* C T(C)

of elements fixed under o} acts on the fixed space X, (R) = X(C)7* c X(C).
Fix v € H and take any € X,(R)/T'y(R). Choose a y € X,(R) that lifts 2 and

consider the I'(C)-equivariant morphism
fy: T(C) = X(©),  g—yg-y

This morphism is compatible with the G-action ¢7 on I'(C) and with the G-action ox

on X (C), hence it gives rise to a I'-equivariant morphism
fy: Py — X
of schemes over R. Define

a(z) = (Py, fy) € |[X/T](R)]
= {pairs (P, f) | P a I'-torsor, f a I'-equivariant morphism P — X} /~.

We first show that « is well defined, i.e. that it does not depends on the choice of the
lift y of X. If 2 € X,(R) is another that lift =, then there exists a g € I'y such that
y=g-z Since g € I'\(R) = I'(C)°F, the morphism g: P, — P, sending h to hg is an
isomorphism of torsors over R, fitting into a commutative diagram:

P, x

b
r, = x.

In particular, we have an equality of isomorphism classes [(Py, fy)] = [(Py, f2)] €
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|[X/T](R)]. We conclude that we get a canonical map

a: |[X/TI(R)] — [T X%-(R)/T4(R), (9)
yeH

and it is straightforward to show that « is bijective. It remains to prove that the
bijection « is a homeomorphism.

To see this, note that for each v € H, we have a natural morphism
X, — [X/T]. (10)

Namely, to give such a map is to give:
(1) aT' xg X,-torsor P — X, over X, and
(2) aT xgr X, equivariant morphism P — X xr X, of schemes over X,.

As for (1), we put P = P, xg X5, which is a I' xg X,-torsor by base-changing the
I'-torsor structure of P, — Spec(R) along X, — Spec(R). As for (2), we consider the

morphism
P,y XRXV —>_X><[RAX»y (11)
defined via Galois descent by the map

I'(C) x X(C) — X(C) x X(C), (g9,2) — (gz,x),

which is indeed compatible with the anti-holomorphic involution (g, z) — (¢7(g), 0% (z))

on the left hand side and the anti-holomorphic involution (z,y) — (ox(x),0%(y)) on
the right hand side. Since the map (11) is I' xg X,-equivariant, it yields the desired
morphism (10).
We obtain a morphism
U=]]x, — [X/1],
yeH
and, by the fact that the map « in (9) is a bijection (which has already been shown),

the induced map

UR) = [T X,(R) — |[X/T](R)] (12)
yeH
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is surjective. By definition of the real analytic topology on |[X/I'|(R)|, see Definition 4.3,
and by independence of the étale surjective cover essentially surjective on real points,
see Proposition 4.4, it follows that the topology on |[X/I'](R)]| is the quotient topology
coming from the surjection (12) and the real analytic topology on U(R) =[], X,(R).
As the diagram

[X/TI(R)] —— [1,e i X5(R)/T5

commutes, and as each quotient X, (R)/I'y carries the the quotient topology coming

from X (R) — X,(R)/I';, this proves that o is a homeomorphism as wanted. O

In the above notation, assume that X is smooth over R. Then the topological space
[[X/T](R)| can naturally be enhanced with the structure of a real analytic orbifold, see
|[GF22a, Section 2.2.3]. The proof of Theorem 1.5 shows that the following holds.

Corollary 6.2. Assume that the quasi-projective scheme X is smooth over R. Then

the homeomorphism (4) in Theorem 1.5 is an isomorphism of real analytic orbifolds.

Proof. As in the proof of Theorem 1.5, we consider the natural surjective morphism

U= ][] X, — [X/T]
yEH

which is essentially surjective on R-points. Define X = [X/I']. Then

UxyU*= H X’Y XxXV/ = R.
vy eH
For v € H, let R, for be a scheme such that R, = X, x xy X,,. Since (X, xx Xy)(R) =0
for v #+' € H, we get R(R) =[],y Ry(R). Thus,
IT 2 ®) = T % (®R) = [X(®)|

yeH yeH

is a presentation of |X'(R)| by a groupoid object in the category of real analytic mani-

folds, proving the corollary. O

6.2 Smith—Thom for various quotient stacks. In this section we apply Theorem

1.5 to prove the Smith-Thom inequality (3) in a number of examples.
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Example 6.3. Let I" be any finite R-group scheme. Take X = Spec(R) with the
trivial action of I'. Then Theorem 1.5 just says that |[X/T'](R)] is the disjoint union of
#H'(G,T) points, which also follows directly from the definitions and Lemma 6.1. We
already verified the Smith—-Thom inequality (3) in Proposition 1.8.

Example 6.4. Let X := Af. Let I' :== Z/2 endowed with the trivial G-action. We let
I" act on X via the map sending x to —z. To compute X = [A} /T, we start observing
that H(G,T) has two elements 1,7. One computes that X (R)/T" = (R/41) =~ Rx
and also X, (R)/I" = (iR)/ £+ 1 ~ iR>q. Hence, by Theorem 1.5,

X (R)| = Ro [ [ iR>0.

In conclusion, we find that A*(|X(R)|) = 2, so that, since h*(Iy)) = 2 by Example
3.10.1, we see that the Smith—-Thom inequality (3) holds and it is an actual equality. For
completeness, we also describe the natural map f: |[AL/T](R)| — X/I'(R) (see Figure
2). Identifying X/T'(C) with C via the map z +— 22, one sees that (X/T')(R) =R C C.
Under this identification, f induces homeomorphisms X (R)/T' = R>g = Rsq and
X(R),/T'=1iR> Encal R<g. Hence #f~!(z) = 1 for every z # 0 and #f~1(0) = 2 as
predicted by Proposition 4.5.

[AY/Z/2](R)]

(A'/Z/2)(R)

Figure 2: The morphism [[A/(Z/2)](R)| — (A'/(Z/2))(R)

Example 6.5. Let X := AL. Let I' := Z/2xZ/2 endowed with the G-action exchanging
the coordinates. We let I' act on Al via (a,b) * x == (=1)*"’2. To compute |X'(R)]| :=
[AL /T, we start observing that H'(G,T') = 0. Hence

X(R)| = X(R)/D(R) = X(B) = R

since I'(R) acts trivially on X (C). In conclusion we find that h*(|X'(R)|) = 1, so that,
since h*(Iy(c)) = 6 by Example 3.10.2, the Smith-Thom inequality (3) holds and it is a

strict inequality. For completeness, we also describe the natural map f: [[Af/T](R)| —
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X/T(R) (see Figure 3). As in the previous Example 6.4, one identifies X/I'(R) with
R C C. Under this identification, the map f: R — R becomes the absolute value map,
so that it is not surjective, #f~!(x) = 2 for every x > 0 and #f~!(0) = 1 as predicted
by Proposition 4.5.

AT/ (Z/2)](R)] /

l
(A'/(Z/2))(R)

Figure 3: The morphism [[A'/(Z/2 x Z/2)|(R)| — (A'/(Z/2 x Z/2))(R)

Examples 6.6. Let X = Aﬁ.

1. Let I := Z/2 endowed with the trivial G-action. To compute the real locus of
X = [AZ /T, we start observing that H!(G, I') has two elements 1, . By Theorem
1.5,

[X(R)] = X (R)/T(R) [T X,(R)/T(R)

One computes that X (R)/T" and X, (R) are two half-planes, so that h*(|X'(R)| = 2,
h*(Ix(cy) = 2 by Example 3.11.1, we see that the Smith-Thom inequality (3) holds
and it is an equality.

2. Let I' :== Z/2xZ/2 endowed with the G-action exchanging the coordinates. We let
I" act on A]% via its G-equivariant quotient Z /2, acting by exchange of coordinates.
To compute X = [A%/T], we start observing that H'(G,T) = 0, so that, by
Theorem 1.5,

|¥(R)| = X(R)/T(R) = R?,

since I'(R) acts trivially on X (C). In conclusion, we get that h*(|X¥(R)| = 1.
Since h*(Ix(c)) = 4 by Example 3.11.2, we see that the Smith-Thom inequality
(3) holds and it is a strict inequality.

Example 6.7. Let A be a real abelian variety of dimension g, so that A(R) ~ (S1)9 x
(Z/2)F for some 0 < k < g compatibly with the group structure. Consider the inversion
[—1] : A — A and write I' .= Z/2. Let X = [A/Z/2] where Z/2 acts via [—1] and let v
be the unique non trivial element of H'(G,T") By Theorem 1.5,

X (R)] = AR)/[-1] ]| A, (R)/[-1].

25



By construction A, is the quadratic twist of A, hence A(R) = A,(R) as topological

G-spaces. In particular, we get

X (R)| = (517 x (2/2)* [](5") x (2/2)",

hence h*(|X(R)|) = 291**1. By Example 3.13, we have

Tx(C) ~ AC)/-U]] I (=}

2€A(0)[2]

Since A(C)/[~1] ~ A(C) and #A(C)[2] = 229, we get h*(Zx(C)) = 229 + 229 = 229+1,
Since k < g, the inequality (3) is verified and it is an equality if and only if A is

maximal.

