DEFORMATIONS OF SINGULARITIES

OLIVIER DE GAAY FORTMAN, NOVEMBER 25, 2020

1. INTRODUCTION

This note is written with the goal of presenting some interesting and important results in the theory of deformations of singularities. The references we use are [Har10] and [Sta18].

- We define the Schlessinger-Lichtenbaum complex [LS67] and show that it coincides with the truncation of the cotangent complex at the -2 level (Theorem 4.1).
- Using the cotangent complex of a morphism of rings, one defines T^i functors for any $i \in \mathbb{Z}_{\geq 0}$ (Definition 5.1); these extend T^0, T^1, T^2 as defined in [LS67] because of (1).
- Recall the following:

Theorem 1.1. [EGA, IV, Ch. 0, §20] Let $A \to B$ and $B \to C$ be morphisms of rings, and let M be a C-module. There is a canonical exact sequence of A-modules

 $0 \to \operatorname{Der}_B(C, M) \to \operatorname{Der}_A(C, M) \to \operatorname{Der}_A(B, M) \to \operatorname{Exal}_B(C, M) \to \operatorname{Exal}_A(C, M) \to \operatorname{Exal}_A(B, M)$

which is functorial in M.

Now for any morphism of rings $A \to B$ and any *B*-module *M*, one has $T^0(B/A, M) = \text{Der}_A(B, M)$ and $T^1(B/A, M) = \text{Exal}_A(B, M)$ (Proposition 5.2). Moreover, the exact sequence of Theorem 1.1 extends to an infinite exact sequence of *A*-modules

$$0 \to \operatorname{Der}_B(C, M) \to \operatorname{Der}_A(C, M) \to \operatorname{Der}_A(B, M) \to \operatorname{Exal}_B(C, M) \to \operatorname{Exal}_A(C, M) \to \operatorname{Exal}_A(B, M) \to T^2(C/B, M) \to T^2(C/A, M) \to T^2(B/A, M) \to T^3(C/B, M) \to T^3(C/A, M) \to T^3(B/A, M) \to \dots$$

- Similarly, for a ring map $A \to B$, any short exact sequence of *B*-modules $M' \to M \to M''$ induces an infinite long exact sequence of *B*-modules (Theorem 5.3)

$$\dots \to T^{i-1}(B/A, M'') \to T^i(B/A, M') \to T^i(B/A, M) \to T^i(B/A, M'') \to T^{i+1}(B/A, M') \dots$$

- We recall the definition of the cotangent complex of a morphism of schemes in Section 6 and present the result that a flat morphism of finite type between noetherian schemes is smooth if and only if \mathcal{T}^1 vanishes on coherent sheaves, and a relative local complete intersection if and only if \mathcal{T}^2 vanishes on coherent sheaves (Theorem 6.1).
- We prove that deformations of an affine scheme X = Spec B over a field k are parametrised by $T^1(B/k, B)$ (Theorem 7.1). If X is finite over k then the dimension of this deformation space is finite.
- We apply the theory to calculate the deformation space of the cusp, the ordinary double point on a surface and the cone over the Veronese surface (Examples 7.2).

2. Summary of previous results

Notation 1. In this note, k is a field and $D = k[t]/(t^2) = k[\epsilon]$ is the algebra of dual numbers.

Let us recall what we have seen so far.

(1) In Wouter's talk we have seen deformation of subschemes and coherent sheaves: if $Y \subseteq X$ is a closed subscheme of a scheme X over k, then

$$\operatorname{Def}_{Y/X}(D) \cong H^0(Y, \mathcal{N}_{Y/X}),$$

and \mathcal{F} a coherent sheaf on X, then

$$\operatorname{Def}_{\mathcal{F}}(D) \cong \operatorname{Ext}^1(\mathcal{F}, \mathcal{F}).$$

(2) Dirk showed that if k is algebraically closed, and X a nonsingular algebraic variety over k, then

$$\operatorname{Def}_X(D) \cong H^1(X, \mathcal{T}_X).$$

In particular, nonsingular affine algebraic varieties over k are rigid.

(3) Still assume k to be algebraically closed. Renjie proved under what conditions deformations over local artin algebras lift: suppose that $0 \to I \to B \to A \to 0$ is a small extension in Art_k , X a nonsingular algebraic variety over $k, \xi = (\mathcal{X}, i)$ a deformation of X over A. There exists a function

$$\mathcal{O}_{-}(e) : \operatorname{Def}_X(A) \to H^2(X, \mathcal{T}_X \otimes I)$$

such that $\mathcal{O}_{\xi}(e) = 0$ if and only if the deformation ξ of X to A over k lifts to a deformation of ξ to B over A. If $\mathcal{O}_{\xi}(e) = 0$ then the set of liftings is a torsor under $H^1(X, \mathcal{T}_X \otimes I)$. This generalises (2). Renjie also proved that a quotient ring R of a regular local ring P with kernel $J \subset M_P^2$ admits a tangent-obstruction (T-O) theory, and that the local Hilbert functor and the deformation functor of the projective line are pro-representable.

