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Hyperbolic geometry and real moduli of five

points on the line

Olivier de Gaay Fortman

Abstract

We show that each connected component of the moduli space of smooth real binary
quintics is isomorphic to an open subset of an arithmetic quotient of the real hyperbolic
plane. Moreover, our main result says that the induced metric on this moduli space
extends to a complete real hyperbolic orbifold structure on the space of stable real
binary quintics. This turns the moduli space of stable real binary quintics into the
quotient of the real hyperbolic plane by an explicit non-arithmetic triangle group.

1. Introduction

For interesting classes of complex varieties, there is a period map that identifies the moduli
space with an open subset of an arithmetic quotient of a hermitian symmetric domain. Classical
examples include abelian varieties, K3-surfaces, and configurations of points on the line. To study
moduli of real algebraic varieties, several authors have analyzed the equivariance of the complex
period map with respect to the action of complex conjugation on cohomology [Kha76, Nik79,
Kha84, SS89, Yos98, AY98, DIK00]. An important difference between the complex and the real
case is that moduli spaces of smooth real varieties are often not connected. This implies that a
real period map has to be defined on each connected component of the moduli space separately;
in favorable cases, this defines an isomorphism between any such component and the quotient of a
Riemannian manifold by a discrete group of isometries (see e.g. [GH81, ACT10, Chu11, HR18]).

To salvage the non-connectedness of the real moduli space, one can sometimes define a
slightly larger moduli space by allowing mild singularities. The idea is that, in such a larger space,
the smooth varieties of one topological type do now deform into smooth varieties of another
topological type, making the moduli space connected . In their beautiful paper [ACT10], Allcock,
Carlson and Toledo showed that, for cubic surfaces, the real period maps defined on the various
connected components of the moduli space of smooth surfaces extend to a global period map,
defined on the moduli space of stable real cubic surfaces. In this way, they identified the latter
with a single non-arithmetic real hyperbolic quotient. They proved analogous results for moduli
of stable binary sextics, and stable binary sextics with a double root at infinity [ACT06; ACT07].
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It turns out that binary quintics provide a new example of this phenomenon. Let X ∼= A6
R be

the real algebraic variety that parametrizes homogeneous polynomials F ∈R[x, y] of degree five.
Let X0 ⊂X parametrize polynomials with distinct roots, and Xs ⊂X polynomials with roots
of multiplicity at most two (i.e. stable in the sense of geometric invariant theory). The principal
goal of this paper is to study the geometry of the moduli space of stable real binary quintics

Ms(R) := GL2(R) \Xs(R) ⊃ GL2(R) \X0(R) =: M0(R).

Let Ps ⊂P1(C)5 be the set of five-tuples (x1, . . . , x5) such that no three xi ∈P1(C) coincide
(cf. [MS72]), and let P0 ⊂ Ps be the subset of five-tuples whose coordinates are distinct. These
spaces are naturally acted upon by S5, the symmetric group on five letters. Moreover, complex
conjugation σ : P1(C)5 →P1(C)5 induces an anti-holomorphic involution σ : Ps/S5 → Ps/S5

that preserves P0/S5. Let (P0/S5)(R) and (Ps/S5)(R) denote the respective fixed loci. Then

M0(R) ∼= PGL2(R) \ (P0/S5)(R) and Ms(R) ∼= PGL2(R) \ (Ps/S5)(R).

In other words, M0(R) is the space of subsets S ⊂P1(C) of cardinality |S| = 5 that are stable
under complex conjugation modulo real projective transformations; in Ms(R) one or two pairs
of points are allowed to collapse.

By the Deligne–Mostow theory, the coarse moduli space Ms(C) = GL2(C) \Xs(C) of stable
complex binary quintics has a complex hyperbolic orbifold structure. Indeed, for five distinct
points u1, . . . , u5 ∈A1(C) ⊂P1(C), the projective model of the normalization of the affine
curve z5 = (x− u1)

2 · · · (x− u5)
2 is a smooth curve C of genus six; this curve C carries an

automorphism of order five that induces an automorphism on the space H0(C, Ω1
C) of holomor-

phic one-forms on C whose e2πi/5-eigenspace defines a line in the corresponding eigenspace in
H1(C(C),C). This line is negative for a natural hermitian form, and hence one can associate to
{u1, . . . , u5} a point in a certain two-dimensional complex ball quotient PΓ \CH2. This con-
struction was already known to Shimura; see [Shi63; Shi64]. By varying the subset {u1, . . . , u5}
of points on P1(C), or rather the associated complex binary quintic, one obtains a period map
M0(C) = GL2(C) \X0(C) → PΓ \CH2 (see Section 4.1 for details). The results of Deligne and
Mostow [DM86] imply that this period map extends to an isomorphism of complex analytic
spaces Ms(C) = GL2(C) \Xs(C)

∼−→ PΓ \CH2; see Theorem 4.1. Since strictly stable quintics
correspond to points in a hyperplane arrangement H ⊂CH2 (see Proposition 4.3), one thus
obtains an isomorphism

M0(C) = GL2(C) \X0(C)
∼−→ PΓ \ (CH2 −H

)
. (1)

By investigating the equivariance of the period map with respect to suitable anti-holomorphic
involutions αj : CH2 →CH2, we obtain the following real analogue.

Theorem 1.1. For j ∈ {0, 1, 2}, let Mj be the connected component of M0(R) parametrizing
Gal(C/R)-stable subsets S ⊂P1(C) with 2j complex and 5 − 2j real points. The period map
induces an isomorphism of real analytic orbifolds

Mj
∼−→ PΓj \

(
RH2 −Hj

)
. (2)

Here RH2 is the real hyperbolic plane, Hj a union of geodesic subspaces in RH2, and PΓj

an arithmetic lattice in PO(2, 1). Moreover, the lattices PΓj are projective orthogonal groups
attached to explicit quadratic forms over Z[λ], λ = ζ5 + ζ−1

5 = (
√

5 − 1)/2; see (41).