Example 6.8. Let Y be a real algebraic variety, let I' :== Z/2 act on Y x Y by
exchanging the coordinates and let X := [(Y x Y)/T']. If v in the non trivial element
of HY(G,T'), by Theorem 1.5, one has

[X(R)| = (Y(R) x Y(R))/T [T(Y x ¥),(R)/T = (Y (R) x Y(R)/T ][] Y(C)/G

Observe that

2(C)|% ~ (Y(R) x Y(R)/T [] Y(O)/G
Y (R

where i : Y(R) < |X(C)|® embeds diagonally in Y (R) x Y (R) and naturally in Y (C)/G.
If f: | ¥X(R)] — (Y(R) x Y(R)/T)(R) is the natural morphism, the exact sequence of
sheaves

0—-2Z/2— fZ]2— i,Z]2— 0,

shows that
W (|X(R)]) < h*(|X(C)[) + h* (Y (R)). (13)

On the other hand,
|Zx(C o]y

while by the classical Smith-Thom inequality for |X(C)|[[Y (C), we get
(12 (C)|%) + h*(Y(R)) < h*(|X(C)]) + h*(Y(C)) = h*(|Zx(C))).

Combining this with (13), we get that the Smith-Thom inequality (3) is satisfied.
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7 Smith—Thom for real stacky curves

In this section we prove Theorem 1.9. The proof is rather indirect, in the sense that
we do not compare directly the topology of |[X/I'|(R)| with I;x,r)(C), but rather we
compute separately h*(|[X/T](R)[) and h*(Ix,rj(C)) and then we compare the two
numbers by using the classical Smith—Thom inequality and Lemma 5.1.

In Section 7.1 we compute h*(I[x/r)(C)), in Section 7.2 h*([X/T'](R)) and finally in

Section 7.3 we combine the two computations to prove Theorem 1.9.

7.1 Inertia of complex stacky curves. Let X be a smooth one-dimensional scheme
of finite type over C, and let I be a finite abelian group which acts on X over C. We let
K C T be the kernel of the homomorphism I' — Autc(X) associated to the I'-action,

and define @ :=I'/K. This gives a short exact sequence of finite abelian groups
0—-K—-I—-Q—0.

The restriction of the action on X of I' to K yields the trivial action of K on X, and
the induced action of Q on X is faithful. Let

M = Mixm) = Mixq = X/@Q
be the coarse quotient of X by Q.

Proposition 7.1. Assume that the subgroup K C I is contained in the center of I', so
that for every x € X (C) there is an inclusion K C I'y/Ty. Let A C Mxr|(C) be the
branch locus of the quotient map q: X(C) — X(C)/Q, and choose a lift y, € X(C) of

each x € A. There is a canonical homeomorphism

|I[X/F]( )| = (K X MX/F] H H Ly, /Ty, — K)

TEA

that commutes with the canonical projections onto M{x/ry.

Proof. We may assume that X is connected. It suffices to show that the map I;x/r) —
Mx/r) has # K disjoint sections. Indeed, I[x;r) — M|x/ry is finite by Lemma 3.3, hence
for each irreducible component Z C I[x,r) of dimension one, the restriction Z — Mx/r
is a finite morphism of curves, hence an isomorphism if it admits a section; moreover,
over the open subset of M|y, r) where the stabilizer group is exactly K, the fibres of
Iix/r) — Mx/r) have cardinality exactly #K by Proposition 7.1.
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Write X = [X/I']. Let S C X x¢c I be the stabilizer group scheme associated to the

action of I' on X over C, so that S can be described pointwise as
S={(z,9) e X xcT'|g-x=2x}.

Then T acts on S by v (x,9) = (y- 2,79y~ !) for v € T and (x,g) € S. Moreover we
have a canonical isomorphism Zy = [S/T] (see e.g. [Jar, Exercise 3.2.12|).
Since K is contained in the center of I', to any k € K one can associate the following

well defined section sy of the canonical map Zy — My:
sp: X/ T =My — Iy =8/T, [x] — [(z, k)] (14)

By construction, the sections s and sg are disjoint for k # k' € K, and so the

proposition follows. O

Proposition 7.2. Assume that K C T is contained in the center of T'. Then

h*([1x(C)]) = #K - h*(M(C))

(15)
TEA
If, in addition, 'y, is abelian for each x € A, then
W ([ 1x(C)]) = #K - h*(|I1x/q(C)]). (16)
Proof. By Proposition 7.1, we have
W ([Lx(C)]) = #K - h*(M(C)) + Y (#(Iy,/Ty,) — #K), (17)
TEA
and (17) implies (15).
Applying (17) to the quotient stack [X/Q] gives
W (Hixsq(C)]) = + ) (#(Qu/Qu) — 1) (18)

TEA

If I'y, is abelian for each € A, then one has

Fyx/ryac = Fygm ny/ny = Qy:m #K . #ngg - #Fygc
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Hence (16) follows from (17) and (18) and we are done. O

Example 7.3. Consider the moduli stack Ay of elliptic curves over C, with coarse
moduli space A1 — A; = A%:. Then dim H*(A;(C), F4,) = 8. Indeed, we let £ > 3
be a prime number and let A;[¢] be the moduli space of elliptic curves with level ¢
structure; it is equipped with a SLa(F,)-action such that A; = [SLa(F,) \ A1[¢]]. In
this case, we have K = (—1-1d) C SLa(Fy) = I', and I'/K = PSLa(F;). The locus
A C Ai(C) of isomorphism classes of elliptic curves with automorphism group larger
than {41} consists of two points, with respective automorphism groups Z/4 and Z/6.
Thus, Proposition 7.2 implies that dim H*(A1(C), Fl4,) =2+4+6—-2-2=28.

Remark 7.4. Propositions 7.1 and 7.2 have a natural analogue in the complex analytic
setting. In fact, these analogues generalize to the case where I' is a discrete group, not
necessarily finite, acting properly discontinuously on a complex manifold. For example,
consider the complex analytic stack A}" as the quotient stack A}" = [Spy(Z) \ H]
where H is the upper half plane. In this case, K C Spy(Z) is the abelian subgroup of
order two generated by —1 times the identity matrix, and @ = PSLy(Z). Moreover,
the coarse moduli space of A" is C, and there is one isomorphism class of elliptic
curves with automorphism group Z/4, one with automorphism group Z/6, and all
other isomorphism classes have automorphism group Z/2. Thus, the complex analytic
analogue of Proposition 7.2 implies as before that dim H*(C, Flqan) = 2+4+6—2-2 = 8.

7.2 Topology of real stacky curves. Recall from Definition 4.6, that if X’ a Deligne—
Mumford stack with coarse moduli space p: X — M and if f: |X(R)] — M(R) is the
map induced on the real points, for 2 € M(R) we denote by H' (G, z) the cardinality
of HY(G, Aut(z)), where z € X(R) is such that [z] € f~1(x).

7.2.1 Local geometry. We start by study the local topology of a stacky curve around a

point with non-trivial stabilizer.

Lemma 7.5. Let X be a smooth curve over R. Let H be a finite R-group scheme that
acts on X over R. Assume that H acts faithfully on X over R.

1. For each x € X(R), there exists an integer n > 1 such that the stabilizer group

scheme Hy s isomorphic to pu,.

2. For z € X(R), the number H(G, [z]) = #HY(G, H,(C)) is equal to 1 (resp. 2) if

n is odd (resp. even).

Proof. Let I' = H(C). Since the action of I' is faithful, there are only finitely many

points x € X (R) with non trivial stabilizer I'y. Since the statement is trivial for points
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with trivial stabilizer, we focus on the points x with I';, # 0. Choose a G and I' stable
open neighbourhood U of x not containing any other point with non-trivial stabilizer
and G-biholomorphic to an open disk centered in z endowed with the standard G-action.
Since the group of biholomorphism of the disk with one fixed point is isomorphic to S*,
we see that I'; is cyclic isomorphic to Z/n for some integer n. Moreover a generator -y
acts a y(z) = €z if z is a local parameter around x. Since the G-action is compatible
with the action of I, this forces a G-equivariant isomorphism I'y =~ .

The second item follows from the first and the fact that [H (G, u,)] is 1 is n is odd

and 2 if n is even. O

7.2.2 Global geometry. We now study the possible shapes of the connected components

of the real points of a real stacky curve.

Proposition 7.6. Let X be a smooth curve over R. Let H be a finite étale group
scheme over R which acts on X over R. Let C' C |[X/H](R)| be a connected component
of |[X/H|(R)|. Then C homeomorphic to either an interval in R of the form (0, 1), (0, 1]
or [0,1], or to the circle S' = {(z,y) € R? | 2® +y? = 1}. If X is proper then only the

possilibities [0,1] and S* can occur.

