
DEFORMATIONS OF SINGULARITIES

OLIVIER DE GAAY FORTMAN, NOVEMBER 25, 2020

1. Introduction

This note is written with the goal of presenting some interesting and important results in
the theory of deformations of singularities. The references we use are [Har10] and [Sta18].

- We define the Schlessinger-Lichtenbaum complex [LS67] and show that it coincides
with the truncation of the cotangent complex at the ´2 level (Theorem 4.1).

- Using the cotangent complex of a morphism of rings, one defines T i functors for any
i P Zě0 (Definition 5.1); these extend T 0, T 1, T 2 as defined in [LS67] because of (1).

- Recall the following:

Theorem 1.1. [EGA, IV, Ch. 0, §20] Let A Ñ B and B Ñ C be morphisms of
rings, and let M be a C-module. There is a canonical exact sequence of A-modules

0 Ñ DerBpC,Mq Ñ DerApC,Mq Ñ DerApB,Mq Ñ ExalBpC,Mq Ñ ExalApC,Mq Ñ ExalApB,Mq

which is functorial in M .

Now for any morphism of rings AÑ B and any B-module M , one has T 0pB{A,Mq “
DerApB,Mq and T 1pB{A,Mq “ ExalApB,Mq (Proposition 5.2). Moreover, the exact
sequence of Theorem 1.1 extends to an infinite exact sequence of A-modules

0 Ñ DerBpC,Mq Ñ DerApC,Mq Ñ DerApB,Mq Ñ ExalBpC,Mq Ñ ExalApC,Mq Ñ ExalApB,Mq Ñ

Ñ T 2
pC{B,Mq Ñ T 2

pC{A,Mq Ñ T 2
pB{A,Mq Ñ T 3

pC{B,Mq Ñ T 3
pC{A,Mq Ñ T 3

pB{A,Mq Ñ . . .

- Similarly, for a ring map AÑ B, any short exact sequence of B-modules M 1 ÑM Ñ

M2 induces an infinite long exact sequence of B-modules (Theorem 5.3)

. . .Ñ T i´1
pB{A,M2

q Ñ T ipB{A,M 1
q Ñ T ipB{A,Mq Ñ T ipB{A,M2

q Ñ T i`1
pB{A,M 1

q . . .

- We recall the definition of the cotangent complex of a morphism of schemes in Section
6 and present the result that a flat morphism of finite type between noetherian
schemes is smooth if and only if T 1 vanishes on coherent sheaves, and a relative local
complete intersection if and only if T 2 vanishes on coherent sheaves (Theorem 6.1).

- We prove that deformations of an affine scheme X “ Spec B over a field k are
parametrised by T 1pB{k,Bq (Theorem 7.1). If X is finite over k then the dimension
of this deformation space is finite.

- We apply the theory to calculate the deformation space of the cusp, the ordinary
double point on a surface and the cone over the Veronese surface (Examples 7.2).
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2. Summary of previous results

Notation 1. In this note, k is a field and D “ krts{pt2q “ krεs is the algebra of dual numbers.

Let us recall what we have seen so far.

(1) In Wouter’s talk we have seen deformation of subschemes and coherent sheaves: if
Y Ď X is a closed subscheme of a scheme X over k, then

DefY {XpDq – H0
pY,NY {Xq,

and F a coherent sheaf on X, then

DefFpDq – Ext1
pF ,Fq.

(2) Dirk showed that if k is algebraically closed, and X a nonsingular algebraic variety
over k, then

DefXpDq – H1
pX, TXq.

In particular, nonsingular affine algebraic varieties over k are rigid.
(3) Still assume k to be algebraically closed. Renjie proved under what conditions defor-

mations over local artin algebras lift: suppose that 0 Ñ I Ñ B Ñ A Ñ 0 is a small
extension in Artk, X a nonsingular algebraic variety over k, ξ “ pX , iq a deformation
of X over A. There exists a function

O´peq : DefXpAq Ñ H2
pX, TX b Iq

such that Oξpeq “ 0 if and only if the deformation ξ of X to A over k lifts to a
deformation of ξ to B over A. If Oξpeq “ 0 then the set of liftings is a torsor under
H1pX, TX b Iq. This generalises (2). Renjie also proved that a quotient ring R of a
regular local ring P with kernel J ĂM2

P admits a tangent-obstruction (T-O) theory,
and that the local Hilbert functor and the deformation functor of the projective line
are pro-representable.