- (4) Let k be algebraically closed. Mike showed that a deformation functor $F : \operatorname{Art}_k :\to$ Set is pro-representable if and only if it satisfies Schlessinger's criteria.
- (5) Let k be algebraically closed. Kees proved a couple of nice results: first of all, any deformation functor F : Art_k → Set with T-O theory satisfies Schlessinger's Criterion. Next, he generalised Wouter's result on deformations on closed subschemes: consider a small extension 0 → I → B → A → 0, closed subscheme Y₀ ⊂ X_{0/k}, Y ⊂ X_{/A} deformation of Y₀ ⊂ X₀ over k, X'_B a deformation of X over A. Then Def_{Y/X,X'}(B/A) is a pseudo-torsor under H⁰(Y₀, N_{Y0/X0} ⊗ I), and if Y' exists locally, then there exists an element α ∈ H¹(Y₀, N⊗I) such that α = 0 if and only if Y' exists globally. This generalises (1). We also saw that the embedded deformation functor H_{Y0/X0} has T-0 theory with T_i = Hⁱ⁻¹(Y₀, N_{Y0/X0}). Smooth schemes admit T-O theory: if X₀ → Spec k is smooth, then Def_{X0} has T-O theory with T_i = Hⁱ(X₀, T_{X0}). Kees showed that a natural transformation F between deformation functors with T-O theory induces morphisms between tangent and obstruction spaces. These morphisms are surjective resp. injective if and only if F is smooth. The forgetful functor H_{Y0/X0} → Def_{Y0} is smooth if X₀ and Y₀ are smooth.

- (6) Emelie outlined some results on deformations of morphisms. For $i \in \{1, 2\}$, let $(\mathbb{A}_i : 0 \to I_i \to A'_i \to A_i \to 0) \in \operatorname{Exal}_{\mathbb{Z}}(A_i, I_i)$. For each i, consider $(\mathbb{B}_i : 0 \to N_i \to B'_i \to B_i \to 0) \in \operatorname{Exal}_{\mathbb{Z}}(B_i, N_i)$ and let $\mathbb{A}_1 \to \mathbb{A}_2$, $\mathbb{A}_i \to \mathbb{B}_i$, $i \in \{1, 2\}$ be morphisms of exact sequences. Consider morphisms $N_1 \to N_2$ and $B_1 \to B_2$ making everything commute. There exists a canonically defined element $\mathcal{O}(B'_1, B'_2) \in \operatorname{Ext}^1_{B_1}(\operatorname{NL}_{B_1/A_1}, N_2)$ such that $\mathcal{O}(B'_1, B'_2) = 0$ if and only if there exists a morphism $B'_1 \to B'_2$ making everything commute. The set of all $B'_1 \to B'_2$ as is a pseudo-torsor under $\operatorname{Hom}_{B_1}(\Omega_{B_1/A_1}, N_2)$.
- (7) Without defining the cotangent complex of a morphism of rings $A \rightarrow B$, Maciek showed what properties such a functor $\mathbb{L}_{-/A}$: Alg_A $\rightarrow D(A)$ with $\mathbb{L}_{B/A} \in D(B)$ for all $B \in Alg_A$ is supposed to have. Let B_0/k be an algebra and $0 \to I \to A' \to A \to 0$ a small extension in Art_k. Assume B/A is flat and $B \otimes_A k = B_0$. Then there exists a class $\eta_B \in \text{Ext}^2(L_{B_0/k}, B_0) \otimes_k I$ whose vanishing is necessary and sufficient for the existence of a lifting B'/A' satisfying $B' \otimes_{A'} A \cong B$. Moreover, the set of such liftings is a pseudo-torsor under $\operatorname{Ext}^{1}(L_{B_{0}/k}, B_{0}) \otimes_{k} I$. Then Maciek proved that for any perfect algebra k over \mathbb{F}_p and any $n \ge 1$, the \mathbb{Z}/p^n -algebra of Witt vectors $W_n(k)$ exists. Moreover, for any perfect algebra k over \mathbb{F}_p , $L_{\mathbb{F}_p/k} = 0$. Some other properties of the cotangent complex: $L_{S^{-1}A/A} = 0$ for multiplicative subsets $S \subset A$; if $A \to B$ smooth then $L_{B/A} = \Omega^1_{B/A}[0]$ (hence zero for $A \to B$ étale); $L_{B/A}$ commutes with flat base change; if $A \to B$ surjective with kernel generated by a regular sequence then $L_{B/A}$ is quasi-isomorphic to $I/I^2[1]$; for a local complete intersection $A \to B$, $\mathbb{L}_{B/A}$ is a perfect complex supported in degrees [-1,0]. Then Maciek lifted deformations of quotients by groups: if $X \to Y$ is the geometric quotient of scheme X by a free action of an abstract group G, then for any deformation Y of Y there exists a deformation X of X and a free group action on X such that X/G = Y. Finally, Maciek gave a condition to be a local complete intersection morphism: for a morphism of rings $R \to S$, the following is true: if S has a finite resolution by flat R-modules and the cotangent complex $L_{S/R}$ is quasi-isomorphic to a bounded complex of flat S-modules, then $R \to S$ is a local complete intersection.
- (8) Lenny gave a construction of the cotangent complex. Before doing so, he recalled some of the properties of the cotangent complex of a ring map $R \to A$: one has $H^0(\mathbb{L}_{A/R}) = \Omega^1_{A/R}$; if A/R is smooth, then $\mathbb{L}_{A/R} = \Omega^1_{A/R}[0]$; $\operatorname{Hom}_A(\mathbb{L}_{A/R}, M) =$ $\operatorname{Der}_R(A, M)$; one has $\operatorname{Ext}^1_A(\mathbb{L}_{A/R}, M) = \operatorname{Exal}_R(A, M)$; for $R \to A \to B$ ring maps, we have a distinguished triangle

