DEFORMATIONS OF SINGULARITIES
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1. INTRODUCTION

This note is written with the goal of presenting some interesting and important results in
the theory of deformations of singularities. The references we use are [Har10] and [Stal§].

- We define the Schlessinger-Lichtenbaum complex [LS67] and show that it coincides
with the truncation of the cotangent complex at the —2 level (Theorem 4.1).

- Using the cotangent complex of a morphism of rings, one defines 7" functors for any
i € Z=o (Definition 5.1); these extend T°, T, T? as defined in [LS67] because of (1).

- Recall the following:

Theorem 1.1. [EGA, IV, Ch. 0, §20] Let A — B and B — C' be morphisms of

rings, and let M be a C'-module. There is a canonical exact sequence of A-modules
0 — Derg(C, M) — Dery(C, M) — Ders(B, M) — Exalg(C, M) — Exala(C, M) — Exals (B, M)
which s functorial in M.

Now for any morphism of rings A — B and any B-module M, one has T°(B/A, M) =
Ders(B, M) and T'(B/A, M) = Exals(B, M) (Proposition 5.2). Moreover, the exact
sequence of Theorem 1.1 extends to an infinite exact sequence of A-modules

0 — Derg(C, M) — Dera(C, M) — Dery(B, M) — Exalg(C, M) — Exal,(C, M) — Exals(B, M) —
— T*(C/B,M) — T*(C/A, M) — T*(B/A,M) — T*(C/B,M) — T*(C/A, M) — T*(B/A, M) — ...

- Similarly, for a ring map A — B, any short exact sequence of B-modules M' — M —
M" induces an infinite long exact sequence of B-modules (Theorem 5.3)

.= T "YB/AM") - T(B/A,M') — T"(B/A,M) — T"(B/A,M") — T""Y(B/A,M') ...

- We recall the definition of the cotangent complex of a morphism of schemes in Section
6 and present the result that a flat morphism of finite type between noetherian
schemes is smooth if and only if 71 vanishes on coherent sheaves, and a relative local
complete intersection if and only if 72 vanishes on coherent sheaves (Theorem 6.1).

- We prove that deformations of an affine scheme X = Spec B over a field k are
parametrised by T (B/k, B) (Theorem 7.1). If X is finite over k then the dimension
of this deformation space is finite.

- We apply the theory to calculate the deformation space of the cusp, the ordinary

double point on a surface and the cone over the Veronese surface (Examples 7.2).
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2. SUMMARY OF PREVIOUS RESULTS

Notation 1. In this note, k is a field and D = k[t]/(t?) = k[e] is the algebra of dual numbers.

Let us recall what we have seen so far.

(1) In Wouter’s talk we have seen deformation of subschemes and coherent sheaves: if
Y < X is a closed subscheme of a scheme X over k, then

Defy,x (D) = H°(Y, Ny x),
and F a coherent sheaf on X, then
Defz(D) = Ext!(F, F).

(2) Dirk showed that if k is algebraically closed, and X a nonsingular algebraic variety

over k, then
Defy (D) = H* (X, Tx).
In particular, nonsingular affine algebraic varieties over k are rigid.

(3) Still assume k to be algebraically closed. Renjie proved under what conditions defor-
mations over local artin algebras lift: suppose that 0 - I — B — A — 0 is a small
extension in Artg, X a nonsingular algebraic variety over k, £ = (X, i) a deformation
of X over A. There exists a function

O_(e) : Defy(A) — H*(X, Tx ®I)

such that O¢(e) = 0 if and only if the deformation £ of X to A over k lifts to a
deformation of £ to B over A. If O(e) = 0 then the set of liftings is a torsor under
H'(X,Tx ®I). This generalises (2). Renjie also proved that a quotient ring R of a
regular local ring P with kernel J < M3 admits a tangent-obstruction (T-O) theory,
and that the local Hilbert functor and the deformation functor of the projective line
are pro-representable.

(4) Let k be algebraically closed. Mike showed that a deformation functor F': Arty :—
Set is pro-representable if and only if it satisfies Schlessinger’s criteria.