We actually prove something slighlty more general in the following Lemma 7.7.

Observe that Proposition 7.6 follows from Theorem 1.5 and Lemma 7.7.

Lemma 7.7. Let X be a smooth curve over R. Let H be a finite étale group scheme
over R acting on X over R. Then each connected component of X(R)/H(R) is homeo-
morphic to the interval [0,1] C R, to the interval (0,1], to the interval (0,1), or to the
circle St C R2.

Proof. We may assume that H acts faithfully on X.
First, assume that X is proper, so that X (R) is compact and let C' be a connected
component of X (R) with stabilizer Stab g)(C) in H(R). We start proving that

C/Stabyg)(C) ~ S' or C/Stabyg)(C) ~[0,1] (19)

Recall that every connected Riemann surface S admits a unique complete Riemann
metric g with constant curvature being negative (genus > 2), zero (genus zero) or posi-
tive (genus one). Moreover, for genus > 2 the group Bihol(S) coincides with the group
Isom(S, g)™ of orientation preserving isometries of the Riemannian manifold (S, g).
In genus zero we have, for the subgroup PGLy(R) C PGL2(C) = Bihol(P*(C)), that
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PGL2(R) = SO3(R) acts as isometries on P*(C) = S2. The automorphism group of
any complex elliptic curve preserves its Riemannian metric.

In particular, as H acts faithfully on X, there are natural inclusions
Stabpg)(C) C H(R) C Isom(X(C)) C Homeo(X (C))

where Isom (X (C)) is the group of isometries with respect to the Riemannian metric of

X (C). Consider the connected component
Cc X(R)cC X(C).

We endow C' with the Riemannian metric induced by the embedding C' C X (C). Then
C' is a compact one-dimensional Riemannian manifold, and hence isometric to a circle
of some length L: we have C = R/LZ with the standard Riemannian metric. In
particular, Isom(C) = O(2). By the above, we have Stabgg)(C) C Isom(X(C)),
and hence Stabp(g)(C) C Isom(C) = O(2). So, Stabg(g)(C) is a finite subgroup of
0(2) = Isom(S?) with S = {2 € C| |2| = 1}, hence it is generated by multiplications
by some root of unity and, possibly, by the standard complex conjugation on S'. Hence
we get (19).

Let C1,...,C, be the connected components of X (R); each C; is homeomorphic to
S'. Then I == {1,...,n} admits a partition I = I LI I U --- L I with k& < n such
that the I; are the orbits for the induced action of H(R) on I. For each j € {1,...,k},
choose an element i; € I;. Let H(R); = Stabp(g)(Cy;) be the stabilizer of C;; in the
group H(R). Then

X(R) <HC’>/H ﬁ [1¢: | /H®R H

j=1 i€l

Thus, the lemma in the case where X is proper follows from (19).

In the general case, consider the smooth projective compactification X — Y of
X. The action of H on X extends to an action of H on Y, and the natural map
X(R)/HR) — Y(R)/H(R) is an open embedding whose complement is a finite set
(possibly empty). By what has already been proved, each connected component of
Y (R)/H (R) is homeomorphic to [0, 1] or S!. By removing the points in A(R) C Y (R),
where A =Y — X, we see that each connected component of X (R)/H(R) is homeo-
morphic to [0,1], (0,1], (0,1) or St, and we are done. O
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7.2.8 Map to the coarse moduli space. Finally, we study the map from a real stacky
curve to its moduli space.

Let X be a smooth curve over R. Let H be a finite R-group scheme that acts on X
over R, with associated real structure o: H(C) — H(C). Define Rg C Z!(G, Q) and
Assume that H acts faithfully on X over R. Let p: [X/H] — X/H = M be the coarse
moduli space map, with induced map f: |[X/H](R)| — M(R).

Lemma 7.8. Let C C M(R) be a connected component. Assume that for each m € C,
we have h'(G,m) = 1. Then the map f~1(C) — C is a homeomorphism.

Proof. Since the action is faithful and X is smooth, the map f: |[[X/H](R)| — M(R)
is surjective as it is closed and its image contains a dense open subset. In particular,
f~HC) — C is surjective. Moreover, for m € C, we have #f~1(m) = h*(G,m), see

Proposition 4.5, which equals 1 by assumption. The lemma follows. O

Proposition 7.9. Let C C M(R) be a connected component and let . = {x1,...,xn} C
C be the finite set of points such that h' (G, z;) # 1. Assume that % # ().

1. If C is an interval, then for every homeomorphism ¢ : C = (0,1), there exists an

homeomorphism

v fHC) = 0,5 [Tl v TT - THwn—1: 9e) [T lvms 1)
such that the following diagram commutes:
1(@ —— (0] U el 1T imynl,yn] [Tlgn, 1)

C L (0,1),

=

where the vertical arrows are the canonical ones and y; = p(z;).

2. If C is a circle, then for every homeomorphism p: C = S', there exists a home-

omorphism

w: ffl(C) -~ [ei91,6i02] H . H[eien_17€i9n] H ([0, ei01] H[ezﬂn, 1])

0~1
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such that the following diagram commutes:

fﬁl(c) v ? [eial ’ er] H T H[eion_l ) eien] ]_[ ([07 ei91] H()Nl[eian’ 1])

| |

)
S,

where the vertical arrows are the canonical ones and p(z;) = €%,

Proof. The map f: f~1(C) — C is surjective, see the proof of Lemma 7.8. By
Proposition 4.5 and Lemma 7.5, for each connected component K C M (R), the map
f~YK) — K is an isomorphism outside . C K and has two fibers above each point
of .. The proposition follows readily from this and from Proposition 7.6. O

7.3 Smith—Thom for real stacky curves.

Proof of Theorem 1.9. The action of H on X corresponds to a homomorphism
H — Autg(X), (20)

where the latter denotes the automorphism group scheme of X over R. Let K C H be
the kernel of (20), and let @ = H/K be the quotient of H by K. The canonical map
Q@ — Autp(X) is a closed immersion. In particular, the group Q(C) acts faithfully on
X(C). Let [X/H] — M be the coarse moduli space; we have M(C) = X(C)/H(C) =
X(€)/Q(0).

Consider the real structure o: X(C) — X(C). Choose a set of representatives
Ry C ZYG, H) for HY(G,H) = Z'(G,H)/ ~. For v € Ry, let 0,: X(C) — X(C) be
the involution z +— 7 - (). Choose Rg C Z'(G,Q) and define o,,: X(C) — X (C) for
€ Rg similar to the way we chose Ry C Z!(G, H) and defined ., for v € Ry.

Step 1: If H is abelian, and if the Smith—Thom inequality (3) holds for the quotient
stack [X/Q), then it also holds for [X/H].

Proof. Assume the Smith-Thom inequality (3) for [X/Q)], and consider the canonical

map

g9: [[X/H]R)] — |[X/QI(R)] . (21)
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By Theorem 1.5, we have a commutative diagram of the form

[X/H)(R)] < [X/QI(R)]

| |

Hpjent@,m X(C)7 /H(C)T — [jem ¢,0) X (C)7/Q(C)7",

where the map on the bottom is induced by the canonical map HY(G, H) — H'(G, Q).
Since

X (€)™ /H(C)™ = X(C)™/Q(C)7"
for each [y] € HY(G, H) mapping to [u] € H!(G, K), this proves that the map g in (21)

is a topological covering over each connected component of its image. Moreover, the

exact sequence of pointed sets
0— K(R) — H(R) — QR) — H'(G,K) — H'(G, H) — H'(G,Q)

shows that the degree of g over a connected component of its image is bounded by
|[HY(G, K(C))|.

By Proposition 7.6, each connected component C' of |[X/H](R)| is homeomorphic
to a circle or an interval. If C' is a circle then, by the above, g=!(C) consists of at most
H(G, K(C)) circles, so that

h*(g71(C)) < 2- #H'(G, K(C)).

Similarly, if C' is an interval, then g~!(C) is an union of at most H*(G, K(C)) intervals,
so that
(g1 (1)) < #H'(G, K(C))
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Therefore, we have:

h*([[X/HI(R)[) = Y. M(gH©)

Cemo(|[X/QI(R)])

= > rge)+ > r(go)

C circle C' interval

(a)

< Y 2-#HY(G,K(C)+ > #HY(G K(C))
C circle C interval

= #H'(G, K(C)) - h*(|[X/QI(R)])

(b)
& #K(©) - h*(Ix/q(©)
© W (|1x/m(C)1),

where (a) holds by the previous discussion, (b) by the assumption that the Smith-Thom
inequality (3) holds for [X/Q)] and the fact that #H'(G,K(C)) < #K(C), while (c)
holds by Proposition 7.2 which we can apply since H is abelian. This proves what we

want. O

Let A ¢ M(C) = X(C)/Q be the branch locus of the quotient map ¢: X(C) —
X(C)/Q. For each x € A choose an element y, € X(C) such that ¢(y,) = =. Define

A ={re AnMR)|H(G,z)>1},
where HY(G, z) = #H'(G, Hy(C)) for some y € ¢~ !(x), see Definition 4.6.