$$\mathbb{L}_{A/R} \otimes^{\mathbf{L}}_{A} B \to \mathbb{L}_{B/R} \to \mathbb{L}_{B/A} \to \mathbb{L}_{A/R} \otimes^{\mathbf{L}}_{A} B[1]$$

in $D^{\leq 0}(B)$; we have $\tau_{\geq -1} \mathbb{L}_{A/R} = \mathrm{NL}_{A/R}$, the naive cotangent complex; and $\mathbb{L}_{A/R}$ can be computed using a smooth resolution. The proof of existence goes as follows. It can be shown that for any *R*-algebra *A*, a free simplicial resolution $P_{\bullet} \to A$ exists in Mod_R - in fact, there exists a *canonical* free simplicial resolution $P_{\bullet} \to A$. This defines a functor

$$\operatorname{Alg}_R \to \operatorname{hoSimp}(\operatorname{Alg}_R), A \mapsto P_{\bullet}.$$

We can then simply define the functor $\mathbb{L}_{-/R}$ to be the composition

(1)
$$\operatorname{Alg}_R \xrightarrow{A \mapsto P_{\bullet}} \operatorname{hoSimp}(\operatorname{Alg}_R) \xrightarrow{\Omega_{-/R}} \operatorname{hoSimp}(\operatorname{Mod}_R) \xrightarrow{\operatorname{Dold-Kan}} \operatorname{hoCh}_{\leqslant 0}(\operatorname{Mod}_R) \to D_{\geqslant 0}(R)$$

and observe that, for any A in Alg_R , $\mathbb{L}_{A/R}$ lands in $D_{\geq 0}(A)$ because $\Omega_{P_{\bullet}/R}$ is a P_{\bullet} -module and $P_{\bullet} \to A$ a quasi-isomorphism.

Our interest is the deformation of singularities, and for this we will need some of the above results. Let us rephrase them as follows.

Theorem 2.1. For a ring A, there is a functor $\mathbb{L}_{-/A}$: Alg_A $\rightarrow D_{\geq 0}(A)$ such that $\mathbb{L}_{B/A} \in Ob(D_{\geq 0}(B))$ for any A-algebra B, and such that moreover

- (1) if A/R is smooth, then $\mathbb{L}_{A/R} = \Omega^1_{A/R}[0]$,
- (2) in general, $H^0(\mathbb{L}_{A/R}) = \Omega^1_{A/R}$, which implies that
- (3) $\operatorname{Hom}_{A}(\mathbb{L}_{A/R}, M) = \operatorname{Der}_{R}(A, M),$
- (4) $\operatorname{Ext}^{1}_{A}(\mathbb{L}_{A/R}, M) = \operatorname{Exal}_{R}(A, M),$
- (5) for $R \to A \to B$ ring maps, we have a distinguished triangle

$$\mathbb{L}_{A/R} \otimes^{\mathbf{L}}_{A} B \to \mathbb{L}_{B/R} \to \mathbb{L}_{B/A} \to \mathbb{L}_{A/R} \otimes^{\mathbf{L}}_{A} B[1]$$

in $D^{\leq 0}(B)$, (6) $\tau_{\geq -1} \mathbb{L}_{A/R} = \mathrm{NL}_{A/R}$.

Remark 2.2. Recall that, for any A-algebra B, a free simplicial resolution $P_{\bullet} \to B$ is a simplicial object $P_{\bullet} \in \text{ObSimp}(\text{Alg}_R)$ with each P_i a free polynomial R-algebra together with an augmentation map $P_0 \to B$ of A-algebras such that

$$\cdots \to P_2 \to P_1 \to P_0 \to A \to 0$$

is exact in Mod_R. There is a canonical free simplicial resolution $P_{\bullet} \to B$ giving Alg_A \to Simp(Alg_A) and so we can define the *cotangent complex* $\mathbb{L}_{B/A}$ of the ring map $A \to B$ as an actual cochain complex $\mathbb{L}_{B/A}$ of B-modules (and not just its image in $D^{\leq 0}(B)$).

Remark 2.3. In D(B), we have the identification

$$\mathbb{L}_{B/A} = \operatorname{Comp}(\Omega_{P_{\bullet}/A} \otimes_{P_{\bullet}} B) \quad \in \operatorname{ObComp}(\operatorname{Mod}_B)$$

where $\operatorname{Comp}(M_{\bullet})$ means taking the cochain complex attached to a simplicial *B*-module M_{\bullet} . In the sequel we shall just write $\Omega_{P_{\bullet}/A} \otimes_{P_{\bullet}} B$ when we mean the complex associated to the simplicial *B*-module $\Omega_{P_{\bullet}/A} \otimes_{P_{\bullet}} B$.

Remark 2.4. For any free resolution $P'_{\bullet} \to B$ we have a canonical isomorphism

$$\mathbb{L}_{B/A} = \Omega_{P'_{\bullet}/A} \otimes_{P'_{\bullet}} B$$

in D(B) [Sta18, Tag 08QI].

3. The Schlessinger-Lichtenbaum Complex

Let $A \to B$ be a morphism of rings. In [LS67] there is an explicit determination of $\tau_{\geq -2} \mathbb{L}_{B/A}$ which is used in calculations of versal deformation spaces of singularities. The construction is as follows.

