
RESOLUTION OF SINGULARITIES

Notes by Olivier de Gaay Fortman, February 21, 2025

1 Introduction

1.1 General idea. The goal of this notes is to explain the main ideas behind the proof
of Hironaka’s theorem on resolutions of singularities. We work over a field k of char-
acteristic zero.

Theorem 1.1. Let X be a variety. Then there exists a smooth variety X ′ and a
birational projective morphism of varieties f : X ′ → X.

1.2 Rough sketch of the proof. The steps are as follows:

1. Assume X quasi-projective for simplicity. Embed X ↪→ P for P smooth and
codim(X̄, P ) ≥ 2. Let I be the ideal sheaf of X̄. Let Z ⊂ P smooth such that
maxord(I) = ordZ(I). Blow up Z to get P1 → P with I · OP1 = I ′1 · I1 where I ′1
has vanishing locus contained in a SNC divisor. Prove that it suffices to show
that one can repeat this procedure in such a way that maxord(Ir) < maxord(I).

Example 1.2. Blow up A2 in the origin. Let I = (x2). Then ord0(I) = 2. We
get {(x, y) | xz = yw} ⊂ A2 × P1. Our ideal transforms into the ideal y2w2 = 0.

2. Thus, we need order reduction: let X be a smooth variety, and I an ideal. We
need to show that there exists a smooth blow up sequence Xr → · · · → X0 = X
such that I · OXr = I ′r · Ir with maxord(Ir) < maxord(I) (and V (I ′r) ⊂ Er).

3. Key concept: a hypersurface of maximal contact for I. This is a smooth hy-
persurface H ⊂ X that, among other things, has the property that for Z ⊂ X
smooth with Z ⊂ V (I) and ordZ(I) = m, we have Z ⊂ H, and this remains true
after blow-up. They may not exist globally, but they do exist locally.

4. Key idea: Construct an ideal W (I) ⊂ OX such that order reduction for I is
equivalent to order reduction of W (I), and such that W (I) behaves very nicely
with respect to maximal contact hypersurfaces for W (I). (We may then in
fact replace I by W (I) to assume that I itself has nice properties with respect
to maximal contact hypersurfaces.) The most important property is roughly
speaking: order reduction for W (I)|H implies order reduction for W (I).
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5. Choose, for a cover of opens U ⊂ X, a maximal contact hypersurface HU for
each U with respect toW (I)|U . By induction, we have functorial order reduction
for W (I)|HU

, and hence functorial order reduction for W (I)|U by construction.

6. Now W (I) is constructed in such a way that for any two maximal contact hy-
persurfaces H,H ′ ⊂ X for W (I), the hypersurfaces H and H ′ are étale locally
isomorphic in a way that preserves W (I). In particular, étale locally there is an
automorphism of X that pulls back H ′ to H, preserves W (I), and hence gives
an isomorphism φ : H

∼−→ H ′ compatible with W (I)|H′ and W (I)|H . The order
reduction Hr → H for W (I)|H (obtained by induction) is functorial, and hence
one obtains an isomorphism of order reductions (Hr → H) ∼= (H ′r → H ′). Since
the order reductions for W (I)|H are in equivalence with the order reductions for
W (I), the resulting order reductions for W (I) are also equivalent!

7. In particular, we get order reduction for W (I)|U in a way that does not depend
on the chosen maximal contact hypersurface HU .

8. Let V and U be opens in X, with maximal contact hypersurfaces HV and HU for
W (I)|U andW (I)|V . Consider the above constructed functorial order reductions
for W (I)|U and W (I)|V . By functoriality, the order reduction for W (I)|U∩V is
the restriction of the order reduction forW (I)|U , and also of the one forW (I)|V .
Thus, they glue!

9. Consequently, these local order reductions glue to an order reduction

Xr → · · · → X0 = X

for W (I). By construction of W (I), this is also an order reduction for I. We are
done.

2 Different versions of resolution of singularities

Definition 2.1. 1. (Resolution.) Let X be a variety. A resolution is a projective
birational morphism f : X ′ → X such that X is smooth.