In particular, Theorem 1.1 endows each connected component Mj ⊂M0(R) with a hyper-
bolic metric. Since one can deform the topological type of a Gal(C/R)-stable five-element subset
of P1(C) by allowing two points to collide, the compactification Ms(R) ⊃M0(R) is connected.

2
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Hyperbolic geometry and real moduli of five points on the line

Figure 1. The moduli space of stable real binary quintics as the hyperbolic triangle
Δ3,5,10 ⊂RH2. Here λ = ζ5 + ζ−1

5 = (
√

5 − 1)/2 and ω = ζ3 (where ζn = e2πi/n ∈C for n∈Z≥3).

One may wonder whether the metrics on the components Mj extend to a metric on the whole of
Ms(R). If so, what does the resulting space look like at the boundary? Our main result answers
these questions in the following way.

Theorem 1.2. There exists a complete hyperbolic metric on Ms(R) that restricts to the met-
rics on Mj induced by (2). Let MR denote the resulting metric space, and define Γ3,5,10 as
the group

Γ3,5,10 = 〈a, b, c | a2 = b2 = c2 = (ab)3 = (ac)5 = (bc)10 = 1〉. (3)

There exist an open embedding
∐

j PΓj \
(
RH2 −Hj

)
↪→ Γ3,5,10 \RH2 and an isometry

MR
∼= Γ3,5,10 \RH2 (4)

that extend the real analytic orbifold isomorphisms (2) in Theorem 1.1. In particular, MR is
isometric to the hyperbolic triangle Δ3,5,10 with angles π/3, π/5, π/10; see Figure 1.

Note that the closure

M0 ⊂MR

of M0 in MR is the moduli space of stable configurations of five real points on P1
R. This moduli

space was investigated by Apéry and Yoshida in [AY98], who proved that M0 is the hyperbolic

3
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triangle with angles π/2, π/4 and π/5. From this, together with the knowledge of the angles of
MR and the fact that the two hyperplanes in Figure 1 intersect orthogonally, one can deduce
the remaining angles of the closures Mj ⊂MR of the subsets Mj ⊂MR (j ∈ {0, 1, 2}).

Theorem 1.3. Consider Figure 1. For j = 0, 1, 2, let Mj ⊂MR be the closure of Mj ⊂MR.

(i) The angle of M0 at (0,−1,∞,∞, 1) is π/2, and its angle at (0,−1,−1,∞,∞) is π/4.

(ii) The angle of M1 at (0,−1,∞,∞, 1) is π/2, and its angle at (0,−i,∞,∞, i) is π/2.

(iii) The angle of M2 at (0,−1,−1,∞,∞) is π/4, and its angle at (0,−i,∞,∞, i) is π/2.

Remark 1.4.

(i) The lattice Γ3,5,10 ⊂ PO(2, 1) is non-arithmetic; see [Tak77].

(ii) The topological space Ms(R) underlies two topological orbifold structures: the natural
orbifold structure on GL2(R) \Xs(R) and the orbifold structure on MR induced by (4).
These orbifold structures only differ at one point of Ms(R), which is (∞, i, i,−i,−i)
(see Figure 1). The stabilizer group of Ms(R) at (∞, i, i,−i,−i) is isomorphic to Z/2,
whereas the stabilizer group of MR at (∞, i, i,−i,−i) is isomorphic to the dihedral group of
order 20.

(iii) Important ingredients in the proof of Theorem 1.2 are:

(a) the fact that under the complex period map (1), moduli of singular binary quintics
correspond to points in the quotient of a certain hyperplane arrangement H ⊂CH2;
and

(b) the fact that the hyperplane arrangement H ⊂CH2 is an orthogonal arrangement in the
sense of [ACT02a].

We prove (a) in Proposition 4.3, and (b) holds by [GF24, Theorem 2.5 and Example 2.12].

Remark 1.5. Let PX0(C) denote the space of C∗-equivalence classes of smooth complex binary
quintics F ∈C[x, y]. The natural map P0 → PX0(C) induces a PGL2(C)-equivariant isomor-
phism P0/S5

∼−→ PX0(C), and the quotient M0(C) = PGL2(C) \ PX0(C) is the moduli space
of smooth complex binary quintics. It turns out that neither π1 (PX0(C) ) nor πorb

1 (M0(C) )
is a lattice in any Lie group with finitely many connected components. In view of [ACT02a,
Theorem 1.2], this follows from the isomorphism M0(C) ∼= PΓ \ (CH2 −H

)
(see (1) above)

and the orthogonality of the hyperplane arrangement H ⊂CH2 (see Remark 1.4(iii)(b) above).

1.1 Overview of this paper

In Section 3, we recall known results on families of quintic covers of the complex projective line,
branched along a binary quintic. We consider moduli of complex binary quintics in Section 4.
In particular, we show that the Deligne–Mostow theory provides an isomorphism between the
space of stable complex binary quintics and an arithmetic ball quotient. In Section 5, we prove
that moduli of stable real binary quintics are in one-to-one correspondence with points in the
real hyperbolic quotient space PΓR \RH2 defined by a lattice PΓR ⊂ PO(2, 1). We calculate
PΓR in Section 6: it is conjugate to the lattice Γ3,5,10 defined in (3). In Section 7, we study
monodromy groups of moduli spaces of smooth binary quintics over C and over R, and prove
Theorems 1.2 and 1.3. In Section 8, we use [GF24, Theorem 1.8] and the main results of this
paper to provide an explicit sequence {Γn ⊂ PO(n, 1)}n≥2 of non-arithmetic lattices Γn, with
Γ2 = PΓR.
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Hyperbolic geometry and real moduli of five points on the line

2. Notation

Let K be the cyclotomic field Q(ζ), where

ζ := ζ5 = e2πi/5 ∈C.