Step 2: The Smith—Thom inequality (3) holds when when the action of H on X over
R is faithful (i.e. H= Q).

Proof. Consider the map f: |X(R)| — M(R), and note that f is surjective. Let C' C
M (R) be a connected component which is homeomorphic to a circle. By Proposition
7.9, f~1(C) is homeomorphic to a circle if H'(G,z) = 1 for each x € C, and f~(C)
is homeomorphic to the union of #(C N A’) intervals if A’NC # 0. In particular, we
have:

2 if CNA'=10,

e (fF7H(0)) = _
#(CNAY if CNA"#0.

Let I € M(R) be a connected component which is homeomorphic to the open interval
(0,1). By Proposition 7.9, f~1(I) is homeomorphic to the union of #(I N A’) + 1
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intervals. In particular, we have:

RN =#INA)+1

Therefore, we have:

R (|X(R)]) = > R (f7HO)) + > R (f7HC))
C’Em)(M(]R)) circle Iemo(M(R)) interval
Z 24+ > #(CNA) +Z #(CNA)+1)
CNA'= CNA'#£D
— < > 2+Z1> + D #CnA)Y+ Y #CnA)
CNA'=0) CNA'Z£) INA’#D
<h (M(R)+ ) 1
TEA
(<) h*(M(R)) + Y (# H,, (C))—1)
z€EA
(c)
< h*(M(C)) + Y (#(H,,(C)/H,,(C)) - 1)
z€EA
D (1x(©)),

where (a) follows from the previous discussion, (b) from #(H,,(C)/H,,(C)) > 2, (c)
from the Smith-Thom inequality 1 for M (C) and finally (d) from Proposition 7.2. This
proves Step 2. O

By combining Steps 1 and 2, the theorem follows. O

8 Topology of a split gerbe over a real variety

Let U be a geometrically connected scheme locally of finite type over R. To simplify
the discussion, we assume that U(R) # (). Let H — U be a finite étale group scheme
over U. For every x € U(R), we write z¢c € U(C) for the associated geometric point
and H (resp. Hy,.) for the fiber of H — U over z (resp. z¢). The scheme H, is a group
scheme over Spec(R) so that H,. is the constant group scheme over C associated to a

finite group which, by abuse of notation, we will also denote by H.. The finite group
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H

zc 1s endowed with an action of G, hence with an involution

0y Hy — Hy,.. (22)

Let X = [U/H] be the associated classifying stack, where H acts trivially on U.
Recall that the natural quotient map U — X is a section of the coarse moduli space
map X — U/H = U, so that, in particular, the map f: |X(R)| — U(R) is surjective.

In this section we explain how to compute the topology of X'(R), by comparing it
with U(R). To state the main result, recall that, since H(C) — U(C) is a topological
cover, if p € U(C) there is a natural action of 7w (U(C),p) on H,(C).

Theorem 8.1. Let U be a geometrically connected R-variety such that U(R) # 0. Let
H — U be a finite étale group scheme and set X = [U/H|. The following holds.

1. The canonical map f: |X(R)] — U(R) is a topological covering over each con-
nected component of U(R), with fibre HY(G, H,(C)) above a point p € U(R).

2. Let C be a connected component of U(R), and fixp € C. The image of the natural
map w1 (C,p) — m(U(C),p) lies in the subgroup of elements g € m (U(C),p)
whose action on Hy(C) is G-equivariant. In particular, the group m (C,p) acts

naturally on H(G, Hy(C)).

3. The covering space associated to the above action of w1 (C,p) on HY(G, H,(C)) is

canonically isomorphic to the covering space f~1(C) — C.

The rest of the section is devoted to the proof of Theorem 8.1 and to some of its
corollaries. We begin with some preliminaries; the actual proof of Theorem 8.1 is carried

out in Section 8.2.

8.1 Action of fundamental groups. Fix p € U(R) and write C for the connected
component of U(R) containing p. Recall that H — U corresponds to an action
W?t(U,pc) on Hpca

pp: TS (U, pc) — Aut(Hp,),

compatible with the group structure of H,., where 7$'(U, pc) is the étale fundamental
group of U at the geometric point pc.
Since U is geometrically connected, the natural morphisms Uc — U — Spec(R)

induce a short exact sequence of groups

1— Wft(U@,p(c) — W'ft(U,p(c) — G — 1. (23)
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Restricting p, to m$*(Uc, pc), we get an action of n*(Uc, pc) on Hp,,
P;():: ﬂ(ft(U(c,p(c) - Aut(HPC)7

which corresponds to the étale Uc-group scheme He — Ug. Recall that ﬂi’t(U@,p@)
identifies with the profinite completion of usual fundamental group 71 (U(C), p) so that,
in particular, there is a map 1 (U(C),p) — 7§ (Uc, pc). We denote again by

p;():: 71 (U(C),p) — Aut(Hp,)

the restriction of pgz 7 (Ug, p) — Aut(Hp,.) along the map 1 (U(C),p) — 75" (Uc, pc);
this representation of 7$*(Uc, p) corresponds to the topological covering H(C) — U(C).
Viewing p as a morphism of schemes p: Spec(R) — U, we get a morphism 71 (p): G =

71 (Spec(R), p) — w$*(U, p) which splits (23), and hence yields an isomorphism

i (U,p) = 75" (Uc, pc) » G- (24)

This yields an action of G = (o) on 7$%(Ugc,pc) by the usual formula o - o = oo™t

for a € 78 (Ug, pc) (where we view G as a subgroup G C 7¢*(U, pc)), and this action is
compatible with the action of G on 71 (U(C), pc) defined as follows: for a € 7 (U(C), p),
we have 0 - a = (op)«(a), where oy is complex conjugation on U(C).

Restricting p, to G via m1(p), we get an action of G on H,,. which identifies with
the natural involution o, on H,., see (22). Now consider the morphism m(C,p) —

m1(U(C),p) and, by abuse of notation, write
py: m(C,p) — Aut(Hp,) (25)

for the restriction of ,og to m(C, p).

Lemma 8.2. The above action (25) of m1(C,p) on Hy. commutes with o, in the sense
that op(y - x) = v - op(z) for v € m(C,p) and v € Hp.. In particular, it preserves
ZHG,Hy.) = {x € Hy. | - 0p(x) = e} C Hp., and the induced action of w1 (C,p) on
ZYG, Hy..) descends to an action of m1(C,p) on HY(G, Hp,.).

Proof. We need to show that for every o € m(C, p), one has
pg(a) oop=0p0 pg(a) as maps Hy,. — Hy.. (26)
Via the isomorphism (24), we write each element 3 € 7" (U, pc) as a pair 8 = (81, 52)
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with 81 € 7$%(Uc, pc) and B3 € G. Denote by a the image of « in 7$*(Uc, pc). Then

the equation (26) can be rewritten as

pP(O‘7 6)71 ° pp(67 o)o pp(Oé, €)= Pp(17 o).

Since p, is a group homomorphism we have

pp(aa e)_l ° pp(e7 G) 0 pp(aa 6) = pp((a_lv 6) ’ (67 G) ’ (Oé, 6))
By the definition of the semi-direct product group structure, we have

(a7t e)-(e,0) (a,e) = (alo 7 ao, o).

The image o € 1 (U(C),p) of a € m1(C, p) satisfies (op)«(a) = a ooy = a. For the

1

image o € wft(U(c,p@), one therefore has 0 -« = 07 ao = «. Hence, we get

1

ppl(a,e) ™t o pple,0) o pplae) = pp((a" e) (e, 0)(as ) = pyle, o),

and the proof is concluded. O

8.2 Change of base point. In the previous section we fixed a p € U(R) to study
H,, but it will be important for us to understand how H,, change with the point. The

main result of Section 8.2 is the following.

Proposition 8.3. Let U be a geometrically connected scheme of finite type over R.
Let Y — U be an étale cover. For p € U(R), consider the natural anti-holomorphic
G-action op: Yp. — Y. Let p,q € U(R) and choose a topological path g, from q to p
in U(C). Consider the element wqp = (Ygp 0 ov) *v5, € T1(U(C),p) (where * denotes
the composition of paths). Then the following diagram commutes:

}/qc (Yq,p) Y.
D

|

Y,

C

Y,

Wq,p

l
|

C

Ip

C
(Ya.p)+

Yq«:—>Y¢:

Here, wqp = (Ygp © 0U) * Vg € m(U(C), p) acts on Yy, as an element of m (U(C), p),

and (Ygp)s: Ygo — Ype is the canonical isomorphism induced by the path .
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Example 8.4. Let U C Gy, be an open subset whose real part contains [—1,0) and
(0,1] and let 7: E — U be a family of smooth elliptic curves. Let p =1 € U(R) and
assume that Y}, is a maximal real elliptic curve. Define a local system F := m,Z/2 of

finite dimension Z/2-modules on Uy, and let
Y —U
be the associated finite étale cover. Thus,
Y; = HY(E,(C),Z/2)  for  q€U(R).