Choose a polynomial ring P = A[X] on a set X such that B is the quotient of R as an A-algebra. Let I be the ideal defining B, choose generators f_t for I indexed by a set T so that there is a free P-module $F = \bigoplus_{t \in T} P$ and a surjection $j : F \to I$ mapping e_t to f_t . Let $Q \subset F$ be the kernel of j. Let $F_0 \subset Q$ be the submodule of relations of the form j(a)b-j(b)a with $a, b \in F$. Define

$$L_2 := Q/F_0, L_1 := F \otimes_P B = F/IF, L_0 := \Omega_{P/A} \otimes_P B$$

and the maps between them be defined as in the following diagram, where all rows are exact,

Lemma 3.1. Up to canonical isomorphism, the object $L = L_{R,F} \in ObD(B)$ attached to the complex $L_{\bullet} = (Q/F_0 \to F \otimes_P B \to \Omega_{P/A} \otimes_P B)$ does not depend on the choice of P and F.

Proof. Either by direct calculation [Har10, Lemma's 3.2 & 3.3] - i.e. fix P and consider $F \to I, F' \to I$, take $F \oplus F'$, change its basis and show that $L_{P,F \oplus F'}$ and $L_{P,F}$ differ by a direct summand with a free complex hence $L_{P,F} \in D(B)$ does not depend on F, then do something similar for $P \to B, P' \to B$ - or use Theorem 4.1 below!

4. Comparison with the Cotangent Complex

Theorem 4.1. There is a canonical map

$$\mathbb{L}_{B/A} \to L$$

in D(A) which induces an isomorphism $\tau_{\geq -2} \mathbb{L}_{B/A} \xrightarrow{\sim} L$ in D(B).

Proof. Let $P_{\bullet} \to B$ be a free simplicial resolution of B over A. Identify $\mathbb{L}_{B/A}$ with $\Omega_{P_{\bullet}} \otimes_{P_{\bullet}} B$ (see Remark 2.2). Our aim is to define morphisms

 $\Omega_{P_0/A} \otimes_{P_0} B \to \Omega_{P/A} \otimes_{P} B, \quad \Omega_{P_1/A} \otimes_{P_1} B \to F \otimes_{P} B, \quad \Omega_{P_2/A} \otimes_{P_2} B \to Q/F_0$

that make Diagram (3) commute and check that the morphisms $H_0(\mathbb{L}_{B/A}) \to H_0(L)$, $H_1(\mathbb{L}_{B/A}) \to H_1(L)$ and $H_2(\mathbb{L}_{B/A}) \to H_2(L)$ which are induces by the so obtained morphism of complexes $\mathbb{L}_{B/A} \to L$ are isomorphisms.

Step 1: Biderivations

Definition 4.2. Let $A \to B$ be a ring map. Let M be a (B, B)-bimodule over A. An A-biderivation is an A-linear map $\lambda : B \to M$ such that $\lambda(xy) = x\lambda(y) + \lambda(x)y$.

Lemma 4.3. Let P = A[S] be a polynomial ring over A. Let M be a (P, P)-bimodule over A. Then the function

$$\operatorname{BiDer}_A(P, M) \to \operatorname{Hom}_{\operatorname{Set}}(S, M), \quad \lambda \mapsto \lambda|_S$$

is bijective.

Proof. The inverse is defined on products of generators by

$$f \mapsto [s_1 \dots s_t \mapsto \sum_{i=1}^t s_1 \dots s_{i-1} f(s_i) s_i \dots s_t].$$

Write $P_1 = A[S]$ for some set S. Consider the diagram

For any $s \in S$, we may write

$$\psi(d_0(s) - d_1(s)) = \sum_{t \in T} p_{s,t} f_t \quad \in I$$

for elements $p_{s,t} \in P$ infinitely many of which are zero; choose such $p_{s,t}$ for every $s \in S$ which gives a function $S \to F, s \mapsto (p_{s,t})_{t \in T}$. But the maps

$$(\psi \circ d_0, \psi \circ d_1) : P_1 \rightrightarrows P_0 \to P \subset F$$

define a (P_1, P_1) -bimodule structure on $F = \bigoplus_{t \in T} P$, P = A[S], hence by Lemma 4.3 there is a unique biderivation $\lambda : P_1 \to F$ such that $\lambda(s) = (p_{s,t})_t$. We obtain the following diagram:

Note that $\psi \circ (d_0 - d_1) = i \circ j \circ \lambda$ by Lemma 4.3, because both maps are biderivations and they agree on $S \subset P_1$.

Step 2: Map in degree 0

Our map of A-modules $\psi : P_0 \to P$ induces a map $d\psi : \Omega_{P_0} \otimes_{P_0} P \to \Omega_{P/A}$ of P-modules hence a map

$$d\psi \otimes 1 : \Omega_{P_0/A} \otimes_{P_0} B \to \Omega_{P/A} \otimes_P B$$

of B-modules.

