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RESOLUTION OF SINGULARITIES

Notes by OLIVIER DE GAAY FORTMAN, February 21, 2025

1 Introduction

General idea. The goal of this notes is to explain the main ideas behind the proof
of Hironaka’s theorem on resolutions of singularities. We work over a field & of char-
acteristic zero.

Theorem 1.1. Let X be a variety. Then there exists a smooth variety X' and a
birational projective morphism of varieties f: X' — X.

Rough sketch of the proof. The steps are as follows:

1. Assume X quasi-projective for simplicity. Embed X < P for P smooth and
codim(X, P) > 2. Let I be the ideal sheaf of X. Let Z C P smooth such that
maxord (/) = ordz(I). Blow up Z to get P, — P with [ - Op, = I} - I; where I
has vanishing locus contained in a SNC divisor. Prove that it suffices to show
that one can repeat this procedure in such a way that maxord(/,) < maxord([).

Example 1.2. Blow up A? in the origin. Let I = (2?). Then ordy(/) = 2. We
get {(x,y) | zz = yw} C A? x P1. Our ideal transforms into the ideal y*w? = 0.

2. Thus, we need order reduction: let X be a smooth variety, and I an ideal. We
need to show that there exists a smooth blow up sequence X, — --- — Xg =X
such that I - Ox, = I/ - I, with maxord(/,) < maxord([) (and V(I]) C E,).

3. Key concept: a hypersurface of maximal contact for I. This is a smooth hy-
persurface H C X that, among other things, has the property that for Z7 C X
smooth with Z C V(I) and ordz(I) = m, we have Z C H, and this remains true
after blow-up. They may not exist globally, but they do exist locally.

4. Key idea: Construct an ideal W (I) C Ox such that order reduction for I is
equivalent to order reduction of W(I), and such that W (I) behaves very nicely
with respect to maximal contact hypersurfaces for W (7). (We may then in
fact replace I by W (I) to assume that [ itself has nice properties with respect
to maximal contact hypersurfaces.) The most important property is roughly
speaking: order reduction for W (I)|y implies order reduction for W (I).



5. Choose, for a cover of opens U C X, a maximal contact hypersurface Hy for
each U with respect to W (I)|y. By induction, we have functorial order reduction
for W(I)|n,, and hence functorial order reduction for W (I)|y by construction.

6. Now W(I) is constructed in such a way that for any two maximal contact hy-
persurfaces H, H' C X for W (I), the hypersurfaces H and H’ are étale locally
isomorphic in a way that preserves W (I). In particular, étale locally there is an
automorphism of X that pulls back H' to H, preserves W (I), and hence gives
an isomorphism ¢: H = H' compatible with W (I)|z and W (I)|y. The order
reduction H, — H for W(I)|y (obtained by induction) is functorial, and hence
one obtains an isomorphism of order reductions (H, — H) = (H. — H'). Since
the order reductions for W (I)|g are in equivalence with the order reductions for
W (I), the resulting order reductions for W (I) are also equivalent!

7. In particular, we get order reduction for W (I)|y in a way that does not depend
on the chosen maximal contact hypersurface Hy .

8. Let V and U be opens in X, with maximal contact hypersurfaces Hy and Hy for
W (I)|y and W (I)|y. Consider the above constructed functorial order reductions
for W(I)|y and W(I)|y. By functoriality, the order reduction for W (I)|yny is
the restriction of the order reduction for W (I)|y, and also of the one for W (I)|y .
Thus, they glue!

9. Consequently, these local order reductions glue to an order reduction
X, == X=X

for W(I). By construction of W (I), this is also an order reduction for /. We are
done.

2 Different versions of resolution of singularities

Definition 2.1. 1. (Resolution.) Let X be a variety. A resolution is a projective
birational morphism f: X’ — X such that X is smooth.