The ring of integers OK of K is Z[ζ] (see e.g. [Neu99, Chapter I, Proposition 10.2]). Let μK ⊂O∗
K

be the torsion subgroup of the unit group O∗
K , and recall that μK is cyclic of order ten, generated

by −ζ. Define an involution ρ : K →K by ρ(ζ) = ζ−1, and let F = Kρ be the maximal totally
real subfield of K. Recall that F is generated over Q by the element

λ := ζ + ζ−1 = (
√

5 − 1)/2.

Define

η = ζ2 − ζ−2 ∈OK ,

and consider the different ideal DK ⊂OK (see e.g. [Neu99, Chapter III, Section 2, Definition
2.1] or [Ser79, Chapter III, Section 3]). We have (ζ − ζ−1) · (ζ2 − ζ−2) · (ζ3 − ζ−3) · (ζ4 − ζ−4) = 5,
and hence (η)4 = (5) as ideals of OK . This implies (see e.g. [Neu99, Chapter III, Theorem 2.6])
that

DK = (5/η ) = (η)3.

3. Preliminaries on quintic covers of the projective line branched along five points

In this section, we recollect some known results on quintic covers C →P1
C ramified along five

points with local monodromy exp(4πi/5) around each point. Some of these results are well known
but hard to find in the literature; we state and prove these for the convenience of the reader.
Other results of this section are available in the literature, but we formulate them in a different
manner.

Recall from the introduction that X ∼= A6
R is the real algebraic variety that parametrizes

homogeneous polynomials of degree five, X0 the subvariety of polynomials with distinct roots,
and Xs ⊂X the subvariety of polynomials with roots of multiplicity at most two (i.e. non-zero
polynomials whose class in the associated projective space is stable in the sense of geometric
invariant theory [MFK94] for the action of SL2,R on it).

3.1 Refined Hodge numbers of a quintic cover of P1 branched along five points

Let F ∈X0(C) be a smooth binary quintic; thus F = F (x, y) ∈C[x, y] is a homogeneous poly-
nomial of degree five whose zeros in P1(C) all have multiplicity one. Let t1, . . . , t5 ∈P1(C) be
the zeros of F , with tj = [uj : vj ] in homogeneous coordinates of P1(C), for j = 1, . . . , 5. Let

CF →P1
C (5)

be the cyclic quintic cover with branch points t1, . . . , t5 ∈P1(C) and local monodromy

exp(2πi · 2/5) ∈ μ5 (6)

around tj for each j ∈ {1, . . . , 5}. If the points tj = [uj : 1] are all in A1(C), the cover (5) is, in
affine coordinates, given by the normalization of the curve defined by the equation

z5 = (x− u1)
2 · (x− u2)

2 · · · (x− u5)
2,

5
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with ζ ∈ μ5 ⊂C acting by (x, z) �→ (x, ζ · z). We have g = 6 for the genus g = g(CF ) of the curve
CF . Let JCF be the Jacobian of the curve CF , so that

JCF (C) = H1(CF (C),OCF
)/H1(CF (C),Z)(1),

with weight −1 Hodge decomposition

H1(JCF (C),C) = H1(CF (C),Z)(1) ⊗C = H−1,0(JCF ) ⊕ H0,−1(JCF ). (7)

Note that H0,−1(JCF ) is naturally isomorphic to the space H0(CF , Ω1) of global holomorphic
differentials on the curve CF . The order five automorphism

ζ : CF
∼−→CF

defined above induces an embedding of rings

ϕ : Z[ζ] → End(JCF ), ϕ(ζ) = (ζ−1)∗,

which is compatible with the Hodge decomposition (7). For k ∈ {1, 2, 3, 4}, define

H0,−1(JCF )ζk =
{
x∈ H0,−1(JCF ) |ϕ(ζ) = ζk

}
⊂ H0,−1(JCF ) = H1,0(CF ) = H0(CF , Ω1),

and define H−1,0(JCF )ζk ⊂ H−1,0(JCF ) in a similar way.
The way to calculate the refined Hodge numbers h0,−1(JCF )ζk = dim H0,−1(JCF )ζk and

h−1,0(JCF )ζk = dim H−1,0(JCF )ζk for k = 1, 2, 3, 4 is well known; the result is as follows.

Lemma 3.1. Let F ∈X0(C) be a smooth binary quintic, and let JCF be the Jacobian of
the cyclic cover CF →P1(C) associated to F as in (5). One has the following refined Hodge
numbers:

h0,−1(JCF )ζ = 1, h0,−1(JCF )ζ2 = 3, h0,−1(JCF )ζ3 = 0, h0,−1(JCF )ζ4 = 2,

h−1,0(JCF )ζ = 2, h−1,0(JCF )ζ2 = 0, h−1,0(JCF )ζ3 = 3, h−1,0(JCF )ζ4 = 1.

Proof. This follows from the Hurwitz–Chevalley–Weil formula (see [MO13, Proposition 5.9]).
Alternatively, see [Loo07, Lemma 4.2]. �

3.2 The hermitian lattice

We fix a smooth binary quintic F0 ∈X0(C). Let C →P1
C be the cyclic cover of P1

C associated
to F0 as in (5), and consider the Jacobian variety with OK-action

(JC, ϕ : OK = Z[ζ] → End(A) .

See Section 3.1 above. Define Λ as the free OK-module

Λ = H1(C(C),Z).

The canonical principal polarization of the Jacobian JC is given by a symplectic pairing

E : Λ × Λ = H1(C(C),Z) × H1(C(C),Z) → H2(C(C),Z) = Z

which satisfies E(ϕ(a)x, y) = E(x, ϕ(ρ(a))y) for each a∈OK and x, y ∈ Λ, where ρ is the auto-
morphism K

∼−→K, ζ �→ ζ−1 (see Section 2). Consider the different ideal DK ⊂OK , and define a
skew-hermitian form T on Λ as follows:

T : Λ × Λ →D−1
K , T (x, y) =

1

5

4∑
j=0

ζjE
(
x, ϕ(ζ)jy

)
.