2. (Strong resolution.) Let X be a variety. A strong resolution of X is a projective
birational morphism f : X ′ → X such that

(i) X is smooth

(ii) f is an isomorphism over the smooth locus of X

(iii) f−1(Sing)(X) is a simple normal crossings divisor on X ′.

3. (Functorial resolution.) A functorial resolution is the datum of a resolution
fX : X ′ → X for every variety X, such that a smooth morphism φ : X → Y lifts
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to a smooth morphism φ′ : X ′ → Y ′ that makes the following diagram cartesian:

X ′

��

// Y ′

��

X // Y.

In particular, this gives a functor from the category of varieties and smooth
morphisms to the category of smooth varieties and smooth morphisms.

4. (Embedded resolution.) Let X ⊂ Y be a closed subvariety of a smooth variety
Y . An embedded resolution is a sequence of blow ups

Yn → Yn−1 → · · · → Y0 = Y

with smooth centers Zi ⊂ Yi and strict transforms Xi ⊂ Yi, such that Zi does
not contain any irreducible component of Xi and such that Xn is smooth.

5. ((Functorial) principalization.)

For (X, I), there is a blow up sequence Xr → · · · → X1 → X0 = X in smooth
centers Zi ⊂ Xi, which have simple normal crossings with Ei (defined inductively
as the union of the exceptional divisor of Xi → Xi−1 with the inverse image of
Ei−1), such that Π: Xr → X is an isomorphism outside V (I), such that I · OXr

has vanishing locus contained in a simple normal crossings divisor; and such that
this commutes with smooth morphisms.

Lemma 2.2. Functorial principalization implies:
(i) Strong embedded resolution for quasi-projective varieties.
(ii) Strong functorial resolution for varieties.

Proof. (i) Choose an embedding X ↪→ X̄ ↪→ P with P smooth and codim(X̄, P ) ≥ 2.
Let I be the ideal sheaf. Show that a sequence of smooth blow-ups Π: Pr → · · · → P
that makes Ir locally principal, gives a resolution of X̄. Namely, "by accident", for
some j, Zj ⊂ Pj maps onto X̄ and Zj → X̄ is birational. Since Zj is smooth, this
gives a resolution.

(Idea: since codim(X,P ) ≥ 2, we have that I is not locally principal at ηX . But
Π∗(I) is locally principal, so ηX lies in the locus of P where Π: P ′ → P is not an
isomorphism. Thus, we can lift ηX ∈ P to ηX ∈ Pj for a unique j such that Pj → P
is a local isomorphism at ηX ∈ Pj and Pj+1 → Pj is a blow up with center Zj ⊂ Pj.
This is the j that we are looking for.)

(ii) CoverX with open affine subset U , and for eacah U , choose a closed embeddings
U ↪→ An =: Y . As in the above proof, we get an embedded resolution Y ′ = Yn → · · · →
Y1 → Y0 = Y of U ⊂ Y . The first thing to show is that the resulting resolution U ′ → U
does not depend on the embedding of U in any smooth variety; this holds, because
the principalization procedure can be assumed to commute with closed embeddings
(in an appropriate way), and the fact that any two embeddings ι1 : U ↪→ An and
ι2 : U ↪→ Am become equivalent under an automorphism of An+m. This proves the
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desired resolution for affine varieties, which is functorial because of the functoriality
of principalization. It remains to prove that one can glue together a global resolution
out of the local resolutions; this follows from functoriality.

Example 2.3. Consider the cuspidal curve X ⊂ Y = A2. We need to do four blow ups
to arrive at principalization, whereas only one blow up already sufficed for resolution.

3 From order reduction to principalization

1. (Principalization):

Let X be a smooth variety and I an ideal sheaf. There exists a functorial smooth
blow-up sequence Π: X ′ → X such that I ′ = I · OX′ becomes monomial.

2. Let a = maxord(I). Let Z ⊂ X be smooth such that ordZ(I) = a. If X ′1 → X
is the blow up of Z, then we have the crucial formula

I · OX′
1

= O(−E1)
a · I1 for some ideal I1 with maxord(I1) ≤ a.

In particular, applying successive blow ups in smooth centers Zi ⊂ Xi with
ordZi

(Ii) = a as long as maxord(Ii) = a, we get

I · OXi
= O(−Ei)

a · Ii, maxord(Ii) ≤ a.

