RESOLUTION OF SINGULARITIES

Notes by OLIVIER DE GAAY FORTMAN, February 21, 2025

1 Introduction

1.1 General idea. The goal of this notes is to explain the main ideas behind the proof of Hironaka's theorem on resolutions of singularities. We work over a field k of characteristic zero.

Theorem 1.1. Let X be a variety. Then there exists a smooth variety X' and a birational projective morphism of varieties $f: X' \to X$.

1.2 **Rough sketch of the proof.** The steps are as follows:

1. Assume X quasi-projective for simplicity. Embed $X \hookrightarrow P$ for P smooth and $\operatorname{codim}(\bar{X}, P) \geq 2$. Let I be the ideal sheaf of \bar{X} . Let $Z \subset P$ smooth such that $\operatorname{maxord}(I) = \operatorname{ord}_Z(I)$. Blow up Z to get $P_1 \to P$ with $I \cdot \mathcal{O}_{P_1} = I'_1 \cdot I_1$ where I'_1 has vanishing locus contained in a SNC divisor. Prove that it suffices to show that one can repeat this procedure in such a way that $\operatorname{maxord}(I_r) < \operatorname{maxord}(I)$.

Example 1.2. Blow up \mathbb{A}^2 in the origin. Let $I = (x^2)$. Then $\operatorname{ord}_0(I) = 2$. We get $\{(x, y) \mid xz = yw\} \subset \mathbb{A}^2 \times \mathbb{P}^1$. Our ideal transforms into the ideal $y^2w^2 = 0$.

- 2. Thus, we need order reduction: let X be a smooth variety, and I an ideal. We need to show that there exists a smooth blow up sequence $X_r \to \cdots \to X_0 = X$ such that $I \cdot \mathcal{O}_{X_r} = I'_r \cdot I_r$ with $\operatorname{maxord}(I_r) < \operatorname{maxord}(I)$ (and $V(I'_r) \subset E_r$).
- 3. Key concept: a hypersurface of maximal contact for I. This is a smooth hypersurface $H \subset X$ that, among other things, has the property that for $Z \subset X$ smooth with $Z \subset V(I)$ and $\operatorname{ord}_Z(I) = m$, we have $Z \subset H$, and this remains true after blow-up. They may not exist globally, but they do exist locally.
- 4. Key idea: Construct an ideal $W(I) \subset \mathcal{O}_X$ such that order reduction for I is equivalent to order reduction of W(I), and such that W(I) behaves very nicely with respect to maximal contact hypersurfaces for W(I). (We may then in fact replace I by W(I) to assume that I itself has nice properties with respect to maximal contact hypersurfaces.) The most important property is roughly speaking: order reduction for $W(I)|_H$ implies order reduction for W(I).

- 5. Choose, for a cover of opens $U \subset X$, a maximal contact hypersurface H_U for each U with respect to $W(I)|_U$. By induction, we have functorial order reduction for $W(I)|_{H_U}$, and hence functorial order reduction for $W(I)|_U$ by construction.
- 6. Now W(I) is constructed in such a way that for any two maximal contact hypersurfaces $H, H' \subset X$ for W(I), the hypersurfaces H and H' are étale locally isomorphic in a way that preserves W(I). In particular, étale locally there is an automorphism of X that pulls back H' to H, preserves W(I), and hence gives an isomorphism $\phi \colon H \xrightarrow{\sim} H'$ compatible with $W(I)|_{H'}$ and $W(I)|_{H}$. The order reduction $H_r \to H$ for $W(I)|_H$ (obtained by induction) is functorial, and hence one obtains an isomorphism of order reductions $(H_r \to H) \cong (H'_r \to H')$. Since the order reductions for $W(I)|_H$ are in equivalence with the order reductions for W(I), the resulting order reductions for W(I) are also equivalent!
- 7. In particular, we get order reduction for $W(I)|_U$ in a way that does not depend on the chosen maximal contact hypersurface H_U .
- 8. Let V and U be opens in X, with maximal contact hypersurfaces H_V and H_U for $W(I)|_U$ and $W(I)|_V$. Consider the above constructed functorial order reductions for $W(I)|_U$ and $W(I)|_V$. By functoriality, the order reduction for $W(I)|_{U\cap V}$ is the restriction of the order reduction for $W(I)|_U$, and also of the one for $W(I)|_V$. Thus, they glue!
- 9. Consequently, these local order reductions glue to an order reduction

$$X_r \to \dots \to X_0 = X$$

for W(I). By construction of W(I), this is also an order reduction for I. We are done.