6
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Hyperbolic geometry and real moduli of five points on the line

By [GF24, Example 11.2.2], this is the skew-hermitian form corresponding to E, via [GF24,
Lemma 11.1]. Let η ∈OK be the purely imaginary element

η = ζ2 − ζ−2 ∈OK ,

and note that the different ideal DK ⊂OK is generated by 5/η (see Section 2). We obtain a
hermitian form on the free OK-module Λ as follows:

h : Λ × Λ →OK , h(x, y) =
5

η
· T (x, y) =

1

ζ2 − ζ−2
·

4∑
j=0

ζjE
(
x, ϕ(ζ)jy

)
. (8)

By [GF24, Lemma 11.1], we have that (Λ, h) is unimodular as a hermitian lattice over OK ,
because (Λ, E) is unimodular as an alternating lattice over Z.

3.3 The signature

Recall that a CM type on a CM field L of degree 2g over Q is a set Φ ⊂ Hom(L,C) of g
embeddings of L into C, such that for each embedding ϕ : L→C, either ϕ lies in Φ or the
complex conjugate of ϕ does.

Define a CM type Φ ⊂ Hom(K,C) as

Φ = {σ1, σ2 : K →C} , σk(ζ) = ζk for k = 1, 2. (9)

Observe that, for k = 1, 2, we have

Λ ⊗OK ,σk
C = (Λ ⊗Z C)ζk = H1(C(C),C)ζk .

Lemma 3.2. For k ∈ {1, 2}, consider the hermitian form

hσk : H1(C(C),C)ζk × H1(C(C),C)ζk →C.

Then sign(hσ1) = (2, 1) and sign(hσ2) = (3, 0), where sign(hσk) is the signature of hσk .

Proof. Write ΛC = Λ ⊗Z C = H1(C(C),C). For each embedding φ : K →C, the restriction of
the hermitian form

φ (5/η ) ·EC(x, ȳ) : ΛC × ΛC →C

to (ΛC)φ ⊂ ΛC coincides with hφ by [GF24, Lemma 11.3]. Moreover, the hermitian form

i ·EC(x, ȳ) : H1(C(C),C) × H1(C(C),C) →C

is positive definite on H0(C, Ω1) = H1,0(C) = H0,−1(JC) and negative definite on H−1,0(JC) =
H0,1(C) (see [Voi02, Théorème 6.32]). As �(σ1(η)) > 0 and �(σ2(η)) < 0, we have �(σ1(5/η)) < 0
and �(σ2(5/η)) > 0. Consequently, the hermitian form

σ1(5/η) ·EC(x, ȳ) = hσ1(x, y) : H1(C(C),C)ζ × H1(C(C),C)ζ →C

is negative definite on H0,−1(JC)ζ and positive definite on H−1,0(JC)ζ , so that sign(hσ1) = (2, 1)
by Lemma 3.1. Similarly, the hermitian form

σ2(5/η) ·EC(x, ȳ) = hσ2(x, y) : H1(C(C),C)ζ2 × H1(C(C),C)ζ2 →C

is positive definite on H0,−1(JC)ζ2 and negative definite on H−1,0(JC)ζ2 . Hence, using Lemma 3.1
again, we conclude that sign(hσ2) = (3, 0). �
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3.4 The monodromy representation

Consider the real algebraic variety X0 introduced in Section 1. Let D ⊂ GL2(C) be the subgroup
D =

{
ζj · Id

} ⊂ GL2(C) of scalar matrices of the form ζj · Id with j ∈ {0, 1, 2, 3, 4} and Id ∈
GL2(C) the identity two-by-two matrix. Define

G(C) = GL2(C)/D. (10)

The group G(C) acts from the left on X0(C) in the following way: if

F = F (x, y) ∈C[x, y]

is a binary quintic, we may view F as a function C2 →C, and define g · F = F (g−1) for g ∈G(C).
This gives a canonical isomorphism of complex analytic orbifolds

M0(C) = G(C) \X0(C),

where M0 is the moduli stack of smooth binary quintics. Define

g : C→X0 (11)

as the universal family of cyclic quintic covers C →P1 ramified along a smooth binary quintic
{F = 0} ⊂P1 with local monodromy given by (6), and let

J = J(C) →X0

be the relative Jacobian of C/X0. By Lemma 3.2, J is a polarized abelian scheme of relative
dimension six over X0, equipped with OK-action of signature {(2, 1), (3, 0)} with respect to Φ =
{σ1, σ2}. Let V = R1g∗Z be the local system of hermitian OK-modules underlying the abelian
scheme J/X0. Attached to V and the base point F0 ∈X0(C), we have a representation

ρΓ : π1(X0(C), F0) → Γ := AutOK
(Λ, h) (12)

whose composition with the quotient map Γ→ PΓ = Γ/μK defines a homomorphism

P (ρΓ) : π1(X0(C), F0) → PΓ. (13)

3.5 Marked binary quintics and points on the projective line

Let F ∈X0(C) and consider the hypersurface ZF := {F = 0} ⊂P1
C. A marking of F is an

ordering m : ZF (C)
∼−→{1, 2, 3, 4, 5} of the five-element set ZF (C) =

{
x∈P1(C) | F (x) = 0

}
.

Remark 3.3. Let F ∈X0(C). To give a marking of F is to give an isomorphism of rings
H0(ZF (C),Z)

∼−→Z5. Moreover, sending a ring automorphism of Z5 to the induced permutation
of the canonical basis of {e1, . . . , e5} ⊂Z5 defines a group isomorphism Autring(Z5) ∼= S5.