(4) Let k be algebraically closed. Mike showed that a deformation functor F : Artk :Ñ
Set is pro-representable if and only if it satisfies Schlessinger’s criteria.

(5) Let k be algebraically closed. Kees proved a couple of nice results: first of all, any
deformation functor F : Artk Ñ Set with T-O theory satisfies Schlessinger’s Crite-
rion. Next, he generalised Wouter’s result on deformations on closed subschemes:
consider a small extension 0 Ñ I Ñ B Ñ A Ñ 0, closed subscheme Y0 Ă X0{k,
Y Ă X{A deformation of Y0 Ă X0 over k, X 1

{B a deformation of X over A. Then

DefY {X,X 1pB{Aq is a pseudo-torsor under H0pY0,NY0{X0 b Iq, and if Y 1 exists locally,
then there exists an element α P H1pY0,N bIq such that α “ 0 if and only if Y 1 exists
globally. This generalises (1). We also saw that the embedded deformation functor
HY0{X0 has T-0 theory with Ti “ H i´1pY0,NY0{X0q. Smooth schemes admit T-O the-
ory: if X0 Ñ Spec k is smooth, then DefX0 has T-O theory with Ti “ H ipX0, TX0q.
Kees showed that a natural transformation F between deformation functors with
T-O theory induces morphisms between tangent and obstruction spaces. These mor-
phisms are surjective resp. injective if and only if F is smooth. The forgetful functor
HY0{X0 Ñ DefY0 is smooth if X0 and Y0 are smooth.



(6) Emelie outlined some results on deformations of morphisms. For i P t1, 2u, let pAi :
0 Ñ Ii Ñ A1i Ñ Ai Ñ 0q P ExalZpAi, Iiq. For each i, consider pBi : 0 Ñ Ni Ñ B1i Ñ
Bi Ñ 0q P ExalZpBi, Niqq and let A1 Ñ A2, Ai Ñ Bi, i P t1, 2u be morphisms of exact
sequences. Consider morphisms N1 Ñ N2 and B1 Ñ B2 making everything commute.
There exists a canonically defined element OpB11, B12q P Ext1

B1
pNLB1{A1 , N2q such that

OpB11, B12q “ 0 if and only if there exists a morphism B11 Ñ B12 making everything
commute. The set of all B11 Ñ B12 as is a pseudo-torsor under HomB1pΩB1{A1 , N2q.

(7) Without defining the cotangent complex of a morphism of rings A Ñ B, Maciek
showed what properties such a functor L´{A : AlgA Ñ DpAq with LB{A P DpBq for
all B P AlgA is supposed to have. Let B0{k be an algebra and 0 Ñ I Ñ A1 Ñ AÑ 0
a small extension in Artk. Assume B{A is flat and B bA k “ B0. Then there exists
a class ηB P Ext2

pLB0{k, B0q bk I whose vanishing is necessary and sufficient for the
existence of a lifting B1{A1 satisfying B1bA1A – B. Moreover, the set of such liftings
is a pseudo-torsor under Ext1

pLB0{k, B0q bk I. Then Maciek proved that for any
perfect algebra k over Fp and any n ě 1, the Z{pn-algebra of Witt vectors Wnpkq
exists. Moreover, for any perfect algebra k over Fp, LFp{k “ 0. Some other properties
of the cotangent complex: LS´1A{A “ 0 for multiplicative subsets S Ă A; if A Ñ B
smooth then LB{A “ Ω1

B{Ar0s (hence zero for AÑ B étale); LB{A commutes with flat
base change; if A Ñ B surjective with kernel generated by a regular sequence then
LB{A is quasi-isomorphic to I{I2r1s; for a local complete intersection AÑ B, LB{A is
a perfect complex supported in degrees r´1, 0s. Then Maciek lifted deformations of
quotients by groups: if X Ñ Y is the geometric quotient of scheme X by a free action
of an abstract group G, then for any deformation Ỹ of Y there exists a deformation
X̃ of X and a free group action on X̃ such that X̃{G “ Ỹ . Finally, Maciek gave
a condition to be a local complete intersection morphism: for a morphism of rings
R Ñ S, the following is true: if S has a finite resolution by flat R-modules and the
cotangent complex LS{R is quasi-isomorphic to a bounded complex of flat S-modules,
then RÑ S is a local complete intersection.