(5) Let k be algebraically closed. Kees proved a couple of nice results: first of all, any
deformation functor F': Art, — Set with T-O theory satisfies Schlessinger’s Crite-
rion. Next, he generalised Wouter’s result on deformations on closed subschemes:
consider a small extension 0 — I — B — A — 0, closed subscheme Yy = X,
Y < X4 deformation of Yy < Xy over k, X;B a deformation of X over A. Then
Defy/x x/(B/A) is a pseudo-torsor under H"(Yy, Ny, /x, ® I), and if Y exists locally,
then there exists an element w € H'(Yy, N ®1I) such that o = 0 if and only if Y exists
globally. This generalises (1). We also saw that the embedded deformation functor
Hy,/x, has T-0 theory with 7; = H'"*(Yy, Ny, x,). Smooth schemes admit T-O the-
ory: if Xy — Spec k is smooth, then Defy, has T-O theory with T; = H* (X, Tx,)-
Kees showed that a natural transformation F between deformation functors with
T-O theory induces morphisms between tangent and obstruction spaces. These mor-
phisms are surjective resp. injective if and only if F' is smooth. The forgetful functor
Hy,/x, — Dety; is smooth if X, and Yj are smooth.



(6)

Emelie outlined some results on deformations of morphisms. For i € {1,2}, let (A, :
0—I; > Al - A, — 0) € Exalz(A;, I;). For each i, consider (B, : 0 > N; —» B} —
B; — 0) € Exaly(B;, N;)) and let A; — Ay, A; — B;, i € {1,2} be morphisms of exact
sequences. Consider morphisms N; — N, and B; — B, making everything commute.
There exists a canonically defined element O(BY, B}) € Extj, (NLp, 4,, N2) such that
O(B], B;) = 0 if and only if there exists a morphism B — Bj making everything
commute. The set of all B — Bj as is a pseudo-torsor under Homp, (2p,/4,, N2).
Without defining the cotangent complex of a morphism of rings A — B, Maciek
showed what properties such a functor L_,4 : Alg, — D(A) with Lp/4 € D(B) for
all B € Alg, is supposed to have. Let By/k be an algebraand 0 > [ - A" - A — 0
a small extension in Art;. Assume B/A is flat and B ®4 k = By. Then there exists
a class np € Ext2(L Bo/ks Bo) ® I whose vanishing is necessary and sufficient for the
existence of a lifting B’/ A’ satisfying B'®4 A =~ B. Moreover, the set of such liftings
is a pseudo-torsor under Extl(LBo /iy Bo) @ I. Then Maciek proved that for any
perfect algebra k over F, and any n > 1, the Z/p"-algebra of Witt vectors W, (k)
exists. Moreover, for any perfect algebra k over IF,, Lg,/x = 0. Some other properties
of the cotangent complex: Lg-14/4 = 0 for multiplicative subsets S < A; if A — B
smooth then Lg/4 = Q}B/A [0] (hence zero for A — B étale); Lp/a commutes with flat
base change; if A — B surjective with kernel generated by a regular sequence then
Lp,4 is quasi-isomorphic to I/I?[1]; for a local complete intersection A — B, L4 is
a perfect complex supported in degrees [—1,0]. Then Maciek lifted deformations of
quotients by groups: if X — Y is the geometric quotient of scheme X by a free action
of an abstract group G, then for any deformation Y of Y there exists a deformation
X of X and a free group action on X such that X /G = Y. Finally, Maciek gave
a condition to be a local complete intersection morphism: for a morphism of rings
R — S, the following is true: if S has a finite resolution by flat R-modules and the
cotangent complex Lg/g is quasi-isomorphic to a bounded complex of flat S-modules,
then R — S is a local complete intersection.