Define N0 as the set of marked smooth complex binary quintics (F,m), and consider the map
that forgets the marking:

N0 →X0(C), (F,m) �→ F. (14)

To provide N0 with a complex manifold structure such that (14) is a finite covering map, we
define N0 in a slightly different but equivalent way. Define an algebraic subgroup

T :=
{

(λ1, . . . , λ5) ∈ (C∗)5 | λ1 · · · λ5 = 1
} ⊂ (C∗)5.

The group T acts freely on (C2 − {0})5 in the usual way, i.e. by letting (λ1, . . . , λ5) ∈ T act as

((a1, b1), . . . , (a5, b5) ) �→ (λ1 · (a1, b1), . . . , λ5 · (a5, b5)) .
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Hyperbolic geometry and real moduli of five points on the line

As dim(T ) = 4, the quotient variety N := (C2 − {0})5/T is a complex manifold of dimension six,
equipped with a holomorphic principal C∗-bundle map

f : N →P1(C)5, (v1, . . . , v5 ) �→ ([v1], . . . , [v5]), (15)

where C∗ acts on N by λ · (v1, v2, . . . , v5) = (λv1, v2, . . . , v5) = (v1, λv2, . . . , v5) = · · · =
(v1, v2, . . . , λv5) ∈N for λ∈C∗ and (v1, v2, . . . , v5) ∈N . For i, j ∈ {1, . . . , 5} with i < j, define
Δij =

{
(x1, . . . , x5) ∈P1(C)5 | xi = xj

}
, and let

Δij := f−1(Δij),

where f is the principal bundle map (15). Since Δij ⊂P1(C)5 is Zariski closed in P1(C)5, we
see that Δij is Zariski closed in N . Define a Zariski open subset N0 ⊂N as follows:

N0 := N −
⋃
i<j

Δij .

Lemma 3.4. The complex manifold N0 is connected and there is a canonical bijection between
N0 and the set of marked smooth complex binary quintics (F,m). Under this bijection,
the map

N0 →X0(C), ((a1, b1), (a2, b2), . . . , (a5, b5) ) �→
5∏

j=1

(bj · x− aj · y ) (16)

corresponds to the map (14) that forgets the marking, and (16) is a Galois covering with Galois
group S5.

Proof. Note that N0 is connected because (C2 − {0})2 is connected. For v = ((a1, b2), . . . ,
(a5, b5)) ∈N0, define Fv =

∏5
j=1(bj · x− aj · y). The polynomial Fv is a smooth binary quin-

tic, equipped with the marking mv defined by the ordering {[a1 : b1], . . . , [a5 : b5])} of the roots
[aj : bj ] ∈P1(C) of Fv. The association v �→ (Fv, mv) defines the bijection alluded to in the first
statement of the lemma. The rest is clear. �

In a similar way, we define, for i, j, k ∈ {1, . . . , 5} with i < j < k, closed subsets

Δijk :=
{

(x1, . . . , x5) ∈P1(C)5 | xi = xj = xk
}
, Δijk := f−1(Δijk) ⊂N ,

and put

Ns := N −
⋃

i<j<k

Δijk.

The space Ns is equipped with a finite ramified covering map

Ns →Xs(C), ((a1, b1), (a2, b2), . . . , (a5, b5) ) �→
5∏

j=1

(bj · x− aj · y) ∈C[x, y],

that commutes with (16) and the natural open embedding N0 ⊂Ns. Observe that Ns →Xs(C)
is the Fox completion (cf. [Fox57] or [DM86, Section 8.1]) of the spread N0 →X0(C) ↪→Xs(C).

3.6 Monodromy

Choose a marking m0 lying over our base point F0 ∈X0(C). By Lemma 3.4, we have a surjective
homomorphism

ρ5 : π1(X0(C), F0) �S5 (17)

9
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whose kernel is given by the image of the natural embedding π1(N0, m0) ↪→ π1(X0(C), F0).
Composing the latter with the maps ρΓ and P (ρΓ) of (12) and (13) yields homomorphisms

μ : π1(N0, m0) → Γ and P (μ) : π1(N0, m0) → PΓ. (18)

Consider the three-dimensional F5 vector space Λ/(1 − ζ)Λ, as well as the quadratic space

W := (Λ/(1 − ζ)Λ, q )

over F5. Here, q is the quadratic form obtained by reducing h modulo (1 − ζ)Λ. Define two
groups Γθ and PΓθ as follows:

Γθ = Ker (Γ →Aut(W ) ) , PΓθ = Ker (PΓ → PAut(W ) ) .

The following proposition seems to be due to Terada [Ter83] and Yamazaki and Yoshida [YY84].

Proposition 3.5. The image of the map P (μ) defined in (18) is the group PΓθ. Moreover, the
map PΓ → PAut(W ) is surjective, and the induced homomorphism

ρΓ : S5 = π1(X0(C), F0)/π1 (N0, m0 ) → PΓ/PΓθ = PAut(W )

is an isomorphism. As a consequence, we obtain the following commutative diagram with exact
rows.

0 �� π1(N0, m0)

P (μ)
����

�� π1(X0(C), F0)

P (ρΓ)

��

ρ5
�� S5

� ρΓ

��

�� 0

0 �� PΓθ
�� PΓ �� PAut(W ) �� 0

(19)

Proof. The equality P (μ) (π1(N0, m0)) = PΓθ follows from μ (π1(N0, m0)) = Γθ. For the lat-
ter, see [YY84, Propositions 4.2 and 4.3]. The group PAut(W ) ∼= PO3(F5) is isomorphic
to S5, and ρΓ : S5 → PΓ/Γθ is an isomorphism (cf. [YY84, Propositions 4.2 and 4.3] and
[AY98, p. 10]). �

Corollary 3.6. The monodromy representation P (ρΓ) : π1(X0(C), F0) → PΓ is surjective.