(2)

Step 3: Map in degree 1

From Diagram (2) we see that there is a map $P_1 \to F \otimes_P B$ which is a priori an A-biderivation, but since the (P_1, P_1) -bimodule structure over A on $F \otimes_P B$ is induced by its B-module structure and the maps $P_1 \rightrightarrows P_0 \to B$ which agree because $P_1 \xrightarrow{d_0-d_1} P_0 \to B$ is exact, it follows that the two P_1 -module structures on B over $F \otimes_P B$ agree, and therefore the (P_1, P_1) bimodule structure on $F \otimes_P B$ over A is just a P_1 -module structure. This implies that the A-biderivation $P_1 \to F \to F \otimes_P B$ is a usual A-derivation, corresponding to a morphism of P_1 -modules $\Omega_{P_1/A} \to F \otimes_P B$ inducing a morphism of B-modules

$$\Omega_{P_1/A} \otimes_{P_1} B \to F \otimes_P B.$$

Step 3: Map in degree 2

Diagram (2) shows that $\lambda(d_0 - d_1 + d_2)(P_2) \subset Q$ because

$$j \circ \lambda \circ (d_0 - d_1 + d_2) = \psi \circ (d_0 - d_1) \circ (d_0 - d_1 + d_2) = \psi \circ 0 = 0.$$

On the other hand, we have seen that Q/F_0 is a *B*-module, hence a P_2 -module via an arrow $P_2 \rightarrow B$ defined by one of the arrows in the composite

$$P_2 \rightrightarrows P_1 \rightrightarrows P_0 \xrightarrow{\epsilon} B_1$$

Indeed, one can calculate, using the relations between the $d_i \circ d_j$, that no matter what composite you choose above, the arrow $P_2 \rightarrow B$ is the same. Now consider the map

$$P_2 \xrightarrow{\lambda \circ (d_0 - d_1 + d_2)} Q \to Q/F_0.$$

For $f, g \in P_2$, we have

$$\begin{aligned} \lambda(d_0 - d_1 + d_2)(fg) &= \lambda d_0(f) d_0(g) - \lambda d_1(f) d_1(g) + \lambda d_2(f) d_2(g) \\ &= d_0(f) \cdot \lambda(d_0(g)) + \lambda(d_0(f)) \cdot d_0(g) - d_1(f) \cdot \lambda(d_1(g)) - \lambda(d_1(f)) \cdot d_1(g) + d_2(f) \cdot \lambda(d_2(g)) + \lambda(d_2(f)) \cdot d_2(g) \\ &= f \cdot \lambda(d_0(g)) + g \cdot \lambda(d_0(f)) - f \cdot \lambda(d_1(g)) - g \cdot \lambda(d_1(f)) + f \cdot \lambda(d_2(g)) + g \cdot \lambda(d_2(f)) \\ &= f(\lambda(d_0(g) - d_1(g) + d_2(g))) + g(\lambda(d_0(f) - d_1(f) + d_2(f))) \mod F_0. \end{aligned}$$

In other words, our A-linear map $P_2 \to Q/F_0$ is an A-derivation for the P_2 -module structure on Q/F_0 . This implies that we obtain a P_2 linear map $\Omega_{P_2/A} \to Q/F_0$ hence a B-linear map

$$\Omega_{P_2/A} \otimes_{P_2} B \to Q/F_0.$$

Step 4: Morphism of complexes

The result is the following diagram:

We leave it to the reader to verify it commutes. The fact that this induces $H_0(\mathbb{L}_{B/A}) \xrightarrow{\sim} H_0(L)$ and $H_1(\mathbb{L}_{B/A}) \xrightarrow{\sim} H_1(L)$ is not difficult and follows from the identification of $\tau_{\geq -1} \mathbb{L}_{B/A}$ with the naive cotangent complex $\mathrm{NL}_{B/A}$ (Theorem 2.1.(6)) which is $(I/I^2 \to \Omega_{P/A} \otimes_P B)$ [Sta18, Tag 00S1]. The isomorphism $H_2(\mathbb{L}_{B/A}) \xrightarrow{\sim} H_2(L)$ is [And74, p. 206, Proposition 12]. \Box

5. The T^i functors

Next we write $\mathbb{L}_{\bullet} = \mathbb{L}_{B/A} = \Omega_{P_{\bullet}/A} \otimes_{P_{\bullet}} B$ and consider it as a cochain complex of *B*-modules. **Definition 5.1.** We define a functor

$$T^{i}(B/A, -) : \operatorname{Mod}_{B} \to \operatorname{Comp}(\operatorname{Mod}_{B}) \to \operatorname{Mod}_{B}$$
$$M \mapsto \operatorname{Hom}_{B}(\mathbb{L}_{\bullet}, M) \mapsto H^{i}(\operatorname{Hom}_{B}(\mathbb{L}_{\bullet}, M)) =: T^{i}(B/A, M).$$

Proposition 5.2. Let $A \to B$ be a ring map with kernel $I \subset A$, and let M be a B-module.

- (1) We have $T^0(B/A, M) = \operatorname{Hom}_B(\Omega_{B/A}, M) = \operatorname{Der}_A(B, M)$. In particular, $T^0(B/A, B) = T_{B/A}$, the tangent module of B/A.
- (2) We have $T^1(B/A, M) = \operatorname{Exal}_A(B, M)$, the isomorphism classes of extensions of B by M as A-algebras.
- (3) If $A \to B$ is surjective, then $T^0(B/A, M) = 0$ and $T^1(B/A, M) = \operatorname{Hom}_B(I/I^2, M)$. In particular, $T^1(B/A, B) = \operatorname{Hom}_B(I/I^2, B) = N_{B/A}$, the normal bundle of B/A.
- (4) If A is noetherian, $A \to B$ of finite type, and M a finite B-module, then $H^i(\mathbb{L}_{B/A})$ and $T^i(B/A, M)$ are finite B-modules.
- *Proof.* (1) We have $\text{Der}_A(B, M) = \text{Hom}_B(\mathbb{L}_{B/A}, M)$ by Theorem 2.1.(3). But then $\text{Hom}_B(\mathbb{L}_{B/A}, M) =$

$$\{f: \mathbb{L}_0 \to M: (\mathbb{L}_1 \xrightarrow{d_0 - d_1} \mathbb{L}_0 \xrightarrow{f} M) = 0\} = \operatorname{Ker}(\operatorname{Hom}_B(\mathbb{L}_0, M) \to \operatorname{Hom}_B(\mathbb{L}_1, M)) = T^0(B/A, M)$$