(8) Lenny gave a construction of the cotangent complex. Before doing so, he recalled
some of the properties of the cotangent complex of a ring map R Ñ A: one has
H0pLA{Rq “ Ω1

A{R; if A{R is smooth, then LA{R “ Ω1
A{Rr0s; HomApLA{R,Mq “

DerRpA,Mq; one has Ext1
ApLA{R,Mq “ ExalRpA,Mq; for RÑ AÑ B ring maps, we

have a distinguished triangle

LA{R bL
A B Ñ LB{R Ñ LB{A Ñ LA{R bL

A Br1s

in Dď0pBq; we have τě´1LA{R “ NLA{R, the naive cotangent complex; and LA{R can
be computed using a smooth resolution. The proof of existence goes as follows. It
can be shown that for any R-algebra A, a free simplicial resolution P‚ Ñ A exists
in ModR - in fact, there exists a canonical free simplicial resolution P‚ Ñ A. This
defines a functor

AlgR Ñ hoSimppAlgRq, A ÞÑ P‚.



We can then simply define the functor L´{R to be the composition

(1) AlgR
AÞÑP‚
ÝÝÝÝÑ hoSimppAlgRq

Ω´{R
ÝÝÝÑ hoSimppModRq

Dold-Kan
ÝÝÝÝÝÑ hoChď0pModRq Ñ Dě0pRq

and observe that, for any A in AlgR, LA{R lands in Dě0pAq because ΩP‚{R is a P‚-
module and P‚ Ñ A a quasi-isomorphism.

Our interest is the deformation of singularities, and for this we will need some of the above
results. Let us rephrase them as follows.

Theorem 2.1. For a ring A, there is a functor L´{A : AlgA Ñ Dě0pAq such that LB{A P
ObpDě0pBqq for any A-algebra B, and such that moreover

(1) if A{R is smooth, then LA{R “ Ω1
A{Rr0s,

(2) in general, H0pLA{Rq “ Ω1
A{R, which implies that

(3) HomApLA{R,Mq “ DerRpA,Mq,

(4) Ext1
ApLA{R,Mq “ ExalRpA,Mq,

(5) for RÑ AÑ B ring maps, we have a distinguished triangle

LA{R bL
A B Ñ LB{R Ñ LB{A Ñ LA{R bL

A Br1s

in Dď0pBq,
(6) τě´1LA{R “ NLA{R.

Remark 2.2. Recall that, for any A-algebra B, a free simplicial resolution P‚ Ñ B is a
simplicial object P‚ P ObSimppAlgRq with each Pi a free polynomial R-algebra together with
an augmentation map P0 Ñ B of A-algebras such that

¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 Ñ AÑ 0

is exact in ModR. There is a canonical free simplicial resolution P‚ Ñ B giving AlgA Ñ
SimppAlgAq and so we can define the cotangent complex LB{A of the ring map AÑ B as an
actual cochain complex LB{A of B-modules (and not just its image in Dď0pBq).

Remark 2.3. In DpBq, we have the identification

LB{A “ ComppΩP‚{A bP‚ Bq P ObComppModBq

where ComppM‚q means taking the cochain complex attached to a simplicial B-module M‚.
In the sequel we shall just write ΩP‚{A bP‚ B when we mean the complex associated to the
simplicial B-module ΩP‚{A bP‚ B.