Lenny gave a construction of the cotangent complex. Before doing so, he recalled
some of the properties of the cotangent complex of a ring map R — A: one has
HO(Lar) = Qyp; it A/R is smooth, then Lar = Q} p[0]; Homa(Lar, M) =
Derg(A, M); one has Ext}q(]LA/R, M) = Exalg(A, M); for R - A — B ring maps, we
have a distinguished triangle

Lar®% B — Lpr — L — Lar®Y% B[1]

in DS°(B); we have 7> _;La/r = NL4/g, the naive cotangent complex; and L /5 can
be computed using a smooth resolution. The proof of existence goes as follows. It
can be shown that for any R-algebra A, a free simplicial resolution P, — A exists
in Modpy - in fact, there exists a canonical free simplicial resolution P, — A. This
defines a functor

Algp — hoSimp(Algg), A — P..



We can then simply define the functor IL._,r to be the composition

Dold-Kan
—_—

(1) Algg 227 hoSimp(Algg) —=% hoSimp(Modg) hoCheo(Modg) — Dso(R)

and observe that, for any A in Algp, L g lands in D3(A) because Qp, /g is a Ph-
module and P, — A a quasi-isomorphism.
Our interest is the deformation of singularities, and for this we will need some of the above
results. Let us rephrase them as follows.
Theorem 2.1. For a ring A, there is a functor L_ 4 : Alg, — Dxo(A) such that Lpa €
Ob(Dso(B)) for any A-algebra B, and such that moreover

(1) if A/R is smooth, then La/p = Qi}/R[O],

(2) in general, H'(La/r) = QL/R, which implies that

(3) Homa(ILa/r, M) = Derp(A, M),

(4) Extly(La/r, M) = Exalg(A, M),

(5) for R - A — B ring maps, we have a distinguished triangle

La/r ®L B — Lp/r — Lpa — Lar ®% B[1]

in DS°(B),
(6) 7>—1La/r = NLy/g.

Remark 2.2. Recall that, for any A-algebra B, a free simplicial resolution P, — B is a
simplicial object P, € ObSimp(Algy) with each P; a free polynomial R-algebra together with
an augmentation map Py — B of A-algebras such that

'—>P2—>P1—>P0—>A—>O

is exact in Modg. There is a canonical free simplicial resolution P, — B giving Alg, —
Simp(Alg,) and so we can define the cotangent complex g 4 of the ring map A — B as an
actual cochain complex L4 of B-modules (and not just its image in D<°(B)).

Remark 2.3. In D(B), we have the identification
Lg/a = Comp(Qp,/a ®p, B) € ObComp(Modp)

where Comp(M,) means taking the cochain complex attached to a simplicial B-module M,.
In the sequel we shall just write {2p,/4 ®p, B when we mean the complex associated to the
simplicial B-module Qp, 4 ®p, B.

Remark 2.4. For any free resolution P, — B we have a canonical isomorphism

Lp/a = Qpya®p; B
in D(B) [Stal8, Tag 08QI].


https://stacks.math.columbia.edu/tag/08QI

3. THE SCHLESSINGER-LICHTENBAUM COMPLEX

Let A — B be a morphism of rings. In [LS67] there is an explicit determination of 7> _slLg/a
which is used in calculations of versal deformation spaces of singularities. The construction
is as follows.

Choose a polynomial ring P = A[X] on a set X such that B is the quotient of R as an
A-algebra. Let I be the ideal defining B, choose generators f; for I indexed by a set T so
that there is a free P-module F' = @;cp P and a surjection j : ' — I mapping e; to f;. Let
() < F be the kernel of j. Let Fy = @ be the submodule of relations of the form j(a)b—j(b)a
with a,b € F. Define

Ly :=Q/Fy, Ly == F@p B = F/IF, Ly := Qpa ®p B

and the maps between them be defined as in the following diagram, where all rows are exact,

0 0
|
0 Ey Q Lo 0
| J
0 IF F Ly 0
| ™
I/I? — Qpja @r B——= Ly
0 1 R B 0
0

Lemma 3.1. Up to canonical isomorphism, the object L = Lg r € ObD(B) attached to the
complex Ly = (Q/Fy — F ®p B — Qp/a ®p B) does not depend on the choice of P and F.