3.7 Framed binary quintics, nodal binary quintics and local monodromy

By a framing of a point F ∈X0(C) we mean a projective equivalence class [f ], where

f : VF = H1(CF (C),Z)
∼−→ Λ

is an OK-linear isometry: two such isometries are in the same class if and only if they differ by
an element in μK = (O∗

K)tors. Let F0 be the collection of all framings of all points F ∈X0(C).
The set F0 can naturally be given the structure of a complex manifold, in a way similar to the
procedure described in [ACT02b, (3.9)]. In what follows, we consider F0 as a complex manifold.

Lemma 3.7.

(i) The complex manifold F0 is connected and the map

F0 →X0(C), (F, [f ]) �→ F (20)

that forgets the framing is a Galois covering map, with Galois group PΓ.

(ii) The spaces PΓθ \ F0 and N0 are isomorphic as covering spaces of X0(C). In particular,
there is a covering map F0 →N0 with Galois group PΓθ.

10
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Hyperbolic geometry and real moduli of five points on the line

Proof. Indeed, F0 is connected by Corollary 3.6. The isomorphism PΓθ \ F0
∼= N0 of covering

spaces of X0(C) follows from the isomorphism PΓ/PΓθ
∼= S5 as quotients of π1(X0(C), F0),

which was shown in Proposition 3.5. The lemma follows. �

Lemma 3.8. The subvariety Δ := Xs −X0 is an irreducible normal crossings divisor in Xs.

Proof. The irreducibility of Δ is well known; see e.g. [Voi02, Section 14.1.1]. Let (p, F ) be a
point on the incidence variety I =

{
(p, F ) ∈P1 ×Xs | p∈ Sing(F )

}
, choose a hyperplane away

from p, and view p∈C and F as a polynomial f(x). Since f ′′(p) is non-zero, the tangent map

Tq : T(p,f)(I) → Tf (Xs) = X(C)

of the projection q : I →Xs is injective, and its image consists of the linear subspace Xp ⊂X of
binary quintics that contain p as a root. If f has k double points pj , where k ∈ {1, 2}, then Δ is
locally isomorphic to the union ∪k

j=1Xpj
. These Xpj

intersect transversally, and we are done. �

Definition 3.9. A node p∈ZF (C) ⊂P1(C) of a binary quintic F is a double point, i.e. a zero
with multiplicity two. For k = 1, 2, let Δk ⊂ Δ = Xs −X0 be the locus of stable binary quintics
with exactly k nodes.

The following result is due to Deligne and Mostow [DM86].

Lemma 3.10. The local monodromy transformations of F0 →X0(C) around every F ∈ Δ are of
finite order. More precisely, if F ∈ Δk, then the local monodromy group around F is isomorphic
to (Z/10)k.

Proof. Let F1 ∈ Δ1 be a binary quintic with one node. Consider the universal family C→Xs

of quintic covers of P1 ramified along a stable binary quintic, whose restriction to X0 is (11).
Let D ⊂Xs(C) be an open disc transverse to Δ1 at F1. For F ∈D∗, one obtains a monodromy
transformation T : H1(CF (C),Z) → H1(CF (C),Z) induced by a vanishing cycle, and T has order
ten by [DM86, Proposition 9.2]. Similarly, if F2 ∈ Δ2 has two nodes, we may choose an embedding
D2 ⊂Xs(C) of the polydisc D2 = D×D transversal to Δ2 at F2. Since distinct nodes have
orthogonal vanishing cycles, the local monodromy transformations commute. �

In the following corollary, we let D = {z ∈C : |z|< 1} denote the open unit disc, and
D∗ = D− {0} the punctured open unit disc.

Corollary 3.11. There is an essentially unique branched cover

π : Fs →Xs(C),

with Fs a complex manifold, such that for any x∈ Δ, any open x∈U ⊂Xs(C) with

U ∼= Dk ×D6−k and U ∩X0(C) ∼= (D∗)k ×D6−k,

and any component U ′ of π−1(U) ⊂Fs, there is an isomorphism U ′ ∼= Dk ×D6−k such that the
composition

Dk ×D6−k ∼= U ′ →U ∼= D6 is the map (z1, . . . , z6) �→ (z101 , . . . , z10k , zk+1, . . . , z6).

Proof. In view of [Bea09, Lemma 7.2] (see also [Fox57] and [DM86, Section 8.1]), this follows
from Lemma 3.10. �

The group G(C) = GL2(C)/D (see (10)) acts on F0 over its action on X0. Explicitly, if g ∈G(C)
and if ([φ], φ : VF

∼−→ Λ) is a framing of F ∈X0(C), then

([φ ◦ g∗], φ ◦ g∗ : Vg·F
∼−→ Λ)
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is a framing of g · F ∈X0(C). This is a left action. The group PΓ also acts on F0 from the left,
and the actions of PΓ and G(C) on F0 commute. By functoriality of the Fox completion, the
action of G(C) on F0 extends to an action of G(C) on Fs.

Lemma 3.12. The group G(C) = GL2(C)/D acts freely on Fs.

Proof. Consider the natural action of G(C) on Ns, and the action of G(C) on PΓθ \ Fs induced
by the action of G(C) on Fs. With respect to these actions, the isomorphism of ramified cov-
ering spaces PΓθ \ Fs

∼= Ns of Xs(C) that results from Lemma 3.7(ii) is G(C)-equivariant. In
particular, the natural ramified covering map Fs →Ns is G(C)-equivariant, and so it suffices to
show that G(C) acts freely on Ns.