2. (Strong resolution.) Let X be a variety. A strong resolution of X is a projective
birational morphism f: X’ — X such that
(i) X is smooth
(ii) f is an isomorphism over the smooth locus of X
(iii) f~*(Sing)(X) is a simple normal crossings divisor on X’.

3. (Functorial resolution.) A functorial resolution is the datum of a resolution
fx: X' — X for every variety X, such that a smooth morphism ¢: X — Y lifts



to a smooth morphism ¢': X’ — Y’ that makes the following diagram cartesian:

X —Y’

||

X ——Y.

In particular, this gives a functor from the category of varieties and smooth
morphisms to the category of smooth varieties and smooth morphisms.

4. (Embedded resolution.) Let X C Y be a closed subvariety of a smooth variety
Y. An embedded resolution is a sequence of blow ups

Y, =Y, 11— =Y=Y

with smooth centers Z; C Y; and strict transforms X; C Yj;, such that Z; does
not contain any irreducible component of X; and such that X, is smooth.

5. ((Functorial) principalization.)

For (X, I), there is a blow up sequence X, — --- — X; — Xy = X in smooth
centers Z; C X;, which have simple normal crossings with F; (defined inductively
as the union of the exceptional divisor of X; — X;_; with the inverse image of
E;_1), such that IT: X, — X is an isomorphism outside V'(I), such that I - Oy,
has vanishing locus contained in a simple normal crossings divisor; and such that
this commutes with smooth morphisms.

Lemma 2.2. Functorial principalization implies:
(1) Strong embedded resolution for quasi-projective varieties.
(11) Strong functorial resolution for varieties.

Proof. (i) Choose an embedding X < X < P with P smooth and codim(X, P) > 2.
Let I be the ideal sheaf. Show that a sequence of smooth blow-ups Il: P. — --- — P
that makes I, locally principal, gives a resolution of X. Namely, "by accident", for
some j, Z; C P; maps onto X and Z; — X is birational. Since Z; is smooth, this
gives a resolution.

(Idea: since codim (X, P) > 2, we have that [ is not locally principal at nx. But
IT*(I) is locally principal, so nx lies in the locus of P where II: P — P is not an
isomorphism. Thus, we can lift nx € P to nx € P, for a unique j such that P, — P
is a local isomorphism at nx € P; and P;;; — P; is a blow up with center Z; C P;.
This is the j that we are looking for.)

(i) Cover X with open affine subset U, and for eacah U, choose a closed embeddings
U — A" =Y. Asin the above proof, we get an embedded resolution Y’ =Y, — -+ —
Y1 =2 Yo=Y of U C Y. The first thing to show is that the resulting resolution U’ — U
does not depend on the embedding of U in any smooth variety; this holds, because
the principalization procedure can be assumed to commute with closed embeddings
(in an appropriate way), and the fact that any two embeddings ¢1: U < A" and
ty: U — A™ become equivalent under an automorphism of A"*™. This proves the



desired resolution for affine varieties, which is functorial because of the functoriality
of principalization. It remains to prove that one can glue together a global resolution
out of the local resolutions; this follows from functoriality. m

Example 2.3. Consider the cuspidal curve X C Y = A% We need to do four blow ups
to arrive at principalization, whereas only one blow up already sufficed for resolution.

3 From order reduction to principalization

1. (Principalization):

Let X be a smooth variety and I an ideal sheaf. There exists a functorial smooth
blow-up sequence II: X’ — X such that I’ = I - Ox/ becomes monomial.

2. Let a = maxord(/). Let Z C X be smooth such that ordz(I) = a. If X] - X
is the blow up of Z, then we have the crucial formula

I-Ox;=0(-E)" 1 for some ideal I; with maxord([;) < a.

In particular, applying successive blow ups in smooth centers Z; C X; with
ordz, (I;) = a as long as maxord([;) = a, we get

I-Ox,=0(—E)*- I maxord(/;) < a.