Proof. Either by direct calculation [Harl0, Lemma’s 3.2 & 3.3] - i.e. fix P and consider

F — I, F' — I, take F'® F’, change its basis and show that Lppgr and Lpp differ by a

direct summand with a free complex hence Lppr € D(B) does not depend on F', then do

something similar for P — B, P’ — B - or use Theorem 4.1 below! O
4. COMPARISON WITH THE COTANGENT COMPLEX

Theorem 4.1. There is a canonical map

LB/A — L

in D(A) which induces an isomorphism 7=_sLg/a — L in D(B).



Proof. Let P, — B be a free simplicial resolution of B over A. Identify Lg,4 with Qp, ®p, B
(see Remark 2.2). Our aim is to define morphisms

Qpya ®py B—= Qpa®p B, Qpa®p B—>FQpB, Qp,a®p, B— Q/F,

that make Diagram (3) commute and check that the morphisms Ho(Lp/a) — Ho(L), Hi(Lp/a) —
Hy(L) and Hy(Lp/a) — Hy(L) which are induces by the so obtained morphism of complexes
Lp/a — L are isomorphisms.

Step 1: Biderivations

Definition 4.2. Let A — B be a ring map. Let M be a (B, B)-bimodule over A. An
A-biderivation is an A-linear map A : B — M such that A\(zy) = z\(y) + A(2)y.

Lemma 4.3. Let P = A[S] be a polynomial ring over A. Let M be a (P, P)-bimodule over
A. Then the function

BiDer 4 (P, M) — Homge (S, M), A +— A|g
15 bijective.

Proof. The inverse is defined on products of generators by

f— st'—>231 Sic1f(s8i)Si .. 8]

Write P, = A[S] for some set S. Consider the diagram

For any s € .S, we may write

(do(s) =Y paafi €1

teT

for elements p,, € P infinitely many of which are zero; choose such ps; for every s € S which
gives a function S — F,s — (pst)ter. But the maps

(Yody,pody): Pp 3 Ph—>PCF



define a (P, P;)-bimodule structure on F' = @, P, P = A[S], hence by Lemma 4.3 there is
a unique biderivation A : P, — F' such that A(s) = (ps+):. We obtain the following diagram:

(2> / T i
Py do—di+d2 L : F Forb
Lj\
w-ar I[——>p—t _p

Note that ¢ o (dg — dy) =i 0 j oA by Lemma 4.3, because both maps are biderivations and
they agree on S < P;. U

Step 2: Map in degree 0

Our map of A-modules ¢ : Py — P induces a map dy : Qp ®p, P — €1p/4 of P-modules
hence a map

dYp®1:Qpa®p, B— Qpja®p B
of B-modules.

Step 3: Map in degree 1
From Diagram (2) we see that there is a map P, — F®p B which is a priori an A-biderivation,

but since the (P;, P;)-bimodule structure over A on F®p B is induced by its B-module struc-

ture and the maps P, = Py — B which agree because P do=d, P~ B is exact, it follows

that the two Pj-module structures on B over F' ®p B agree, and therefore the (P, P)-
bimodule structure on F ®p B over A is just a Pj-module structure. This implies that the
A-biderivation P, — F — F ®p B is a usual A-derivation, corresponding to a morphism of
Pi-modules Qp, ;4 — F ®p B inducing a morphism of B-modules

Qp/a®p B— F®pB.

Step 3: Map in degree 2
Diagram (2) shows that A(dy — dy + d2)(FP2) < @ because

joAo(dy—dy+dy) =9 o(dy—di)o(dy—di+dy)=100=0.

On the other hand, we have seen that )/Fj is a B-module, hence a P,-module via an arrow
P, — B defined by one of the arrows in the composite

P3P 3P 5B,

Indeed, one can calculate, using the relations between the d; o d;, that no matter what
composite you choose above, the arrow P, — B is the same. Now consider the map

/\O(d07d1 +da
_—

P, L Q- Q/F.