- (2) We have $\operatorname{Exal}_A(B, M) = \operatorname{Ext}_B^1(\mathbb{L}_{B/A}, M)$ by Theorem 2.1.(4). Hence $\operatorname{Exal}_A(B, M) = \operatorname{Ext}_B^1(\mathbb{L}_{B/A}, M) = \operatorname{Hom}_{D(B)}(\mathbb{L}_{B/A}, M[1]) = T^1(B/A, M).$
- (3) In this case we use Theorem 4.1 and take the Schlessinger-Lichtenbaum exact sequence L_{\bullet} , for which we can take P = A so that $L_0 = \Omega_{P/A} \otimes_P B = 0$, hence $T^0(B/A, M) = 0$. Moreover, tensoring the exact sequence of P = A-modules

$$0 \to Q \to F \to I \to 0$$

with B gives a diagram for which the horizontal row is exact:

$$\begin{array}{ccc} Q \otimes_A B \longrightarrow L_1 = F \otimes_A B \longrightarrow I/I^2 \longrightarrow 0. \\ & & \downarrow \\ L_2 = Q/F_0 \end{array}$$

This shows that

$$0 \to \operatorname{Hom}_B(I/I^2, M) \to \operatorname{Hom}_B(L_1, M) \to \operatorname{Hom}_B(L_2, M)$$

is exact.

(4) See [Sta18, Tag 08PZ] and [Har10, Remark 3.10.1].

Theorem 5.3. Let $A \to B$ be a morphism of rings. Then $T^i(B/A, -) : \operatorname{Mod}_B \to \operatorname{Mod}_B$ is an additive functor, and if

$$0 \to M' \to M \to M'' \to 0$$

is a short exact sequence of B-modules, then there is a long exact sequence of B-modules

$$0 \to \operatorname{Der}_A(B, M') \to \operatorname{Der}_A(B, M) \to \operatorname{Der}_A(B, M'') \to$$

$$\to \operatorname{Exal}_A(B, M') \to \operatorname{Exal}_A(B, M) \to \operatorname{Exal}_A(B, M'') \to$$

$$\to T^2(B/A, M') \to T^2(B/A, M) \to T^2(B/A, M'') \to \dots$$

Proof. By construction the $T^i(B/A, -)$ are additive, and given a short exact sequence as above, since all the $\Omega_{P_n/A} \otimes_{P_n} B$ are free *B*-modules (Remark 2.2), we get an exact sequence of complexes

$$0 \to \operatorname{Hom}_B(\mathbb{L}_{\bullet}, M') \to \operatorname{Hom}_B(\mathbb{L}_{\bullet}, M) \to \operatorname{Hom}_B(\mathbb{L}_{\bullet}, M'') \to 0.$$

Taking cohomology yields the desired long exact sequence, using the snake lemma for the connecting morphism, and Proposition 5.2 for the identification of $T^0(B/A, -)$ with $\text{Der}_A(B, -)$ and $T^1(B/A, -)$ with $\text{Exal}_A(B, -)$.

Theorem 5.4. Let $A \to B \to C$ be ring homomorphisms, and let M be a C-module. Then there is an exact sequence of C-modules

$$0 \to \operatorname{Der}_B(C, M) \to \operatorname{Der}_A(C, M) \to \operatorname{Der}_A(B, M) \to$$

$$\to \operatorname{Exal}_B(C, M) \to \operatorname{Exal}_A(C, M) \to \operatorname{Exal}_A(B, M) \to$$

$$\to T^2(C/B, M) \to T^2(C/A, M) \to T^2(B/A, M) \to \dots$$

Proof. This simply follows from Proposition 5.2, the distinguished triangle

$$\mathbb{L}_{B/A} \otimes_B^{\mathbf{L}} C \to \mathbb{L}_{C/A} \to \mathbb{L}_{C/B} \to \mathbb{L}_{B/A} \otimes_B^{\mathbf{L}} C[1]$$

in $D_{\geq 0}(C)$ and the fact that for any triangulated category (\mathcal{T}, T) , abelian category \mathcal{A} and cohomological functor $H: \mathcal{T} \to \mathcal{A}$, if $X \to Y \to Z \to TX$ is a distinguished triangle in \mathcal{T} , then

$$\dots \to H(T(X)) \to H(Z) \to H(Y) \to H(X) \to H(T^{-1}(X)) \to \dots$$

is exact in \mathcal{A} .

Corollary 5.5. Let $A = k[x_1, ..., x_n]$ and B = A/I for some ideal $I \subset A$. Then for any *B*-module *M* there is an exact sequence of *B*-modules

$$0 \to \operatorname{Der}_k(B, M) \to \operatorname{Der}_k(A, M) \to \operatorname{Hom}_B(I/I^2, M) \to T^1(B/k, M) \to 0$$

and an isomorphism $T^2(B/A, M) \cong T^2(B/k, M)$.

Proof. Apply Theorem 5.4 to the morphisms $k \to A \to B$, use Proposition 5.2 and Theorem 2.1.(1) which implies that $\mathbb{L}_{S/R} = \Omega_{S/R}[0]$ for a smooth ring map $R \to S$ hence $T^i(S/R, -) = 0$ for i > 0 for a smooth ring map $R \to S$.