Since E, is a maximal real elliptic curve, the action of G on Y,. = H'(E,(C),Z/2) is

trivial.

1. Assume that the action of the standard loop « around 0 (viewed as an element
of 78 (Uc, pc)) on HY(E,(C),Z/2) is not trivial (this happens for example for the
family whose affine equation is y? = (2 — t)(z + 2) where ¢ is the coordinate
of U). Let ¢ = —1 and choose as v, the standard "half circle" around 0, so
that w,, = 7, hence it acts non-trivially on 7*(Uc, pc). Since the action of G
on HY(E,(C),Z/2) is trivial, we deduce from Proposition 8.3 that the action of
G on HY(E,(C),Z/2) is not trivial. In particular, the real elliptic curve E, is not

maximal.

2. Assume that the action of 7{'(Uc,pc) on HY(E,(C),Z/2) is trivial (this hap-
pens for example for the family whose affine equation is 32 = x(x + 2)(z + 3)
where ¢ is the coordinate of U). Let ¢ = —1. Since 7$"(Uc, pc) acts trivially
on H!(E,.(C),Z/2), for every choice of path 7, from —1 to 1, the loop w acts
trivially on H'(E,(C),Z/2), so that from Proposition 8.3, we deduce that E; is

maximal.
Before going to the proof of Proposition 8.3 of let us drawn some consequences.

Corollary 8.5. Let U be a geometrically connected scheme locally of finite type over R,
and let H — U be a finite étale group scheme. Let C C U(R) be a connected component.
For p,q € C, there is an isomorphism H,. ~ H,. of finite G-groups. In particular, up
to bijection, the set HY(G, H,.) does not depend on the choice of q € C.

Proof. Since p, q are inside the same connected component of U(R), we can choose a
path 74, [0,1] — U(C) that is fixed by (ov)s, i.e., vpq lifts to a path v, 4: [0,1] —
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U(R). In particular,

Wep = (YgpooU) * ’Y(;; = Yqp* 'Yz;; =e e m(U(C),p).
Thus, the corollary follows from Proposition 8.3. O

Proof of Theorem 8.1. By Theorem 4.12, Proposition 4.5 and Corollary 8.5 the mor-
phism f~1(C) — C is finite étale with fibers H' (G, Hp,.). The corresponding action of
71(C, p) on HY(G, H,..) identifies with the action pg of Lemma 8.2 which is induced,
via the morphism 7 (C,p) — 71 (U(C),pc), by the action of m1(C, p) on Hy.. O]

8.2.1 Proof of Proposition 8.3. For any path ~,,: [0,1] — U(C) from ¢ to p, and any
point y € Y., we let 74, be the unique path in Y (C) that lifts ~,, and that satisfies
Y4p(0) = y. This yields an isomorphism

(7q,p)*: Yoo = Ypes Yy 73{,;;(1)-

To ease notation, write o = o7, the natural anti-holomorphic involution U(C) — U(C),
and denote the natural anti-holomorphic involution on Y (C) also by o. By construction,

we have:

o((Yap)(¥) = 0(32,(1))  and  wyyp - (vgp)+(0(y)) = wap - TV,

Observe that
U(Wg,p(l)) = (U*<ﬁg,q)) (1)

and that 0.(354) is a path in Y (C) that lifts .(,,) and that starts at o(y). In other

words,
—— o(y)

o ((Vap)+(¥) = o+ (Vap) (1).
On the other hand, by construction of the action of 71 (U(C),p) on Y., one has

—_——

“ap (%0(9)(1)> = Wap* Vq,pa(y)(l)-

But wqp * v4p = 04(7Vq,p) by definition of wy p, hence the proof is concluded. O
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9 Interpretation in terms of the homotopy exact sequence

In order to do efficiently computations, we interpret Proposition 8.3 in terms of splitting

of the homotopy exact sequence (23).

9.1 Splitting of semi-direct products. Possibly, one can remove this section. I
believe it is not used. We start recall some properties of splitting of semi-direct products.
Let now I' be any group with an action of G, consider the semi-direct product I' x G

of G so that there is an exact sequence
0T —=TxG5G—0. (27)

There is an obvious section s of m, namely the one sending o to (e,o). Under this
section, the action of G on I', can be recovered as the conjugation action by (e, o).

There might be many more splittings. Indeed the map
{e € " such that o(e)e = 1} = {splittings of 7} (28)

sending € to the map defined by s.(¢) = (¢,0) is a bijection. Since we are mainly
interested in studying objects up to conjugation, let us remark that (28) induces a

bijection

{e € I" such that o(e)e =1}/ ~ = {splittings of 7} /conj,

where € ~ ¢ if there exists v € T such that € = y¢'o (7)1, and where conj denotes the

equivalence relation by conjugation.

Example 9.1. Let I' = Z endowed with the action of G by inversion. Then the set of
splitting of (27), is in bijection with Z. On the other hand, the set of splitting up to
conjugation is only made by two elements, since (n,0) in conjugated to (m,o) if and

only if n and m have the same parity.
The splitting s, of (27) induces, by conjugation via (e, o), the action on I' given by

oe(v) = e lo(v)e.

9.2 Galois formalism. Write Fset for the category of finite sets and, for a scheme Z,
Fét(Z) for the category of finite étale covers of Z.

Consider the notation of Section 8. Thus, U is a geometrically connected scheme
locally of finite type over R, with U(R) # (; the morphism H — U is a finite étale
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group scheme over U, and for every x € U(R), we write ¢ € U(C) for the associated
geometric point. Recall that for every ¢ € U(R), the group 7¢¢(U, qc¢) (resp. 7$*(Uc, qc))

is the automorphism of the functor
(—)qe : Fét(U) — Fset (vesp. (—)5 : Fét(Ug) — Fset)

sending Y — U (resp. Y — Uc) to the geometric fiber Y,.. By the general formalism

of Galois categories, every isomorphism of functors
¢: (_)qc — (_)pcm
induces an isomorphism
¥ W?t(Uv q(C) — W?t(Uv p(C)

in such a way that the action of G (= 7$'(Spec(R))) on Hp, is induced by the action

of m$*(U, pc) on Hp,. and the composition

m1(q)
—_—

G = {'(Spec(R)) i (U, qc) = i (U, pe).-

Since both 71(p) and ¢ o 71(q) are splitting of the exact sequence
0 — 1'(Ue, pc) — 75" (U, pc) — G — 0,

to understand the action of G on Hy,

of this sequence are related. This is the main result of the section.

one has to understand how the different splittings

9.2.1 Paths and splittings of the homotopy exact sequence. Let p,q € U(R). Let
Yap: [0,1] = U(C)
be a path from ¢ to p. The isomorphisms

('Vq,p)*: Yoo = Yo

induced by 74, fit together to give an isomorphism goi]CJ, : (=)C S (9 of fiber

functors. This in turn, induces an isomorphism

‘Pizc,p : 78" (Uc, qc) = 7¢"(Uc, pe),
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well defined up to conjugation, extending the usual isomorphism m (U(C), ¢) — 71 (U(C), p)
defined by a — g pay,. ;. Write

w = (00)«(Vap) * vgp € T(U(C),p).
By abuse of notation, let w € 7¢(Ug, pc) be the image of w under the natural morphism
m(U(C),p) — n{*(Uc, pc)-

Proposition 9.2. In the above notation, consider the map f: G — w$'(Uc,pc) X G

defined as the composition
f: 62 U, qe) L2 (U, pe) ~ S (U, pe) 1 G,

where the isomorphism on the right is defined by the splitting of the homotopy exact
sequence (23) induced by the section m1(p): G — 7¢(U, pc). Then

flo) = (w,0).

Proof. Let Y — U be a finite connected étale cover. By Proposition 8.3, the action of

G = 78 (Spec(R)) on Y, induced by the action of 7¢*(U, pc) on Y,,. and the composition
G 0 (U, gc) £ m (U, )

identifies with the natural action of G on Y, up to multiplying by w. To be precise,
after identifying V). and Y. using 7, p, one has o, = w - 0;,. Hence, if we consider the
isomorphism

1" (U, pc) = n{'(Ue,pc) » G

induced by m1(p), the image of section corresponding to m1(q) is (w, o). O

Remark 9.3. At the level of the geometric fundamental group, a similar procedure

can be applied. Define an involution o#*: m(U(C), q) — m1(U(C), q) by

ot (a) = w oy (a)w, aem(U(C),q).

We have w € 71 (U(C),p) right, and not in 71 (U(C),q)? Since the action of oy on
m1(U(C), q) is well-defined up to conjugation, the actions of o77” and oy on Fét(Ug)

are isomorphic. With this new involution, the isomorphism

~

¢pq: T(U(C),p) — m(U(C),q)
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becomes equivariant.