For f,g € P, we have
Mdo — dy + d2)(fg) = Ado(f)do(g) — Adr(f)dr(g) + Adz(f)d2(g)
do(f)-Mdo(g))+Mdo(f))-do(9)—d1(f)-Mdr(g))— ( 1(f))-d1(g)+da(f)-Mda(g))+A(da(f))-d2(g)
= [ Ado(9)) + g Ado(f)) = - Mdi(9)) — g - Adi(f)) + [ - Ada(g9)) + g - Mda(F))
= [(Mdo(g) — di(g) + d2(9))) +9()\<do<f) —di(f) +dx(f)))  mod Fo.

In other words, our A-linear map P, — @Q/Fj is an A-derivation for the P,-module structure
on @/Fy. This implies that we obtain a P, linear map Qp,/4 — Q/F hence a B-linear map

Qp,/a ®p, B — Q/Fp.

Step 4: Morphism of complexes
The result is the following diagram:

(3) Qp,/a @py B——>Qp,ja ®p, B—Qp 4 ®@p, B—Qp 4 ®p, B
0 Q/Fo F®pB Qpja®p B

We leave it to the reader to verify it commutes. The fact that this induces Ho(ILg/a) — Ho(L)
and Hy(Lp/a) — Hy(L) is not difficult and follows from the identification of 7>_1Lp/4 with
the naive cotangent complex NLp 4 (Theorem 2.1.(6)) which is (1/1? — Qp 4 ®p B) [Stals,
Tag 00S1]. The isomorphism Hy(ILg/4) — Ha(L) is [And74, p. 206, Proposition 12]. O

5. THE T® FUNCTORS
Next we write L, = Lp/a = {1p,)4 ®p, B and consider it as a cochain complex of B-modules.

Definition 5.1. We define a functor
T'(B/A,—) : Modp — Comp(Modg) — Modp
M — Homp(L,, M) — H'(Homg(L., M)) =: T*(B/A, M).

Proposition 5.2. Let A — B be a ring map with kernel I < A, and let M be a B-module.

(1) We have T°(B/A, M) = Homp(Qp/a, M) = Dera(B, M). In particular, T°(B/A, B) =
Ts/a, the tangent module of B/A.

(2) We have T*(B/A, M) = Exaly(B, M), the isomorphism classes of extensions of B
by M as A-algebras.

(3) If A — B is surjective, then T°(B/A, M) = 0 and T*(B/A, M) = Homg(I/I? M).
In particular, T'(B/A, B) = Homg(I/I?, B) = Npgja, the normal bundle of B/A.

(4) If A is noetherian, A — B of finite type, and M a finite B-module, then H'(Lp/)
and T'(B/A, M) are finite B-modules.

Proof. (1) We have Dery(B, M) = Hompg(LLp/a, M) by Theorem 2.1.(3). But then
HOIHB(LB/A,M) =

{f Lo — M : (L, “=% Ly L M) = 0} = Ker(Homp(Lg, M) — Homp(Ly, M)) = T°(B/A, M).


https://stacks.math.columbia.edu/tag/00S1

(2) We have Exaly(B, M) = Exty(Lp/a, M) by Theorem 2.1.(4). Hence
Exala(B, M) = Exty(Lp/a, M) = Hompp)(Lp/a, M[1]) = T"(B/A, M).

(3) In this case we use Theorem 4.1 and take the Schlessinger-Lichtenbaum exact se-
quence L,, for which we can take P = A so that Ly = Qp/4s ®p B = 0, hence
T°(B/A, M) = 0. Moreover, tensoring the exact sequence of P = A-modules

0-Q—-F—->1-0
with B gives a diagram for which the horizontal row is exact:

Q®aB—L1=F®sB I/1? 0.

|

Ly = Q/F,
This shows that
0 — Homp(I/I*, M) — Homp(L,, M) — Homp(Ly, M)