2 Different versions of resolution of singularities

- **Definition 2.1.** 1. (Resolution.) Let X be a variety. A resolution is a projective birational morphism $f: X' \to X$ such that X is smooth.
 - 2. (Strong resolution.) Let X be a variety. A strong resolution of X is a projective birational morphism $f: X' \to X$ such that

(i) X is smooth

- (ii) f is an isomorphism over the smooth locus of X
- (iii) $f^{-1}(\text{Sing})(X)$ is a simple normal crossings divisor on X'.
- 3. (Functorial resolution.) A functorial resolution is the datum of a resolution $f_X: X' \to X$ for every variety X, such that a smooth morphism $\phi: X \to Y$ lifts

to a smooth morphism $\phi' \colon X' \to Y'$ that makes the following diagram cartesian:

In particular, this gives a functor from the category of varieties and smooth morphisms to the category of smooth varieties and smooth morphisms.

4. (Embedded resolution.) Let $X \subset Y$ be a closed subvariety of a smooth variety Y. An *embedded resolution* is a sequence of blow ups

$$Y_n \to Y_{n-1} \to \dots \to Y_0 = Y$$

with smooth centers $Z_i \subset Y_i$ and strict transforms $X_i \subset Y_i$, such that Z_i does not contain any irreducible component of X_i and such that X_n is smooth.

5. ((Functorial) principalization.)

For (X, I), there is a blow up sequence $X_r \to \cdots \to X_1 \to X_0 = X$ in smooth centers $Z_i \subset X_i$, which have simple normal crossings with E_i (defined inductively as the union of the exceptional divisor of $X_i \to X_{i-1}$ with the inverse image of E_{i-1}), such that $\Pi: X_r \to X$ is an isomorphism outside V(I), such that $I \cdot \mathcal{O}_{X_r}$ has vanishing locus contained in a simple normal crossings divisor; and such that this commutes with smooth morphisms.

Lemma 2.2. Functorial principalization implies:

- (i) Strong embedded resolution for quasi-projective varieties.
- (ii) Strong functorial resolution for varieties.

Proof. (i) Choose an embedding $X \hookrightarrow \overline{X} \hookrightarrow P$ with P smooth and $\operatorname{codim}(\overline{X}, P) \ge 2$. Let I be the ideal sheaf. Show that a sequence of smooth blow-ups $\Pi: P_r \to \cdots \to P$ that makes I_r locally principal, gives a resolution of \overline{X} . Namely, "by accident", for some $j, Z_j \subset P_j$ maps onto \overline{X} and $Z_j \to \overline{X}$ is birational. Since Z_j is smooth, this gives a resolution.

(Idea: since $\operatorname{codim}(X, P) \geq 2$, we have that I is not locally principal at η_X . But $\Pi^*(I)$ is locally principal, so η_X lies in the locus of P where $\Pi \colon P' \to P$ is not an isomorphism. Thus, we can lift $\eta_X \in P$ to $\eta_X \in P_j$ for a unique j such that $P_j \to P$ is a local isomorphism at $\eta_X \in P_j$ and $P_{j+1} \to P_j$ is a blow up with center $Z_j \subset P_j$. This is the j that we are looking for.)

(ii) Cover X with open affine subset U, and for each U, choose a closed embeddings $U \hookrightarrow \mathbb{A}^n =: Y$. As in the above proof, we get an embedded resolution $Y' = Y_n \to \cdots \to Y_1 \to Y_0 = Y$ of $U \subset Y$. The first thing to show is that the resulting resolution $U' \to U$ does not depend on the embedding of U in any smooth variety; this holds, because the principalization procedure can be assumed to commute with closed embeddings (in an appropriate way), and the fact that any two embeddings $\iota_1 : U \hookrightarrow \mathbb{A}^n$ and $\iota_2 : U \hookrightarrow \mathbb{A}^m$ become equivalent under an automorphism of \mathbb{A}^{n+m} . This proves the

desired resolution for affine varieties, which is functorial because of the functoriality of principalization. It remains to prove that one can glue together a global resolution out of the local resolutions; this follows from functoriality. \Box

Example 2.3. Consider the cuspidal curve $X \subset Y = \mathbb{A}^2$. We need to do four blow ups to arrive at principalization, whereas only one blow up already sufficed for resolution.

3 From order reduction to principalization

1. (Principalization):

Let X be a smooth variety and I an ideal sheaf. There exists a functorial smooth blow-up sequence $\Pi: X' \to X$ such that $I' = I \cdot \mathcal{O}_{X'}$ becomes monomial.

2. Let $a = \max \operatorname{ord}(I)$. Let $Z \subset X$ be smooth such that $\operatorname{ord}_Z(I) = a$. If $X'_1 \to X$ is the blow up of Z, then we have the crucial formula

 $I \cdot \mathcal{O}_{X'_1} = \mathcal{O}(-E_1)^a \cdot I_1$ for some ideal I_1 with maxord $(I_1) \le a$.