Remark 2.4. For any free resolution P 1‚ Ñ B we have a canonical isomorphism

LB{A “ ΩP 1‚{A bP 1‚ B

in DpBq [Sta18, Tag 08QI].

https://stacks.math.columbia.edu/tag/08QI


3. The Schlessinger-Lichtenbaum Complex

Let AÑ B be a morphism of rings. In [LS67] there is an explicit determination of τě´2LB{A
which is used in calculations of versal deformation spaces of singularities. The construction
is as follows.

Choose a polynomial ring P “ ArXs on a set X such that B is the quotient of R as an
A-algebra. Let I be the ideal defining B, choose generators ft for I indexed by a set T so
that there is a free P -module F “ ‘tPTP and a surjection j : F Ñ I mapping et to ft. Let
Q Ă F be the kernel of j. Let F0 Ă Q be the submodule of relations of the form jpaqb´jpbqa
with a, b P F . Define

L2 :“ Q{F0, L1 :“ F bP B “ F {IF, L0 :“ ΩP {A bP B

and the maps between them be defined as in the following diagram, where all rows are exact,

0

��

0

��
0 // F0

��

// Q

��

// L2

��

// 0

0 // IF // F //

��

L1

�� %%

// 0

I{I2 // ΩR{A bR B L0

0 // I

��

// R // B // 0.

0

Lemma 3.1. Up to canonical isomorphism, the object L “ LR,F P ObDpBq attached to the
complex L‚ “ pQ{F0 Ñ F bP B Ñ ΩP {A bP Bq does not depend on the choice of P and F .

Proof. Either by direct calculation [Har10, Lemma’s 3.2 & 3.3] - i.e. fix P and consider
F � I, F 1 � I, take F ‘ F 1, change its basis and show that LP,F‘F 1 and LP,F differ by a
direct summand with a free complex hence LP,F P DpBq does not depend on F , then do
something similar for P � B,P 1 � B - or use Theorem 4.1 below! �

4. Comparison with the Cotangent Complex

Theorem 4.1. There is a canonical map

LB{A Ñ L

in DpAq which induces an isomorphism τě´2LB{A
„
ÝÑ L in DpBq.



Proof. Let P‚ Ñ B be a free simplicial resolution of B over A. Identify LB{A with ΩP‚ bP‚ B
(see Remark 2.2). Our aim is to define morphisms

ΩP0{A bP0 B Ñ ΩP {A bP B, ΩP1{A bP1 B Ñ F bP B, ΩP2{A bP2 B Ñ Q{F0

that make Diagram (3) commute and check that the morphismsH0pLB{Aq Ñ H0pLq, H1pLB{Aq Ñ
H1pLq and H2pLB{Aq Ñ H2pLq which are induces by the so obtained morphism of complexes
LB{A Ñ L are isomorphisms.

Step 1: Biderivations

Definition 4.2. Let A Ñ B be a ring map. Let M be a pB,Bq-bimodule over A. An
A-biderivation is an A-linear map λ : B ÑM such that λpxyq “ xλpyq ` λpxqy.

Lemma 4.3. Let P “ ArSs be a polynomial ring over A. Let M be a pP, P q-bimodule over
A. Then the function

BiDerApP,Mq Ñ HomSetpS,Mq, λ ÞÑ λ|S

is bijective.

Proof. The inverse is defined on products of generators by

f ÞÑ rs1 . . . st ÞÑ
t

ÿ

i“1

s1 . . . si´1fpsiqsi . . . sts.

Write P1 “ ArSs for some set S. Consider the diagram

I

��

Foooo

P1
d0´d1

//

77

P0

  

ψ // P

��
B

For any s P S, we may write

ψpd0psq ´ d1psqq “
ÿ

tPT

ps,tft P I

for elements ps,t P P infinitely many of which are zero; choose such ps,t for every s P S which
gives a function S Ñ F, s ÞÑ pps,tqtPT . But the maps

pψ ˝ d0, ψ ˝ d1q : P1 Ñ P0 Ñ P ýF



define a pP1, P1q-bimodule structure on F “ ‘tPTP , P “ ArSs, hence by Lemma 4.3 there is
a unique biderivation λ : P1 Ñ F such that λpsq “ pps,tqt. We obtain the following diagram:

(2) Q

��

// Q{F0

��
P2

55

d0´d1`d2

// P1

d0´d1

��

λ // F

j
�� ##

// F bP B

I
i // P

f // B.