Is exact.
(4) See [Stal8, Tag 08PZ] and [Har10, Remark 3.10.1].
U

Theorem 5.3. Let A — B be a morphism of rings. Then T'(B/A,—) : Modg — Modp is
an additive functor, and if
0O->M —>M-—>M —0

s a short exact sequence of B-modules, then there is a long exact sequence of B-modules
0 — Dera(B, M') — Ders(B, M) — Ders(B, M") —
— Exalu (B, M') — Exala(B, M) — Exals(B, M") —
— T*(B/A,M") — T*(B/A, M) — T*(B/A,M") — ...
Proof. By construction the T*(B/A, —) are additive, and given a short exact sequence as

above, since all the Qp, /4 ®p, B are free B-modules (Remark 2.2), we get an exact sequence
of complexes

0 — Homg(L,, M') — Homg(L,, M) — Homp(L,, M") — 0.

Taking cohomology yields the desired long exact sequence, using the snake lemma for the con-
necting morphism, and Proposition 5.2 for the identification of T°(B/A, —) with Der4(B, —)
and T'(B/A, —) with Exals(B, —). d

Theorem 5.4. Let A — B — C' be ring homomorphisms, and let M be a C-module. Then
there is an ezxact sequence of C'-modules
0 — Derg(C, M) — Dera(C, M) — Dery(B, M) —
— Exalg(C, M) — Exals(C, M) — Exals (B, M) —
— T*C/B,M) — T*(C/A, M) — T*(B/A,M) — ...


https://stacks.math.columbia.edu/tag/08PZ

Proof. This simply follows from Proposition 5.2, the distinguished triangle
Lp/a ®% C — Lo — Leyp — Lpa ®F C[1]

in D-o(C) and the fact that for any triangulated category (7,7, abelian category A and
cohomological functor H : T — A, if X - Y — Z — TX is a distinguished triangle in T,
then
is exact in A. 0
Corollary 5.5. Let A = k|zy,...,z,] and B = A/I for some ideal I — A. Then for any
B-module M there is an exact sequence of B-modules

0 — Der(B, M) — Dery(A, M) — Homg(I/I*, M) — T*(B/k, M) — 0
and an isomorphism T*(B/A, M) =~ T*(B/k, M).
Proof. Apply Theorem 5.4 to the morphisms £ — A — B, use Proposition 5.2 and Theorem

2.1.(1) which implies that Lg/r = Qg/r[0] for a smooth ring map R — S hence T(S/R, —) =
0 for ¢ > 0 for a smooth ring map R — S. U

6. CRITERIA FOR SMOOTH AND LOCAL COMPLETE INTERSECTION MORPHISMS

Next, consider the cotangent sequence Ly of a morphism of schemes X — Y. One way
to construct it is as follows. Let C be a site and let A — B be a morphism of sheaves of
rings. Let P, — B be the canonical resolution: we have Py = A[B], P; = A[A[B]], and so
on. This defines a functor

Alg 4 — hoSimp(Alg ).

We can then define the functor IL._, 4 to be the composition

Alg ; — hoSimp(Alg 1) —=% hoSimp(Mod_4) — hoChp(Mod) — Dso(A).

and observe that, for any B in Alg 4, Lg/4 lands in D>o(B) because Q2p, /4 is a P,-module and
P. — A a quasi-isomorphism. Equivalently, L/ 4 is the complex of B-modules constructed
using L/ 4 associated to the simplicial B-module Q2p, /4 ®p, B. If f: X — Y is a morphism
of schemes, its cotangent complex is defined as
Ly x = Loy/f-10y-
We can then define the functors
THY /X, ) : Mod(Ox) — Mod(Ox)

as T(Y/X,F) = H'(Homo, (L., F)). For any open affine V' = Spec A = Y and any open
affine U = Spec B < f~1(V) ¢ X where F = M, we obtain T*(Y /X, F)(U) = T*(B/A, M).

It appears that the vanishing of 77 characterizes smooth morphisms, whereas the vanishing
of T? characterizes relative local complete intersection morphisms:

Theorem 6.1. Let f : X — Y be a flat morphism of finite type between noetherian schemes.



(1) f is smooth if and only if TH(X/Y,F) = 0 for all coherent sheaves F on X. If this
is the case, then T*(Y /X, F) =0 for all coherent sheaves F on X.