In particular, applying successive blow ups in smooth centers $Z_i \subset X_i$ with $\operatorname{ord}_{Z_i}(I_i) = a$ as long as $\operatorname{maxord}(I_i) = a$, we get

$$I \cdot \mathcal{O}_{X_i} = \mathcal{O}(-E_i)^a \cdot I_i, \quad \text{maxord}(I_i) \le a.$$

If we can reduce maxord (I_r) (via successive blow-ups) such that maxord $(I_r) = 0$, then $I\mathcal{O}_{X_r} = \mathcal{O}(-E_r)^a$ is an invertible ideal cosupported on the exceptional divisor $E_r \subset X_r$ of the sequence, defined recursively by $E_{i+1} = \pi_i^{-1}(E_i) + F_i$ where F_i is the exceptional divisor of $\pi_i \colon X_{i+1} \to X_1$. Since E_r is supported on a SNC divisor, we have $I \cdot \mathcal{O}_{X_r} = \mathcal{O}(-E_r)^a$ is therefore monomial, and we win.

4 Proof of order reduction

1. By the above, we are reduced to:

(Functorial order reduction for ideals.) Let X be a smooth variety, $E_0 \subset X$ a simple normal crossings divisor, and I an ideal sheaf, with maxord(I) = m. Then, there exists a smooth blow up sequence $X_r \to X_{r-1} \to \cdots \to X_1 \to X_0 = X$ with centers $Z_i \subset X_i$ such that $\operatorname{ord}_{Z_i}(I_i) = m$, such that Z_i has normal crossings with E_i for each i < r, and such that $\max(I_r) < m$.

2. For simplicity, we shall prove:

(Order reduction for ideals, forgetting about divisors.) Let X be a smooth variety and I an ideal sheaf, with $\max \operatorname{ord}(I) = m$. Then, there exists a smooth blow up sequence $X_r \to X_{r-1} \to \cdots \to X_1 \to X_0 = X$ with centers $Z_i \subset X_i$ such that $\operatorname{ord}_{Z_i}(I_i) = m$, such that $\max \operatorname{ord}(I_r) < m$. 3. To prove this, we will also need to prove:

(Order reduction for marked ideals.) Let (I, m) be a marked ideal, such that $\max \operatorname{maxord}(I) \geq m$. There exists a smooth blow up sequence $X_r \to X_{r-1} \to \cdots \to X_1 \to X_0 = X$ with centers $Z_i \subset X_i$ such that $\operatorname{ord}_{Z_i}(I_i) \geq m$, such that $\max \operatorname{maxord}(I_r) < m$.

- 4. One proves that order reduction for ideals in dimension n implies order reduction for marked ideals in dimension n. This is relatively easy.
- 5. We want to prove order reduction by induction. Let $a = \max \operatorname{ord}(I)$. Let $p \in X$ with $\operatorname{ord}_p(I) = a$. We show that, for some open neighbourhood $p \in U \subset X$, there exists a smooth hypersurface $H_U \subset U$ such that for every blow-up sequence $U_r \to U_{r-1} \to \cdots \to U_1 \to U$ in smooth centers $Z_i \subset U_i$ with $\operatorname{ord}_{Z_i}((I_U)_i) = a$, we have $Z_i \subset (H_U)_i$ (=the strict transform of $(H_U)_{i-1}$ under $\pi_i \colon X_i \to X_{i-1}$); we may also assume that this property remains true after restricting to an open subset of U. Such a hypersurface $H_U \subset U$ is called a hypersurface of maximal contact. It seems quite a miracle that these hypersurfaces exist locally.
- 6. From our ideal $I \subset \mathcal{O}_X$ with maxord(I) = m we construct an ideal W(I) with maxord(W(I)) = m! that has the following properties:
 - (a) Blow-up sequences of order m for (X, I) are blow-up sequences of order m! for (X, W(I)), and conversely. Moreover, for any such a sequence, the maximal order of I drops if and only if the maximal order of W(I) drops.
 - (b) For any hypersurface of maximal contact H, blow-up sequences of order m! for W(I) are blow-up sequences of order $\geq m!$ for $(H, W(I)|_H, m!)$ and conversely.
 - (c) For any two hypersurfaces of maximal contact $H, H' \subset X$, there are étale surjections $\psi, \psi' \colon U \rightrightarrows X$, such that $\psi^{-1}(H) = (\psi')^{-1}(H')$ and $\psi^*(W(I)) = (\psi')^*(W(I))$.
- 7. We can now start the proof. By induction, we have order induction for ideals in dimension n-1. By Step 4, this implies order induction for marked ideals in dimension n-1. Consider the ideal W(I) constructed in Step 6. Pick $p \in X$ with $\operatorname{ord}_p(I) = m = \operatorname{maxord}(I)$. Let $p \in U \subset X$ be an open neighbourhood and $H_U \subset U$ a hypersurface of maximal contact with respect to $W(I)|_U$. By order reduction for marked ideals in dimension n-1, we get a functorial blow up sequence

$$(H_U)_r \to \cdots \to (H_U)_1 \to H_U$$

that reduces the order of $W(I)|_{H_U}$. By construction, this is a functorial order reduction for $W(I)|_U$, which is independent of H by property (6c). By functoriality, these order reductions glue to an order reduction $X_r \to \cdots \to X_0 = X$, and we are done.