P0

ε

33
ψ

55

Note that ψ ˝ pd0 ´ d1q “ i ˝ j ˝ λ by Lemma 4.3, because both maps are biderivations and
they agree on S Ă P1. �

Step 2: Map in degree 0
Our map of A-modules ψ : P0 Ñ P induces a map dψ : ΩP0 bP0 P Ñ ΩP {A of P -modules
hence a map

dψ b 1 : ΩP0{A bP0 B Ñ ΩP {A bP B

of B-modules.

Step 3: Map in degree 1
From Diagram (2) we see that there is a map P1 Ñ FbPB which is a priori an A-biderivation,
but since the pP1, P1q-bimodule structure over A on FbPB is induced by its B-module struc-

ture and the maps P1 Ñ P0 Ñ B which agree because P1
d0´d1
ÝÝÝÑ P0 Ñ B is exact, it follows

that the two P1-module structures on B over F bP B agree, and therefore the pP1, P1q-
bimodule structure on F bP B over A is just a P1-module structure. This implies that the
A-biderivation P1 Ñ F Ñ F bP B is a usual A-derivation, corresponding to a morphism of
P1-modules ΩP1{A Ñ F bP B inducing a morphism of B-modules

ΩP1{A bP1 B Ñ F bP B.

Step 3: Map in degree 2
Diagram (2) shows that λpd0 ´ d1 ` d2qpP2q Ă Q because

j ˝ λ ˝ pd0 ´ d1 ` d2q “ ψ ˝ pd0 ´ d1q ˝ pd0 ´ d1 ` d2q “ ψ ˝ 0 “ 0.

On the other hand, we have seen that Q{F0 is a B-module, hence a P2-module via an arrow
P2 Ñ B defined by one of the arrows in the composite

P2
ÑÑÑ P1 Ñ P0

ε
ÝÑ B.

Indeed, one can calculate, using the relations between the di ˝ dj, that no matter what
composite you choose above, the arrow P2 Ñ B is the same. Now consider the map

P2
λ˝pd0´d1`d2q
ÝÝÝÝÝÝÝÝÑ QÑ Q{F0.



For f, g P P2, we have

λpd0 ´ d1 ` d2qpfgq “ λd0pfqd0pgq ´ λd1pfqd1pgq ` λd2pfqd2pgq

“ d0pfq¨λpd0pgqq`λpd0pfqq¨d0pgq´d1pfq¨λpd1pgqq´λpd1pfqq¨d1pgq`d2pfq¨λpd2pgqq`λpd2pfqq¨d2pgq

“ f ¨ λpd0pgqq ` g ¨ λpd0pfqq ´ f ¨ λpd1pgqq ´ g ¨ λpd1pfqq ` f ¨ λpd2pgqq ` g ¨ λpd2pfqq

“ fpλpd0pgq ´ d1pgq ` d2pgqqq ` gpλpd0pfq ´ d1pfq ` d2pfqqq mod F0.

In other words, our A-linear map P2 Ñ Q{F0 is an A-derivation for the P2-module structure
on Q{F0. This implies that we obtain a P2 linear map ΩP2{A Ñ Q{F0 hence a B-linear map

ΩP2{A bP2 B Ñ Q{F0.

Step 4: Morphism of complexes
The result is the following diagram:

(3) ΩP3{A bP3 B

��

// ΩP2{A bP2 B

��

// ΩP1{A bP1 B

��

// ΩP0{A bP0 B

��
0 // Q{F0

// F bP B // ΩP {A bP B.

We leave it to the reader to verify it commutes. The fact that this inducesH0pLB{Aq
„
ÝÑ H0pLq

and H1pLB{Aq
„
ÝÑ H1pLq is not difficult and follows from the identification of τě´1LB{A with

the naive cotangent complex NLB{A (Theorem 2.1.(6)) which is pI{I2 Ñ ΩP {AbP Bq [Sta18,

Tag 00S1]. The isomorphism H2pLB{Aq
„
ÝÑ H2pLq is [And74, p. 206, Proposition 12]. �

5. The T i functors

Next we write L‚ “ LB{A “ ΩP‚{AbP‚ B and consider it as a cochain complex of B-modules.