To this end, note that Ns admits a natural C∗-quotient map

Ns → Ps, (21)

where Ps ⊂P1(C)5 is the space of stable ordered five-tuples in P1(C) introduced in
Section 1, and where C∗ acts on Ns by λ · (v1, v2, . . . , v5) = (λv1, v2, . . . , v5) = (v1, λv2, . . . , v5) =
· · · = (v1, v2, . . . , λv5) ∈Ns for λ∈C∗ and (v1, v2, . . . , v5) ∈Ns (see the description of Ns in
Section 3.5), and (21) is equivariant for the natural homomorphism G(C) → PGL2(C). Let
g ∈ GL2(C) and x∈Ns such that gx = x. Since any element of PGL2(C) that fixes three dis-
tinct points on P1(C) is the identity, we have that PGL2(C) acts freely on Ps. Therefore,
g ∈C∗ ⊂ GL2(C). Let F ∈Xs(C) be the image of x∈Ns; then

F (x, y) = gF (x, y) = F (g−1(x, y)) = F (g−1x, g−1y) = g−5F (x, y).

Thus, we have g5 = 1∈C∗, and we conclude that g ∈D ⊂ GL2(C). �

4. Deligne–Mostow uniformization of the moduli space of complex binary quintics

In this section, we show that the results of Deligne and Mostow [DM86] yield an isomorphism
of complex analytic spaces Ms(C) ∼= PΓ \CH2. This map is induced by the Riemann extension
Ps : Fs →CH2 of a holomorphic map P : F0 →CH2 whose definition follows rather directly
from the set-up and results of the previous section. We also show that this isomorphism induces
an isomorphism between the divisor G(C) \ Δ(C) = Ms(C) −M0(C) and the divisor PΓ \H ⊂
PΓ \CH2 defined by a certain hyperplane arrangement H ⊂CH2, and prove that Ps identifies
binary quintics with k nodes (k = 1, 2) with points in H where exactly k hyperplanes meet.

4.1 The period map

Define a complex hermitian vector space V as

V = (Λ ⊗OK ,σ1
C, hσ1) ,

where hσ1 is the hermitian form defined in Section 3.3. Let CH2 be the space of negative lines
in V . Using [GF24, Proposition 11.7] and Lemma 3.2, we see that the abelian scheme J →X0

induces a holomorphic map, the period map:

P : F0 →CH2. (22)

Explicitly, if (F, [f ]) ∈F0 is the framing [f : H1(CF (C),Z)
∼−→ Λ] of the binary quintic F ∈X0(C),

and if JCF is the Jacobian of the curve CF , then

f
(
H0,−1(JCF )ζ

)
= f

(
H1,0(CF )ζ

) ⊂ H1(C(C),C)ζ = Λ ⊗OK ,σ1
C = V

12
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is a negative line in V, and we have P(F, [f ]) = f
(
H1,0(CF )ζ

)∈CH2. The map P is holomorphic,
and descends to a morphism of complex analytic spaces

M0(C) = G(C) \X0(C) → PΓ \CH2.

Moreover, by Riemann extension, (22) extends to a G(C)-equivariant holomorphic map

Ps : Fs →CH2. (23)

Theorem 4.1 (Deligne–Mostow). The period map (23) induces an isomorphism of complex
manifolds

G(C) \ Fs
∼= CH2. (24)

Taking PΓ-quotients gives an isomorphism of complex analytic spaces

Ms(C) = G(C) \Xs(C) ∼= PΓ \CH2. (25)

Proof. Recall that P0 ⊂P1(C)5 is the set of (x1, . . . , x5) ∈P1(C)5 such that all xi are dis-
tinct. In accordance with [DM86], define Q = G(C) \N0 = PGL2(C) \ P0 and Qst := G(C) \Ns =
PGL2(C) \ Ps. Fix a base point 0∈Q whose image in S5 \Q coincides with the image of
F0 ∈X0(C) under the canonical map X0(C) →M0(C) = S5 \Q.

By Lemma 3.7, we have that F0 is a covering space of N0, with Galois group PΓθ. In [DM86],
Deligne and Mostow define Q̃→Q to be the covering space corresponding to the monodromy
representation π1(Q, 0) → PΓ; since the image of this homomorphism is PΓθ (see Proposition
3.5), it follows that G(C) \ F0

∼= Q̃ as covering spaces of Q. Consequently, if Q̃st →Qst denotes
the Fox completion (cf. [Fox57], [DM86, Section 8.1]) of the spread

Q̃→Q ↪→Qst,

then there is an isomorphism G(C) \ Fs
∼= Q̃st of branched covering spaces of Qst. We obtain the

following commutative diagram, in which the horizontal arrows on the left are isomorphisms.

G(C) \ Fs
∼ ��

��

Q̃st

��

�� CH2

��

G(C) \ Ns
∼ ��

��

Qst
��

��

PΓθ \ CH2

��

G(C) \ Xs(C) ∼ �� S5 \ Qst
�� PΓ \ CH2

The map Q̃st →CH2 is an isomorphism by [DM86, (3.11)]. It follows that Qst → PΓθ \CH2 and
S5 \Qst → PΓ \CH2 are isomorphisms as well. Therefore, we are done if we can show that the
composition F0 → Q̃→CH2 agrees with the period map P of equation (22). This follows from
[DM86, (2.23) and (12.9)]. �

4.2 Nodal binary quintics and orthogonal hyperplanes

Consider the CM type Φ = {σ1, σ2} ⊂ Hom(K,C) defined in (9), the hermitian OK-lattice (Λ, h)
defined in (8), and the following sets (cf. [GF24, Sections 2.2 and 2.3]):

H =
{
Hr ⊂CH2 | r ∈R

}
and H =

⋃
H∈H

H ⊂CH2. (26)

Here, R ⊂ Λ is the set of short roots, i.e. the set of r ∈ Λ with h(r, r) = 1, and for each r ∈R,
Hr ⊂CH2 is the hyperplane of elements x∈CH2 that are orthogonal to r.
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Proposition 4.2. The hyperplane arrangement H ⊂CH2 is an orthogonal arrangement in
the sense of [ACT02a]. In other words, any two different hyperplanes H1, H2 ∈H either meet
orthogonally, or not at all.