If we can reduce maxord(/,) (via successive blow-ups) such that maxord(1,) = 0,
then /Ox, = O(—FE,)* is an invertible ideal cosupported on the exceptional
divisor B, C X, of the sequence, defined recursively by E;;1 = m; Y(E;) + F;
where F; is the exceptional divisor of m;: X;,; — X;. Since E, is supported on

a SNC divisor, we have I - Ox, = O(—FE,)" is therefore monomial, and we win.

4 Proof of order reduction

1. By the above, we are reduced to:

(Functorial order reduction for ideals.) Let X be a smooth variety, Fy C X
a simple normal crossings divisor, and I an ideal sheaf, with maxord(l) = m.
Then, there exists a smooth blow up sequence X, — X, ; — -+ — X; —
Xo = X with centers Z; C X; such that ordy, (I;) = m, such that Z; has normal
crossings with E; for each i < r, and such that maxord(/,) < m.

2. For simplicity, we shall prove:

(Order reduction for ideals, forgetting about divisors.) Let X be a smooth variety
and I an ideal sheaf, with maxord(/) = m. Then, there exists a smooth blow up
sequence X, — X,_1 — -+ = X7 — Xg = X with centers Z; C X, such that
ordg, (I;) = m, such that maxord(I,) < m.



. To prove this, we will also need to prove:

(Order reduction for marked ideals.) Let (I,m) be a marked ideal, such that
maxord(/) > m. There exists a smooth blow up sequence X, — X, ; —
- = X7 — Xo = X with centers Z; C X; such that ordz, (I;) > m, such that
maxord([,) < m.

. One proves that order reduction for ideals in dimension n implies order reduction
for marked ideals in dimension n. This is relatively easy.

. We want to prove order reduction by induction. Let a = maxord([). Let p € X
with ord,(/) = a. We show that, for some open neighbourhood p € U C X,
there exists a smooth hypersurface Hy C U such that for every blow-up sequence
U. = U, — - — Uy — U in smooth centers Z; C U; with ordy, ((Iy);) = a,
we have Z; C (Hy); (=the strict transform of (Hy);—; under m;: X; — X, 1);
we may also assume that this property remains true after restricting to an open
subset of U. Such a hypersurface Hy C U is called a hypersurface of maximal
contact. It seems quite a miracle that these hypersurfaces exist locally.

. From our ideal I C Ox with maxord(/) = m we construct an ideal W (I) with
maxord(W (1)) = m! that has the following properties:

(a) Blow-up sequences of order m for (X, ) are blow-up sequences of order
m! for (X, W(I)), and conversely. Moreover, for any such a sequence, the
maximal order of I drops if and only if the maximal order of W (I) drops.

(b) For any hypersurface of maximal contact H, blow-up sequences of order
m! for W(I) are blow-up sequences of order > m! for (H, W (I)|g, m!) and
conversely.

(c) For any two hypersurfaces of maximal contact H, H' C X, there are étale
surjections ¥, v¢': U = X, such that v~ *(H) = (¢/)"'(H') and *(W (1)) =
(W) (W(1)).

. We can now start the proof. By induction, we have order induction for ideals in
dimension n — 1. By Step 4, this implies order induction for marked ideals in
dimension n — 1. Consider the ideal W ([) constructed in Step 6. Pick p € X
with ord,(/) = m = maxord(/). Let p € U C X be an open neighbourhood
and Hy C U a hypersurface of maximal contact with respect to W (I)|y. By
order reduction for marked ideals in dimension n — 1, we get a functorial blow
up sequence
(HU)T‘ — s = (HU)l — HU

that reduces the order of W(I)|g,. By construction, this is a functorial order
reduction for W (I)|y;, which is independent of H by property (6¢). By functo-
riality, these order reductions glue to an order reduction X, — --- — Xy = X,
and we are done. O



	Introduction
	
	

	Different versions of resolution of singularities
	From order reduction to principalization
	Proof of order reduction