Definition 5.1. We define a functor

T ipB{A,´q : ModB Ñ ComppModBq Ñ ModB

M ÞÑ HomBpL‚,Mq ÞÑ H i
pHomBpL‚,Mqq “: T ipB{A,Mq.

Proposition 5.2. Let AÑ B be a ring map with kernel I Ă A, and let M be a B-module.

(1) We have T 0pB{A,Mq “ HomBpΩB{A,Mq “ DerApB,Mq. In particular, T 0pB{A,Bq “
TB{A, the tangent module of B{A.

(2) We have T 1pB{A,Mq “ ExalApB,Mq, the isomorphism classes of extensions of B
by M as A-algebras.

(3) If A Ñ B is surjective, then T 0pB{A,Mq “ 0 and T 1pB{A,Mq “ HomBpI{I
2,Mq.

In particular, T 1pB{A,Bq “ HomBpI{I
2, Bq “ NB{A, the normal bundle of B{A.

(4) If A is noetherian, A Ñ B of finite type, and M a finite B-module, then H ipLB{Aq
and T ipB{A,Mq are finite B-modules.

Proof. (1) We have DerApB,Mq “ HomBpLB{A,Mq by Theorem 2.1.(3). But then
HomBpLB{A,Mq “

tf : L0 ÑM : pL1
d0´d1
ÝÝÝÑ L0

f
ÝÑMq “ 0u “ KerpHomBpL0,Mq Ñ HomBpL1,Mqq “ T 0

pB{A,Mq.

https://stacks.math.columbia.edu/tag/00S1


(2) We have ExalApB,Mq “ Ext1
BpLB{A,Mq by Theorem 2.1.(4). Hence

ExalApB,Mq “ Ext1
BpLB{A,Mq “ HomDpBqpLB{A,M r1sq “ T 1

pB{A,Mq.

(3) In this case we use Theorem 4.1 and take the Schlessinger-Lichtenbaum exact se-
quence L‚, for which we can take P “ A so that L0 “ ΩP {A bP B “ 0, hence
T 0pB{A,Mq “ 0. Moreover, tensoring the exact sequence of P “ A-modules

0 Ñ QÑ F Ñ I Ñ 0

with B gives a diagram for which the horizontal row is exact:

QbA B

��

// L1 “ F bA B // I{I2 // 0.

L2 “ Q{F0

66

This shows that

0 Ñ HomBpI{I
2,Mq Ñ HomBpL1,Mq Ñ HomBpL2,Mq

is exact.
(4) See [Sta18, Tag 08PZ] and [Har10, Remark 3.10.1].

�

Theorem 5.3. Let A Ñ B be a morphism of rings. Then T ipB{A,´q : ModB Ñ ModB is
an additive functor, and if

0 ÑM 1
ÑM ÑM2

Ñ 0

is a short exact sequence of B-modules, then there is a long exact sequence of B-modules

0 Ñ DerApB,M
1
q Ñ DerApB,Mq Ñ DerApB,M

2
q Ñ

Ñ ExalApB,M
1
q Ñ ExalApB,Mq Ñ ExalApB,M

2
q Ñ

Ñ T 2
pB{A,M 1

q Ñ T 2
pB{A,Mq Ñ T 2

pB{A,M2
q Ñ . . .

Proof. By construction the T ipB{A,´q are additive, and given a short exact sequence as
above, since all the ΩPn{AbPn B are free B-modules (Remark 2.2), we get an exact sequence
of complexes

0 Ñ HomBpL‚,M 1
q Ñ HomBpL‚,Mq Ñ HomBpL‚,M2

q Ñ 0.