(2) f is a relative local complete intersection if and only if T>(Y/X,F) = 0 for all
coherent sheaves F on X.

Proof. See [Har10, Theorem 4.11] and [Har10, Remark 4.13.3]. O

7. DEFORMATIONS OF SINGULARITIES

Theorem 7.1. Let k be a field and let B be a k-algebra. Then
Defp(D) = T'(B/k, B),

where Defg (D) denotes the isomorphism classes of of deformations of B over the dual
numbers D. If B is finite as a k-vector space, then Defg(D) is a finite B-module, hence a
finite dimensional k-vector space.

Proof. 1t follows from Proposition 5.2 that
TY(B/k, B) = Exaly(B, B).
Now suppose that B’ — B is a deformation of B over D. This means that B’ is flat over D,
so that the exact sequence of D-modules
0—>()>D—>k—0

induces an exact sequence of B’-modules 0 - B’ ®p (¢) > B" - B'®p k =~ B — 0. But
B'®p () = B'®pk®y (€) =~ B®y (¢) = B as k-modules so that we obtain an exact sequence
of k-vector spaces

(4) 0—>B5B 5 B0

where B ~ B'®p (¢) ¢ B’ is an ideal of square 0 in B’. Conversely, given an exact sequence
(4), we define a D-module structure on B’ by €-b = i(7(b)). Then B'®p(¢) — B’, b®e — €-b
defines an isomorphism B’ ®p (¢) =~ ¢- B’ ¢ B’. Hence (B'®p k) ®;. (¢) = B’ ®p () — B’
is injective so B’ is flat over D by Wouter’s lecture (see also [Harl0, Proposition 2.2(2)]).
Hence T} ;= Exali(B, B). The finiteness statement follows from Proposition 5.2.(4). O

Examples 7.2. (1) A cusp B = k[z,y]/(y* — 2%) has a 2-dimensional space of deforma-
tions Defg(D).
(2) An ordinary double point of a surface B = k[z,y, z]/(zy — 2?) has a 1-dimensional
space of deformations Defg(D).
(3) Let Y = IP} be the Veronese surface in Py, i.e. the image of the Veronse embedding
of P2 — 7. Then the cone X = A% over Y is rigid, i.e. Defx (D) = (0).

Proof. (Sketch) (1)&(2). Use the identification Defg (D) = Té/k (Theorem 7.1) and Corollary
5.5. For (3), we need the following:

Lemma 7.3. Let Y = Proj(B) < P, R = k[Xo,...,X,] 2 I,B = R/I be a nonsingular
projectively normal subvariety of m-dimension projective space over k. If H'(Oy(d)) =
HY(Ty(d)) = 0 for all d € Z, then the affine cone X = Spec B = A} over Y is rigid.



Proof. Since Y is projectively normal, B is integrally closed hence depth,(B) = 2; since
H'(Oy(d)) = 0 for all d, we actually have depth,(B) > 3 [Har10, Remark 5.4.1]. By [Har10,
Theorem 5.4], there is an injection T, < @aezH' (Y, Ty (d)). But H'(Y, Ty (d)) = 0 for all
deZ,so Té/k = 0, hence X is rigid by Theorem 7.1. O

We use Lemma 7.3: Y is projectively normal and H'(Oy(d)) = 0 for all d € Z. Use the
Euler sequence 0 — Opz(—1) — O3, — Tp2(—1) — 0 to obtain an exact sequence

0 — Op2(d) = Op2(d +1)° — Tp2(d) — 0

hence an exact sequence
.= HY(Op2(d)) =0 — H'(Op2(d+1)*) = 0 — H'(Tp2(d)) — H*(Op2(d)) — H*(Op2(d+1)*) — ...
from which it follows that H'(P}, Tpz(d)) = H?*(Pj, Op2(d)) = k if d = —3 and zero
otherwise, hence H' (Y, Ty (d)) = H(P?, Tp2(2d)) = 0 for each d € Z. O
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