Examples 9.4. Let U = G, and take p = 1 € G,,(R). In this case, the étale

fundamental group is given by

(U, pc) = Z x G,

where G acts on Z by inversion.

1. Take ¢ = 2 and choose 7, as the natural path contained in the real part con-
necting ¢ to p. In this case, w is the trivial loop, so the image of the section

corresponding to 71 (g) is identified with (0, e).

2. Again, take ¢ = 2, but this time let 7, , be a loop not contained in the real part,
such that w is nontrivial (for example, the path shown on the left in Figure 4).
By construction, the class of w in 7 (U(C),p) ~ Z is 2, so under this choice of ~,
the image of the section 7 (q) is (2, e). Although different from the previous case,
we note that (2, e) is conjugate to (0, e) in Z x G (see Example 9.1), meaning that

the conjugacy class of the section remains unchanged.

3. Take ¢ = —1 and choose 7, , as the "half-circle path" from —1 to 1, as depicted
on the right in Figure 4. In this case, v corresponds to the class of 1 in Z, so
the image of the section m1(q) is (1,€). Since (1, e) is not conjugate to (0, e), this

section is genuinely different from the previous ones, even up to conjugation.

0 1 9 1 0 1

Figure 4: Two paths in G,,(R)

9.3 More examples of stacks satisfying Smith—Thom. In this section, we use
Theorem 8.1 and the previous discussions to verify the Smith-Thom inequality in a

number of cases.
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9.3.1 Cover of the multiplicative group. Let U = Gy, and take p =1 € G,,,(R). In this

case, the étale fundamental group is given by
U, pe) ~ Z x G,

where G acts on Z by inversion. Consider the natural projection my: ZxG — 7)]2,
which corresponds to the cover (—)?: G,, — G,,. Since G acts trivially on the fiber
over 1 in this cover but nontrivially on the fiber over —1, the element corresponding to
the section associated with —1 takes the form e_; = (n, o), where n is odd.

For the remainder of this section, we let G = Z/2 act on Z/2 @ Z/2 by exchanging

the coordinates.

Example 9.5. Let 7y : 7% 7./2 — 7./2 be the morphism given by the natural projection
ZxG —7/2. We let Z x Z/2 act on Z/2 & Z/2 via the action of Z/2, and denote the
corresponding group scheme by H — U.

On the one hand, since the action of G on the fiber of the cover G,, 2, G,, over 1
is trivial, the action of G on Hj is also trivial. Consequently, the preimage of (0, +00)

under the map
[U/H](R)| — U(R) (29)

consists of the disjoint union of 4 = [H!(G, Hy)| copies of (0, +00). On the other hand,
since the action of G on the fiber of m; over —1 is nontrivial, G acts on Hy by exchanging
the coordinates. This implies that H'(G, Hy) = 1, so the preimage of (—oo,0) under
the map (29) consists of a single copy of (—00,0). In summary, |[U/H](R)| consists
of five copies of R: one lying over (—o0,0) and four lying over (0, +00); see Figure 5.
Therefore, we obtain

W ([U/H)(®)]) = 5.

To compute Ijy;/p1(C), recall from Example 3.12 that Ij;;/5(C) = H(C). In this case,
H (C) has three connected components (corresponding to the three orbits of 7$*(Uc) act-
ing on Z/2 x Z/2), each of which is finite étale over C*. Hence, H(C) ~ C*[[C* [] C*,
so that h* (I, (C)) = 6. Thus, the Smith-Thom inequality (3) holds.

Example 9.6. Let p: Z x Z/2 — Z/2 be the morphism defined as the sum of the
natural maps Z — G — Z/2 and G — Z/2. We let Z x Z/2 act on Z/2 & Z/2 via
the action of Z/2, and denote the corresponding group scheme by H — U. Since the
action of G on the fiber of the projection m: Z x Z/2 — 7Z/2 over 1 is trivial, the
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Figure 5: The morphism |[G,,/H](R)| — G,,(R)

action of G on Hry is nontrivial, whereas the action on H— is trivial. As in the previous
example, |[U/H](R)| consists of five copies of R. However, in this case, four of them lie
over (—o00,0), while one lies over (0,+00). The Smith-Thom inequality (3) is verified

in exactly the same manner as in the previous example.

9.3.2 Enriques surfaces. Let U be an Enriques surface such that U(R) # (), so that its
K3 cover h: V — U is defined over R. To simplify the discussion, we also assume that
V(R) # 0. Fix a point p € U(R) in the image of h: V(R) — U(R). Then, the section

m1(p) induces an isomorphism
WU, pc) ~Z/2 % G,

such that the K3 cover h: V' — U corresponds to the projection onto the first factor,
w1 L)2 ) G — Z/)2.

For every ¢ € U(R), the group G acts trivially on V. if and only if ¢ is in the image of
h: V(R) — U(R). Consequently, the element €, corresponding to the section associated
with ¢ is given by

(0,0) if g is in the image of h: V(R) — U(R),
(1,0) otherwise.

For the remainder of this section, we let Z/2 act on Z/2 @ 7Z/2 by exchanging the

coordinates.

Example 9.7. Assume that U(R) is the union of four copies of P?(R) and two spheres
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S?% and that the map h: V(R) — U(R) is surjective (such Enriques surfaces exist, as
shown in [DIK0Oa, Table 8, p. 180]).

Let my: Z/2 x G — Z/2 be the projection onto the first coordinate, and let Z/2 x G
act on Z/2 @ 7Z/2 via this map. Denote by H — U the corresponding group scheme.
Since h: V(R) — U(R) is surjective, for every ¢ € U(R), the image of the section 71 (q)
is (0,e). Consequently, the action of G on Hy,. is trivial, implying that

HY (G, H,.) = 7/2 x Z,/2.

Now, let C' be a connected component homeomorphic to S2. Since S? is simply
connected, the cover f~(C) — C is trivial. Thus, the preimage of each C' under the
map

f+lU/H]R)] — U(R)

consists of four copies of S2.

On the other hand, let C' be a connected component homeomorphic to P2(R). The
natural map m(C) — m1(U(C)) is an isomorphism, as there is at least one spherical
connected component in the real locus of the K3 cover over C (see the discussion in
[DK96, Section 3.5]). Thus, the cover f~1(C) — C has three connected components,

corresponding to the orbits

{0,00}, {(1,e)}, {(0,¢),(1,0)}
of the action of m1(U(C)) on
HY (G, H,.) = 7/2 x Z,)2.

Since the 71 (C)-action on {(0,e), (1,0)} is nontrivial, the corresponding cover is home-
omorphic to the universal cover $? — P?(R). Hence, f~!(C) is homeomorphic to the
disjoint union of two copies of P?(R) and one S2.

In conclusion, |[U/H](R)| is homeomorphic to the disjoint union of:
e Four copies of S? [[P?*(R) [[P?(R), each lying over a P?(R), and
e Two copies of ]_[19-§4 52, each lying over an S2.

In particular, we obtain

W (|[U/H|R)]) =4-(2+3+3)+2-8 =48,
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The inertia Ijy;/(C) — U(C) corresponds to the cover associated with the action of

m1(U(C)) on Hp., which has three connected components, corresponding to the orbits

{(0,00}, {(L,e)}, {(0,e),(1,0)}.

Hence, Ij7/1(C) is the disjoint union of two copies of U(C) and one copy of its K3
cover. In particular,

P*(Iiy ) (C)) = 16 - 2 + 24 = 56.
Thus, the Smith—-Thom inequality (3) is verified.

Example 9.8. Retaining the notation of Example 9.7, we now assume that the image
of the map V(R) — U(R) consists of only three copies of P?(R) and a single S? (such
Enriques surfaces exist by [DIK00Oa, Table 8, p. 180]).

The description of the cover f~}(C) — C remains the same for the connected
components in the image of V(R) — U(R). However, it differs for the connected
components C7 and Cs, which are respectively homeomorphic to S? and P?(R) but are
not in the image. The final configuration is illustrated in Figure 6, where the dark disks

represent copies of P?(R), and the light spheres represent copies of S2.

Figure 6: The morphism |[U/H](R)| — U(R)

To justify this, choose a point g; € C;. Since g; is not in the image of V(R) — U(R),

the action of G on V, . is nontrivial. Consequently, the image of the section m(¢;) is
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(1,e), implying that G acts on H, . by exchanging the coordinates. In particular,
Hl(Gv qu‘,c) =0

so that f~1(C;) — C; is an isomorphism. As in the previous example, one verifies that

the Smith—Thom inequality holds in this case as well.

10 Variants of the Smith-Thom inequality for stacks

Let X be a real Deligne-Mumford stack. In the previous sections, we studied the topo-
logical space |X(R)| and proposed a conjectural bound on the sum of its Betti numbers.
While we believe this to be the most compelling problem related to X' (as understanding
the geometry of real moduli spaces of objects could facilitate the classification of their
topological types), other interesting directions remain to be explored. In this section,
we investigate two such directions.