Taking cohomology yields the desired long exact sequence, using the snake lemma for the con-
necting morphism, and Proposition 5.2 for the identification of T 0pB{A,´q with DerApB,´q
and T 1pB{A,´q with ExalApB,´q. �

Theorem 5.4. Let A Ñ B Ñ C be ring homomorphisms, and let M be a C-module. Then
there is an exact sequence of C-modules

0 Ñ DerBpC,Mq Ñ DerApC,Mq Ñ DerApB,Mq Ñ

Ñ ExalBpC,Mq Ñ ExalApC,Mq Ñ ExalApB,Mq Ñ

Ñ T 2
pC{B,Mq Ñ T 2

pC{A,Mq Ñ T 2
pB{A,Mq Ñ . . .

https://stacks.math.columbia.edu/tag/08PZ


Proof. This simply follows from Proposition 5.2, the distinguished triangle

LB{A bL
B C Ñ LC{A Ñ LC{B Ñ LB{A bL

B Cr1s

in Dě0pCq and the fact that for any triangulated category pT , T q, abelian category A and
cohomological functor H : T Ñ A, if X Ñ Y Ñ Z Ñ TX is a distinguished triangle in T ,
then

. . .Ñ HpT pXqq Ñ HpZq Ñ HpY q Ñ HpXq Ñ HpT´1
pXqq Ñ . . .

is exact in A. �

Corollary 5.5. Let A “ krx1, . . . , xns and B “ A{I for some ideal I Ă A. Then for any
B-module M there is an exact sequence of B-modules

0 Ñ DerkpB,Mq Ñ DerkpA,Mq Ñ HomBpI{I
2,Mq Ñ T 1

pB{k,Mq Ñ 0

and an isomorphism T 2pB{A,Mq – T 2pB{k,Mq.

Proof. Apply Theorem 5.4 to the morphisms k Ñ AÑ B, use Proposition 5.2 and Theorem
2.1.(1) which implies that LS{R “ ΩS{Rr0s for a smooth ring map RÑ S hence T ipS{R,´q “
0 for i ą 0 for a smooth ring map RÑ S. �

6. Criteria for smooth and local complete intersection morphisms

Next, consider the cotangent sequence LX{Y of a morphism of schemes X Ñ Y . One way
to construct it is as follows. Let C be a site and let A Ñ B be a morphism of sheaves of
rings. Let P‚ Ñ B be the canonical resolution: we have P0 “ ArBs, P1 “ ArArBss, and so
on. This defines a functor

AlgA Ñ hoSimppAlgAq.

We can then define the functor L´{A to be the composition

AlgA Ñ hoSimppAlgAq
Ω´{A
ÝÝÝÑ hoSimppModAq Ñ hoChď0pModAq Ñ Dě0pAq.

and observe that, for any B in AlgA, LB{A lands in Dě0pBq because ΩP‚{A is a P‚-module and
P‚ Ñ A a quasi-isomorphism. Equivalently, LB{A is the complex of B-modules constructed
using LB{A associated to the simplicial B-module ΩP‚{A bP‚ B. If f : X Ñ Y is a morphism
of schemes, its cotangent complex is defined as

LY {X “ LOX{f´1OY
.

We can then define the functors

T i
pY {X,´q : ModpOXq Ñ ModpOXq

as T ipY {X,Fq “ H ipHomOX
pL‚,Fqq. For any open affine V “ Spec A Ă Y and any open

affine U “ Spec B Ă f´1pV q Ă X where F “ M̃ , we obtain T ipY {X,FqpUq “ T ipB{A,Mq.

It appears that the vanishing of T 1 characterizes smooth morphisms, whereas the vanishing
of T 2 characterizes relative local complete intersection morphisms:

Theorem 6.1. Let f : X Ñ Y be a flat morphism of finite type between noetherian schemes.



(1) f is smooth if and only if T 1pX{Y,Fq “ 0 for all coherent sheaves F on X. If this
is the case, then T 2pY {X,Fq “ 0 for all coherent sheaves F on X.

(2) f is a relative local complete intersection if and only if T 2pY {X,Fq “ 0 for all
coherent sheaves F on X.