If we can reduce maxord(Ir) (via successive blow-ups) such that maxord(Ir) = 0,
then IOXr = O(−Er)

a is an invertible ideal cosupported on the exceptional
divisor Er ⊂ Xr of the sequence, defined recursively by Ei+1 = π−1i (Ei) + Fi

where Fi is the exceptional divisor of πi : Xi+1 → X1. Since Er is supported on
a SNC divisor, we have I · OXr = O(−Er)

a is therefore monomial, and we win.

4 Proof of order reduction

1. By the above, we are reduced to:

(Functorial order reduction for ideals.) Let X be a smooth variety, E0 ⊂ X
a simple normal crossings divisor, and I an ideal sheaf, with maxord(I) = m.
Then, there exists a smooth blow up sequence Xr → Xr−1 → · · · → X1 →
X0 = X with centers Zi ⊂ Xi such that ordZi

(Ii) = m, such that Zi has normal
crossings with Ei for each i < r, and such that maxord(Ir) < m.

2. For simplicity, we shall prove:

(Order reduction for ideals, forgetting about divisors.) LetX be a smooth variety
and I an ideal sheaf, with maxord(I) = m. Then, there exists a smooth blow up
sequence Xr → Xr−1 → · · · → X1 → X0 = X with centers Zi ⊂ Xi such that
ordZi

(Ii) = m, such that maxord(Ir) < m.
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3. To prove this, we will also need to prove:

(Order reduction for marked ideals.) Let (I,m) be a marked ideal, such that
maxord(I) ≥ m. There exists a smooth blow up sequence Xr → Xr−1 →
· · · → X1 → X0 = X with centers Zi ⊂ Xi such that ordZi

(Ii) ≥ m, such that
maxord(Ir) < m.

4. One proves that order reduction for ideals in dimension n implies order reduction
for marked ideals in dimension n. This is relatively easy.

5. We want to prove order reduction by induction. Let a = maxord(I). Let p ∈ X
with ordp(I) = a. We show that, for some open neighbourhood p ∈ U ⊂ X,
there exists a smooth hypersurface HU ⊂ U such that for every blow-up sequence
Ur → Ur−1 → · · · → U1 → U in smooth centers Zi ⊂ Ui with ordZi

((IU)i) = a,
we have Zi ⊂ (HU)i (=the strict transform of (HU)i−1 under πi : Xi → Xi−1);
we may also assume that this property remains true after restricting to an open
subset of U . Such a hypersurface HU ⊂ U is called a hypersurface of maximal
contact. It seems quite a miracle that these hypersurfaces exist locally.

6. From our ideal I ⊂ OX with maxord(I) = m we construct an ideal W (I) with
maxord(W (I)) = m! that has the following properties:

(a) Blow-up sequences of order m for (X, I) are blow-up sequences of order
m! for (X,W (I)), and conversely. Moreover, for any such a sequence, the
maximal order of I drops if and only if the maximal order of W (I) drops.

(b) For any hypersurface of maximal contact H, blow-up sequences of order
m! for W (I) are blow-up sequences of order ≥ m! for (H,W (I)|H ,m!) and
conversely.

(c) For any two hypersurfaces of maximal contact H,H ′ ⊂ X, there are étale
surjections ψ, ψ′ : U ⇒ X, such that ψ−1(H) = (ψ′)−1(H ′) and ψ∗(W (I)) =
(ψ′)∗(W (I)).

7. We can now start the proof. By induction, we have order induction for ideals in
dimension n − 1. By Step 4, this implies order induction for marked ideals in
dimension n − 1. Consider the ideal W (I) constructed in Step 6. Pick p ∈ X
with ordp(I) = m = maxord(I). Let p ∈ U ⊂ X be an open neighbourhood
and HU ⊂ U a hypersurface of maximal contact with respect to W (I)|U . By
order reduction for marked ideals in dimension n − 1, we get a functorial blow
up sequence

(HU)r → · · · → (HU)1 → HU

that reduces the order of W (I)|HU
. By construction, this is a functorial order

reduction for W (I)|U , which is independent of H by property (6c). By functo-
riality, these order reductions glue to an order reduction Xr → · · · → X0 = X,
and we are done.
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