First, within the algebraic framework, it is known (see [GF22a]) that if X" is smooth,
the space |X'(R)] is not merely a topological space but also carries additional structure as
a real analytic orbifold. This suggests the natural question of whether a Smith—Thom-
type inequality can be formulated for the orbifold cohomology of |X(R)|. The main
difficulty in doing so is that, in general, the orbifold cohomology H | (]X(RR)|) is nonzero
in arbitrarily high degrees, making it unclear how to extend the conjectural inequality
(3) to this setting. In Section 10.1, we propose a way to address this issue for quotient
stacks by exploiting results of Quillen on equivariant cohomology rings, see [Qui71].

Second, in a more topological direction, it is well known that the classical Smith—Thom
inequality (1) is not specific to real algebraic varieties but applies to any topological
space equipped with an involution o, where X (R) is replaced by the fixed locus of o.
This naturally leads to the question of whether (3) admits a generalization to all topo-
logical groupoids 2~ equipped with an involution. The main challenge in this approach
is identifying a suitable analogue of the fixed locus of the involution, that coincides
with X'(R) when 2 is the topological groupoid with involution associated to a real
DM stack with étale presentation U — X. We explore this question and formulate a

precise conjecture in Section 10.2.

10.1 Orbifold cohomology version of Smith—Thom. Let X be a real smooth
Deligne-Mumford stack. In this case the space |X(R)| can be naturally enriched with
the structure of a real analytic orbifold, see [GF22a, Section 2.2.3|.
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It seems natural to wonder whether the classical Smith-Thom inequality (1) has an
analogue for the orbifold cohomology groups H | (|X(R)|,Z/2) and H! , (|X(R)|,Z/2)

orb
of |[X¥(R)| and |X(C)|. We refer the reader to [MP99] for the generalities on orbifold
cohomology. For the sequel, it will be usefull to recall what is the orbifold cohomology

of a quotient.

Remark 10.1. If a topological orbifold X is obtained as a quotient of a topological
space X by the action of a finite group I", by [MP99, Section 1.3], one has

orb (X, Z/2) = Hp (X, Z/2),

orb

where HL(X,Z/2) is the I'-equivariant cohomology of X.

As already mentioned, in general, the groups H! | (|X(R)|,Z/2) and H , (| X (R)|,Z/2)

can be non-zero for infinitely many 4.

Example 10.2. Let X := Spec(R) and I' := Z/2 viewed as a constant group scheme
over R. By Remark 10.1, one has

orb([[X/2/2)(C)|, Z/2) ~ H'(T', Z/2)

orb

while
o (I[X/Z/2)(R)|, Z/2) ~ H'(T, Z/2) & H'(T', Z/2)

orb

as follows from Remark 10.1 and Theorem 1.5 and [MP99, Section 1.3]. In particular,

they are both non zero every integer ¢ > 0.

Even if it does not make sense to compare the sum of all the dimensions of all the

cohomology groups, one can ask the following vague question.

Question 10.3. Let X be a smooth separated Deligne—Mumford stack over R. Is there
a uniform natural bound on the growth rate of ngib(X(R), Z]2) when i — oo in terms

of the growth rate of H=" (X(C),Z/2), that does not depend on the real model X of X¢ ¢

orb
In this section we do it for quotient stacks, where the orbifold cohomology can be

identified with equivariant cohomology by Remark 10.1.

10.1.1 Quillen’s theorem on Poincaré series. In order to do so, we need to recall a
result of Quillen on the structure of the Poincaré series of equivariant cohomology. Let
I" be a finite group and let X be a topological I'-space such that H®(X,Z/2) is a finite
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dimensional Fae-vector space. By [Qui7l, Corollary 2.2|, the equivariant cohomology

ring Hf (X, Z) is a finitely generated graded [Fa-algebra. Let
i . .
Pp(X)(t) =) _ dimp, (HA(X,Z/2)) - t' € Z[[1]],
=0
the associated Poincaré series. If X is just a point, we write Pr(t) = Pp(X)(t).
Recall from |Qui71, Proposition 2.5, Theorem 7.7| the following theorem.

Theorem 10.4 (Quillen). Let ep(X) :== max,en (3A C T | A (Z/2)" and X4 # ().
Then there exists a polynomial Qr(X)(t) € Z[t] with Qr(X)(1) # 0 such that

(X
Pr(x) () = —2 W ¢ gp)
5 (1 —¢2)
In particular, if a subspace Y C X is stable under the action of a subgroup H C T,

then the rational function

Pr(Y)(t)
Pr(X)(t)

has no pole at 1. Consequently, one obtains a rational number f(1) € Q, and f(1) = 0is

ft) = € Q(¢)

zero if and only if e (Y) < ep(X). Morally, the rational number f(1) can be thought as
the ratio between the total H-equivariant Betti number of Y and the total I'-equivariant
Betti number of X.

10.1.2 An orbifold Smith—Thom conjecture for quotient stacks. Let I' be a finite group
and o: I' — I' an involution; we call such a pair a finite G-group. As usual, define
Z'(G,T) as the set of v € I'(C) such that op(y)-v = e, so that H'(G,T') = Z1(G,T)/ ~
where ~ is the equivalence relation that identifies v1,v2 € I if there exists a 8 € I' such
that 42 = B~ 1y10(8). Choose a set of representative H C Z!(G,T') for this equivalence
relation; we choose H such that e € H. For v € H, define an involution
oy: T =T, 0y(9) =097 "

Let X a quasi-projective variety over R, and I' x X(C) — X (C) a G-equivariant action
of I" on X(C). Recall from Corollary 1.5 that

[X/TIR)| = [ X (R)/T7.

yeH
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By Theorem 10.4, for v € H, the rational function

P,r(X,t) = Pl;;(g(véli)()t()t) € Q(t)

has no pole at 1, and we obtain a rational number P, (X, 1) € Q.
Since the orbifold cohomology of a quotient space, identifies with equivariant coho-
mology (see Remark 10.1), one can ask the following, which make precise Question 10.3

in this setting.

Question 10.5. Let I' = H(C) for a finite group scheme H over R acting on a quasi-
projective variety X over R. Does there exist a natural number C' > 0, independent of
the real model H xgp X — X of the action I x¢ X¢ — X¢, such that

Prv (X5 (R))(t
[y]eHL(G,T) e (G.T) i

Example 10.6. Assume that I acts freely on X (C). Then (X/T')(R) = ]],; X (R)/I'"
by Theorem 1.5, and I'?7 acts freely on X, (R) for each 7. Therefore, in this case,

W (X, (R)/T7) _ P ((X/T)(R))
Z P%F(Xv 1) = Z * = = 7% <1,
L L RX©T) R ((X/T)O)

where the first and the second equality follows from the freeness of the action (see
[Bor60, 3.4, Pag. 54| for the first and Lemma 4.5 for the second), while the third
inequality holds by the classical Smith—-Thom inequality (1).

While Example 10.6 seems to suggest that one could take C' =1 in Question 10.5,

this is not the case, as for example one easily see in Example 10.2, where the ratio is 2.

10.1.3 The zero dimensional case. Assume now that X = Spec(R). In this case, we

can make even more precise Question 10.5, since it is implied by the following.
Question 10.7. Let I be a group and let o: I' — I" be an involution. Do we have

Pro (1)
PF(t) t=1

<} ?

To give a non-trivial example of a finite group for which Question 10.7 has a positive

allSWer, we prove:
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Proposition 10.8. Let I' .= &4 be symmetric group on four letters. Consider I' as a
G-module via the trivial action, where G = Gal(C/R) = Z/2. Then

S opplptyy= Y EmOF g

["/]GHI(G,F) [’Y}GHl(G,F) PF(t) t=1

Proof of Proposition 10.8. First observe that the elements v = e,v2 = (12),7v3 =
(12)(34) form a complete set of representatives of the equivalence classes in H! (G, &4).

In particular

H'(G,64) = 3. (30)

Next observe that
S'=6y 6 =1{e(1,2),(3,4),(12)(34)} ~Z/2 x Z/2 and

S ={e,(12),(34), (12)(34), (13)(24), (14)(23), (1423), (1324)} ~ Ds,

where Dg is the dihedral group with 8 elements.