6. CRITERIA FOR SMOOTH AND LOCAL COMPLETE INTERSECTION MORPHISMS

Next, consider the cotangent sequence $\mathbb{L}_{X/Y}$ of a morphism of schemes $X \to Y$. One way to construct it is as follows. Let \mathcal{C} be a site and let $\mathcal{A} \to \mathcal{B}$ be a morphism of sheaves of rings. Let $\mathcal{P}_{\bullet} \to \mathcal{B}$ be the canonical resolution: we have $\mathcal{P}_0 = \mathcal{A}[\mathcal{B}], \mathcal{P}_1 = \mathcal{A}[\mathcal{A}[\mathcal{B}]]$, and so on. This defines a functor

$$\operatorname{Alg}_{\mathcal{A}} \to \operatorname{hoSimp}(\operatorname{Alg}_{\mathcal{A}})$$

We can then define the functor $\mathbb{L}_{-/\mathcal{A}}$ to be the composition

$$\operatorname{Alg}_{\mathcal{A}} \to \operatorname{hoSimp}(\operatorname{Alg}_{\mathcal{A}}) \xrightarrow{\Omega_{-/\mathcal{A}}} \operatorname{hoSimp}(\operatorname{Mod}_{\mathcal{A}}) \to \operatorname{hoCh}_{\leq 0}(\operatorname{Mod}_{\mathcal{A}}) \to D_{\geq 0}(\mathcal{A}).$$

and observe that, for any \mathcal{B} in $\operatorname{Alg}_{\mathcal{A}}$, $\mathbb{L}_{\mathcal{B}/\mathcal{A}}$ lands in $D_{\geq 0}(\mathcal{B})$ because $\Omega_{\mathcal{P}_{\bullet}/\mathcal{A}}$ is a \mathcal{P}_{\bullet} -module and $\mathcal{P}_{\bullet} \to \mathcal{A}$ a quasi-isomorphism. Equivalently, $\mathbb{L}_{\mathcal{B}/\mathcal{A}}$ is the complex of \mathcal{B} -modules constructed using $\mathbb{L}_{\mathcal{B}/\mathcal{A}}$ associated to the simplicial \mathcal{B} -module $\Omega_{\mathcal{P}_{\bullet}/\mathcal{A}} \otimes_{\mathcal{P}_{\bullet}} \mathcal{B}$. If $f : X \to Y$ is a morphism of schemes, its cotangent complex is defined as

$$\mathbb{L}_{Y/X} = \mathbb{L}_{\mathcal{O}_X/f^{-1}\mathcal{O}_Y}.$$

We can then define the functors

$$\mathcal{T}^i(Y/X, -) : \operatorname{Mod}(\mathcal{O}_X) \to \operatorname{Mod}(\mathcal{O}_X)$$

as $\mathcal{T}^{i}(Y/X, \mathcal{F}) = H^{i}(\operatorname{Hom}_{\mathcal{O}_{X}}(\mathbb{L}_{\bullet}, \mathcal{F}))$. For any open affine $V = \operatorname{Spec} A \subset Y$ and any open affine $U = \operatorname{Spec} B \subset f^{-1}(V) \subset X$ where $\mathcal{F} = \tilde{M}$, we obtain $\mathcal{T}^{i}(Y/X, \mathcal{F})(U) = T^{i}(B/A, M)$.

It appears that the vanishing of \mathcal{T}^1 characterizes smooth morphisms, whereas the vanishing of \mathcal{T}^2 characterizes relative local complete intersection morphisms:

Theorem 6.1. Let $f: X \to Y$ be a flat morphism of finite type between noetherian schemes.

- (1) f is smooth if and only if $\mathcal{T}^1(X/Y, \mathcal{F}) = 0$ for all coherent sheaves \mathcal{F} on X. If this is the case, then $\mathcal{T}^2(Y/X, \mathcal{F}) = 0$ for all coherent sheaves \mathcal{F} on X.
- (2) f is a relative local complete intersection if and only if $\mathcal{T}^2(Y/X, \mathcal{F}) = 0$ for all coherent sheaves \mathcal{F} on X.

Proof. See [Har10, Theorem 4.11] and [Har10, Remark 4.13.3].

7. Deformations of singularities

Theorem 7.1. Let k be a field and let B be a k-algebra. Then

 $\operatorname{Def}_{B/k}(D) \cong T^1(B/k, B),$

where $\operatorname{Def}_{B/k}(D)$ denotes the isomorphism classes of of deformations of B over the dual numbers D. If B is finite as a k-vector space, then $\operatorname{Def}_{B/k}(D)$ is a finite B-module, hence a finite dimensional k-vector space.