Proof. See [Har10, Theorem 4.11] and [Har10, Remark 4.13.3]. �

7. Deformations of singularities

Theorem 7.1. Let k be a field and let B be a k-algebra. Then

DefB{kpDq – T 1
pB{k,Bq,

where DefB{kpDq denotes the isomorphism classes of of deformations of B over the dual
numbers D. If B is finite as a k-vector space, then DefB{kpDq is a finite B-module, hence a
finite dimensional k-vector space.

Proof. It follows from Proposition 5.2 that

T 1
pB{k,Bq – ExalkpB,Bq.

Now suppose that B1 Ñ B is a deformation of B over D. This means that B1 is flat over D,
so that the exact sequence of D-modules

0 Ñ pεq Ñ D Ñ k Ñ 0

induces an exact sequence of B1-modules 0 Ñ B1 bD pεq Ñ B1 Ñ B1 bD k – B Ñ 0. But
B1bD pεq “ B1bD kbk pεq – Bbk pεq – B as k-modules so that we obtain an exact sequence
of k-vector spaces

(4) 0 Ñ B
i
ÝÑ B1

π
ÝÑ B Ñ 0

where B – B1bD pεq Ă B1 is an ideal of square 0 in B1. Conversely, given an exact sequence
(4), we define a D-module structure on B1 by ε¨b “ ipπpbqq. Then B1bD pεq Ñ B1, bbε ÞÑ ε¨b
defines an isomorphism B1 bD pεq – ε ¨ B1 Ă B1. Hence pB1 bD kq bk pεq “ B1 bD pεq Ñ B1

is injective so B1 is flat over D by Wouter’s lecture (see also [Har10, Proposition 2.2(2)]).
Hence T 1

B{k “ ExalkpB,Bq. The finiteness statement follows from Proposition 5.2.(4). �

Examples 7.2. (1) A cusp B “ krx, ys{py2´ x3q has a 2-dimensional space of deforma-
tions DefBpDq.

(2) An ordinary double point of a surface B “ krx, y, zs{pxy ´ z2q has a 1-dimensional
space of deformations DefBpDq.

(3) Let Y Ď P5
k be the Veronese surface in P5

k, i.e. the image of the Veronse embedding
of P2

k Ñ P5
k. Then the cone X Ď A6

k over Y is rigid, i.e. DefXpDq “ p0q.

Proof. (Sketch) (1)&(2). Use the identification DefBpDq “ T 1
B{k (Theorem 7.1) and Corollary

5.5. For (3), we need the following:

Lemma 7.3. Let Y “ ProjpBq Ă Pnk , R “ krX0, . . . , Xns Ě I, B “ R{I be a nonsingular
projectively normal subvariety of n-dimension projective space over k. If H1pOY pdqq “
H1pTY pdqq “ 0 for all d P Z, then the affine cone X “ Spec B Ă An`1

k over Y is rigid.



Proof. Since Y is projectively normal, B is integrally closed hence depthxpBq ě 2; since
H1pOY pdqq “ 0 for all d, we actually have depthxpBq ě 3 [Har10, Remark 5.4.1]. By [Har10,
Theorem 5.4], there is an injection T 1

B{k ãÑ ‘dPZH
1pY, TY pdqq. But H1pY, TY pdqq “ 0 for all

d P Z, so T 1
B{k “ 0, hence X is rigid by Theorem 7.1. �

We use Lemma 7.3: Y is projectively normal and H1pOY pdqq “ 0 for all d P Z. Use the
Euler sequence 0 Ñ OP2p´1q Ñ O3

P2 Ñ TP2p´1q Ñ 0 to obtain an exact sequence

0 Ñ OP2pdq Ñ OP2pd` 1q3 Ñ TP2pdq Ñ 0

hence an exact sequence

. . .Ñ H1
pOP2pdqq “ 0 Ñ H1

pOP2pd`1q3q “ 0 Ñ H1
pTP2pdqq Ñ H2

pOP2pdqq Ñ H2
pOP2pd`1q3q Ñ . . .

from which it follows that H1pP2
k, TP2

k{k
pdqq “ H2pP2

k, OP2pdqq “ k if d “ ´3 and zero

otherwise, hence H1pY, TY pdqq “ H1pP2, TP2p2dqq “ 0 for each d P Z. �
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