Next, we compute the Poincaré series of &' for each i = 1,2, 3.
Lemma 10.9. One has the following equalities of rational functions:

1. Ppjaxze = ﬁ;

2. PDS = ﬁ;
_ 1-+¢2
3, P64 — W

Before proving Lemma 10.9, let us show that it implies the Proposition 10.8. From

Lemma 10.9 one deduce that

Pr (t) —1 and Pr: (t) _ 14+t+t2 _ Prvs (t)
Pr(t) Pr(t) 14 ¢2 Pr(t)’

so that, combined with (30), one has

([X/T])  (1+3/2+3/2) 4

h*([X/Tc) 3 37
which what we wanted. We are left to show Lemma 10.9. ]

Proof of Lemma 10.9. Let us recall that if A =, A; is a graded Fp-algebra, we can

consider its Poincaré series

Py(t) = dim(4,),

120
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so that Py (t) = Pg«(n,)(t) for every group N. If f € A is an homogeneous element

of degree d, then
_ Pyp®

PAi(t) = 31
A( ) (1 — td> ’ ( )
In particular if A is freely degenerated by x7 ...z, with x; of degree j;, one has
Pat)= ] _t (32)
(1 — i)

1<i<n
To prove item 1, note that, by the Kunneth-Formula

H*(Z)2 x 7.)2,7,/2) ~ H*(Z/2,7./2) ® H*(Z/2,7,/2) ~ Fsz, |

with x,y of degree 1. Hence item 1 of Lemma 10.9 follows from (32).
By |[Han93, Theorem 5.5],

F2[$, Y, Z]
(z(z +y))

Since z(z + y) is an homogenous element of degree 2, we get

H*(Dg,Z./2) ~ with deg(z) =1, deg(y) = 1,deg(z) = 2.

Prre(Dg /) () = Pryfey, (1 — %) = 1- t)21(1 —y- )= (1 175)2’

where the first equality follows from (31) and the second from (32). This proves item
3 of Lemma 10.9.
By [Nak62, Theorem 4.1]

FQ[xayvz]

xz)

H*(64,2)2) ~ with deg(z) =1, deg(y) = 2,deg(z) = 3.

Since zz is an homogeonous element of degree 4, we get

1 1+¢t2

H*(64a Z/2> = PFQ[:c,y,z] (t)(l_t4) = (1_t4> =

(1—t)(1 —¢2)(1 —t3) (1—t)2(1+t+12)

where the first equality follows from (31) and the second from (32). This finishes the
proof of Lemma 10.9. O

10.2 Smith—Thom inequality for topological groupoids with involution. As
already mentioned, the statement (and the proof) of the Smith-Thom inequality (1.2)

is purely topological, in the sense that it holds for every topological space endowed with
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an involution o, replacing X (R) with the fixed locus of o.
In this section we generalize Conjecture 1.2 from real algebraic stack to more general
topological stack endowed with an involution, which we see as an analogous to move

from algebraic varieties to topological spaces.

10.2.1 Topological groupoids. Recall that a topological groupoid is a groupoid object
in the category of topological spaces. Explicitly, a topological groupoid 2" = [X; =
Xo] consist of two topological spaces, X (the space of objects) and X; (the space of
arrows), and a collection of continuous maps s: X; — Xy (source), t: X; — X (target),
c: Xi xx, X1 — Xj (composition), e: Xo — X; (unit) and i: X; — X, (inversion).
These maps satisy a number of conditions to ensure that one obtains a groupoid by
letting Xy be the set of objects, X; the set of arrows, s(f) and ¢(f) the source and
target of an arrow f € X1, ¢(f,g) = fog the composition of arrows f,g € X3, e(x) the

identity  — z of an object = € U and i(f) = f~! the inverse of an arrow f.

Example 10.10. Every complex Deligne-Mumford stack gives rise to a topological
groupoid in the following way. Let X be a complex Deligne-Mumford stack, so that
there exists an étale surjective presentation 7: U — X by a scheme. Let R be a scheme
with R =2 U x x U, so that the two projection maps U Xy U — U yield two maps R — U
that turn [R = U] into a groupoid scheme. Then 2" = [R(C) = U(C)] is a topological
groupoid. Moreover, any r € R(C) corresponds to an element (z,y,a) € (U xx U)(C)

consisting of z,y € U(C) and an isomorphism a: m(z) — n(y). Consider the functor

F: 2 — X(C)

~

that sends x € U(C) to m(z) € X(C) and r = (x,y, ) to the isomorphism «a: m(x) —
7(y). Then F: 2" — X(C) is an equivalence of categories.

10.2.2 Topological groupoids with involution. Let 2~ = [X; = Xp] be a topological
groupoid. An involution o: 2 — Z consists of involutions o: X7 — X7 and 0: Xy —
Xp that are compatible with s,¢ and all the other structure maps of the topological
groupoid. Every real DM stack give rise to a topological groupoid involution (27, ) in

the following way.

Example 10.11. Let X be a real DM stack, and choose a scheme U over R and an
étale surjective morphism U — X. Let R be a scheme with R = U Xy U, so that
we get a groupoid scheme [R = U], see Example 10.10. Since U and R are schemes
locally of finite type over R, U(C) and R(C) admit natural anti-holomorphic involutions

56



0:U(C) - U(C) and o: R(C) — R(C), compatible with the structure maps of the
groupoid. Hence [R(C) == U(C)] is a topological groupoid with involution.

10.2.3 Fized locus of an involution. Let 2" = [X; = Xo] be a topological groupoid
and assume that 2" is equipped with an involution o: 2~ — 2. Thus, o corresponds
to involutions o: X; — X and o: Xy — X that are compatible with the structure
maps of the topological groupoid.

We now proceed defining the correct analogue of the fixed point of o, in a way
that, in the setting of Example 10.11 recovers the topological space |2 (R)|. Define
Ob(Z7) C Xo x X; as the subspace of pairs (z,¢) € Xy x X7 such that ¢ is an
isomorphism z — o(z) with o(p) o » = id. Then Ob(Z277) is the set of objects of
a topological groupoid 2°7, whose arrows between (x,p) € Ob(Z7) and (y,v) €
Ob(Z°7) are given by isomorphisms f: x — y in X7 such that ¢ o f = o(f) o .

Definition 10.12. Define | 27| = Ob(%£7)/~ and equip it with the quotient topology.

Example 10.13. Let 2" = [R(C) =2 U(C)] be the topological groupoid with involution
associated to a real Deligne-Mumford stack X = [U/R] as in Examples 10.10 and 10.11.
Recall that any r € R(C) = (U xx U) (C) corresponds to a triple r = (x,y, ) with
z,y € U(C) and a: w(x) = =(y) an isomorphism, where 7 is the map U — X.
We have Ob(Z277) = {w = (2, (z,0(x),¢)) € U(C) x R(C) | o(¢) o p =id}. For such
w = (x,(z,0(x),9)), we get an element 7(z) € X(C) and an isomorphism ¢: 7(x) =
m(o(x)) such that o(¢) o ¢ = id. By Galois descent (cf. |[Gro60]), this yields an object
F(w) € X(R). Similarly, any arrow f: w — «’ in 27 is given by an arrow f =
(z,2',a) € R(C) such that ¢’ o« = o(«) o ¢ as maps w(x) — m(o(2')), and this yields
an arrow F(f): F(w) — F(«') in X(R), again by Galois descent. The resulting functor

F: 27— X(R)

is an equivalence of categories. In particular, we get a bijection |F|: |27 = |X(R).

Let X be a separated Deligne-Mumford stack of finite type over R. Choose a
surjective étale morphism U — X where U is a scheme, and let R be a scheme with
R=U xx U. Let 2 be the topological groupoid [R(C) = U(C)| equipped with its

natural involution o: 2" — 2 .

Lemma 10.14. Consider the natural bijection |F|: |27 — |X(R)|, see Ezample
10.13. Consider |2°°| as a topological space via Definition 10.12, and consider |X (R)]

as a topological space via Definition 4.3. Then the bijection |F| is a homeomorphism.
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Proof. By taking fibre products, one reduces to the case where U(R) — |X'(R)] is surjec-
tive (cf. Theorem 4.2). We consider the canonical continuous map U(R) — Ob(Z7) C
U(C) x R(C) defined by sending = € U(R) to (z,id); indeed, since o(z) = =, the iden-
tity defines an isomorphism ¢: 7w(x) — w(o(z)) with o(¢) o ¢ = id. The composition
U(R) — Ob(277) — Ob(Z'7) )~ = | 27| is surjective and closed, and factors through
a homeomorphism U(R)/R(R) = | 27|, proving the lemma. O

10.2.4 A Smith—Thom conjecture for topological groupoids. Let 15 = [Y1 = Yp] be the
inertia groupoid of 27, so that Yj is the space of (x,¢) € Xy x X; with ¢ € Aut(x),
and Y7 is the space of isomorphisms (z,¢) — (y, ) for (z, ), (y,%) € Yy. Let |I4| be
the set of isomorphism classes of objects in Yj.

We can now state a Smith—Thom conjecture for topological groupoids, which, by

Examples 10.11 and 10.13 and Lemma 10.14, generalizes Conjecture 1.2.

Conjecture 10.15. Let 2" = [X1 = Xo| be a topological groupoid with finite stabilizer
groups, equipped with an involution o: X — 2. Assume that | Z°°| and |14 | have

finite dimensional Z/2-cohomology. Then, we have:

dimH*(|2°7|,Z/2) < dim H*(

Iy|,Z/2).
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