Proof. It follows from Proposition 5.2 that

$$T^1(B/k, B) \cong \operatorname{Exal}_k(B, B).$$

Now suppose that $B' \to B$ is a deformation of B over D. This means that B' is flat over D, so that the exact sequence of D-modules

$$0 \to (\epsilon) \to D \to k \to 0$$

induces an exact sequence of B'-modules $0 \to B' \otimes_D (\epsilon) \to B' \to B' \otimes_D k \cong B \to 0$. But $B' \otimes_D (\epsilon) = B' \otimes_D k \otimes_k (\epsilon) \cong B \otimes_k (\epsilon) \cong B$ as k-modules so that we obtain an exact sequence of k-vector spaces

(4)
$$0 \to B \xrightarrow{i} B' \xrightarrow{\pi} B \to 0$$

where $B \cong B' \otimes_D (\epsilon) \subset B'$ is an ideal of square 0 in B'. Conversely, given an exact sequence (4), we define a *D*-module structure on B' by $\epsilon \cdot b = i(\pi(b))$. Then $B' \otimes_D (\epsilon) \to B'$, $b \otimes \epsilon \mapsto \epsilon \cdot b$ defines an isomorphism $B' \otimes_D (\epsilon) \cong \epsilon \cdot B' \subset B'$. Hence $(B' \otimes_D k) \otimes_k (\epsilon) = B' \otimes_D (\epsilon) \to B'$ is injective so B' is flat over D by Wouter's lecture (see also [Har10, Proposition 2.2(2)]). Hence $T^1_{B/k} = \operatorname{Exal}_k(B, B)$. The finiteness statement follows from Proposition 5.2.(4).

- **Examples 7.2.** (1) A cusp $B = k[x, y]/(y^2 x^3)$ has a 2-dimensional space of deformations $\text{Def}_B(D)$.
 - (2) An ordinary double point of a surface $B = k[x, y, z]/(xy z^2)$ has a 1-dimensional space of deformations $\text{Def}_B(D)$.
 - (3) Let $Y \subseteq \mathbb{P}^5_k$ be the Veronese surface in \mathbb{P}^5_k , i.e. the image of the Veronese embedding of $\mathbb{P}^2_k \to \mathbb{P}^5_k$. Then the cone $X \subseteq \mathbb{A}^6_k$ over Y is rigid, i.e. $\operatorname{Def}_X(D) = (0)$.

Proof. (*Sketch*) (1)&(2). Use the identification $\text{Def}_B(D) = T^1_{B/k}$ (Theorem 7.1) and Corollary 5.5. For (3), we need the following:

Lemma 7.3. Let $Y = \operatorname{Proj}(B) \subset \mathbb{P}_k^n$, $R = k[X_0, \ldots, X_n] \supseteq I$, B = R/I be a nonsingular projectively normal subvariety of n-dimension projective space over k. If $H^1(\mathcal{O}_Y(d)) = H^1(\mathcal{T}_Y(d)) = 0$ for all $d \in \mathbb{Z}$, then the affine cone $X = \operatorname{Spec} B \subset \mathbb{A}_k^{n+1}$ over Y is rigid.

Proof. Since Y is projectively normal, B is integrally closed hence depth_x(B) ≥ 2 ; since $H^1(\mathcal{O}_Y(d)) = 0$ for all d, we actually have depth_x(B) ≥ 3 [Har10, Remark 5.4.1]. By [Har10, Theorem 5.4], there is an injection $T^1_{B/k} \hookrightarrow \bigoplus_{d \in \mathbb{Z}} H^1(Y, \mathcal{T}_Y(d))$. But $H^1(Y, \mathcal{T}_Y(d)) = 0$ for all $d \in \mathbb{Z}$, so $T^1_{B/k} = 0$, hence X is rigid by Theorem 7.1.

We use Lemma 7.3: Y is projectively normal and $H^1(\mathcal{O}_Y(d)) = 0$ for all $d \in \mathbb{Z}$. Use the Euler sequence $0 \to \mathcal{O}_{\mathbb{P}^2}(-1) \to \mathcal{O}_{\mathbb{P}^2}^3 \to \mathcal{T}_{\mathbb{P}^2}(-1) \to 0$ to obtain an exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^2}(d) \to \mathcal{O}_{\mathbb{P}^2}(d+1)^3 \to \mathcal{T}_{\mathbb{P}^2}(d) \to 0$$

hence an exact sequence

 $\dots \to H^1(\mathcal{O}_{\mathbb{P}^2}(d)) = 0 \to H^1(\mathcal{O}_{\mathbb{P}^2}(d+1)^3) = 0 \to H^1(\mathcal{T}_{\mathbb{P}^2}(d)) \to H^2(\mathcal{O}_{\mathbb{P}^2}(d)) \to H^2(\mathcal{O}_{\mathbb{P}^2}(d+1)^3) \to \dots$ from which it follows that $H^1(\mathbb{P}^2_k, \mathcal{T}_{\mathbb{P}^2_k/k}(d)) = H^2(\mathbb{P}^2_k, \mathcal{O}_{\mathbb{P}^2}(d)) = k$ if d = -3 and zero otherwise, hence $H^1(Y, \mathcal{T}_Y(d)) = H^1(\mathbb{P}^2, \mathcal{T}_{\mathbb{P}^2}(2d)) = 0$ for each $d \in \mathbb{Z}$. \square

References

- [And74] Michel André. *Homologie des algèbres commutatives*. Springer-Verlag, Berlin, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 206.
- [DG67] Jean Dieudonné and Alexander Grothendieck. Eléments de géométrie algébrique. Inst. Hautes Études Sci. Publ. Math., 4, 8, 11, 17, 20, 24, 28, 32, 1961–1967.
- [Har10] Robin Hartshorne. Deformation Theory, volume 1 of Graduate Texts in Mathematics. Springer, 2010.
- [LS67] S. Lichtenbaum and M. Schlessinger. The cotangent complex of a morphism. Transactions of the American Mathematical Society, 128(1):41–70, 1967.
- [Sta18] The Stacks Project Authors. *Stacks Project*. https://stacks.math.columbia.edu, 2018.