Proof. By Lemma 3.2, we have that h has signature (2, 1) with respect to the embedding
σ1 : K ↪→C, and signature (3, 0) with respect to the embedding σ2 : K ↪→C, where σ1 and σ2
are defined in (9). Therefore, the result follows from [GF24, Theorem 2.5] and [GF24, Example
2.12]. �

Proposition 4.3. The map (25) induces an isomorphism of complex analytic spaces

M0(C) = G(C) \X0(C) ∼= PΓ \ (CH2 −H
)
.

Proof. We have Ps(F0) ⊂CH2 −H by [GF24, Proposition 11.12], because the Jacobian of a
smooth curve cannot contain a non-trivial abelian subvariety whose induced polarization is prin-
cipal. Therefore, we have P−1

s (H ) ⊂Fs −F0. Since Fs is irreducible (it is smooth by Corollary
3.11 and connected by Lemma 3.7(i)), the analytic space P−1

s (H ) is a divisor. Since Fs −F0 is
also a divisor by Corollary 3.11, we have P−1

s (H ) = Fs −F0. �

Define Δ̃ = Fs −F0, and for k ∈ {1, 2}, let Δ̃k ⊂ Δ̃ be the inverse image of Δk in Δ̃ under
the map Δ̃ → Δ. Here, Δk ⊂ Δ is the subvariety defined in Definition 3.9. Moreover, for k = 1, 2,
define Hk ⊂H as the set

Hk :=
{
x∈CH2 : |H(x)| = k

}
.

Thus, this is the locus of points in H where exactly k hyperplanes meet. For r ∈R, define an
isometry

φr : Λ → Λ, φr(x) = x− (1 − ζ)h(x, r) · r.
Let [φr] ∈ PΓ be the image of φr ∈ Γ in the group PΓ = Γ/μK , and for x∈CH2, define

G(x) := 〈[φr] | r ∈R | h(x, r) = 0〉 ⊂ PΓ. (27)

Lemma 4.4.

(i) The period map Ps of (23) satisfies Ps(Δ̃k) ⊂Hk.

(ii) Let F̃ ∈ Δ̃k ⊂Fs and x = Ps(F̃ ) ∈Hk ⊂CH2. Let PΓF̃ ⊂ PΓ be the stabilizer of F̃ in PΓ.
Then PΓF̃ = G(x), where G(x) ∼= (Z/10)k is as in (27).

Proof.

(i) We know that Ps induces an isomorphism G(C) \ Δ̃
∼−→H by Theorem 4.1 and Proposition

4.3. This map must identify the smooth (respectively singular) locus of one analytic variety
with the smooth (respectively singular) locus of the other, from which the result follows.

(ii) This follows from Lemma 3.10 and Corollary 3.11 (compare [ACT02b, (3.10)] and [ACT10,
Lemma 10.3]). �

5. The moduli space of real binary quintics

With the period map for complex binary quintics in place, we turn to the construction of the
period map for real binary quintics. Define κ as the anti-holomorphic involution

κ : X0(C) →X0(C), F (x, y) =
∑

i+j=5

aijx
iyj �→ F (x, y) =

∑
i+j=5

aijx
iyj .
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Definition 5.1. (Compare [GF24, Sections 3.1 and 3.2].)

(i) An OF -linear bijection φ : Λ
∼−→Λ is called anti-unitary if φ(μ · x) = μ · φ(x) and

h(φ(x), φ(y)) = h(x, y) for x, y ∈ Λ, μ∈OK .

(ii) Let Γ′ be the group of unitary and anti-unitary OF -linear bijections of Λ. Let PΓ′ = Γ′/μK .

(iii) Let A be the set of anti-unitary involutions α : Λ → Λ, and define PA = μK \A.

(iv) For α∈ PA, define RH2
α ⊂CH2 as the fixed space of α, i.e. RH2

α = (CH2)α.

(v) For α∈ PA, let PΓα ⊂ PΓ be the stabilizer of the subspace RH2
α = (CH2)α ⊂CH2.

For α∈ PA, the notation RH2
α reflects the fact that RH2

α is isometric to the real hyperbolic
plane RH2; see [GF24, Lemma 3.4].

For each α∈ PA, there is a natural anti-holomorphic involution α : F0 →F0 lying over the
anti-holomorphic involution κ : X0(C) →X0(C). To define α, consider a framed binary quintic
(F, [f ]) ∈F0, where f : VF →Λ is an OK-linear isometry. Let CF →P1

C be the induced quin-

tic cover of P1
C. Complex conjugation P1(C) →P1(C) induces a bijection ZF (C)

∼−→Zκ(F )(C),
and extends to an anti-holomorphic diffeomorphism σF : CF (C) →Cκ(F )(C) with pull-back
σ∗
F : Vκ(F ) →VF . The composition α ◦ f ◦ σ∗

F : Vκ(F ) → Λ induces a framing of κ(F ) ∈X0(C),
and we define

α(F, [f ]) := (κ(F ), [α ◦ f ◦ σ∗
F ] ) ∈F0.

Although we have chosen a representative α∈A of the class α∈ PA, the element α(F, [f ]) ∈F0

does not depend on this choice.
Consider the covering map F0 →X0(C) defined in (20) in Lemma 3.7, and define F0(R) as

the preimage of X0(R) in the space F0. Then

F0(R) =
∐

α∈PA

Fα
0 ⊂F0. (28)

To see why the union in (28) is disjoint, let α∈ PA; then

Fα
0 =

{
(F, [f ]) ∈F0 : κ(F ) = Fand[f ◦ σ∗

F ◦ f−1] = α
}
.

Thus, for α, β ∈ PA and (F, [f ]) ∈Fα
0 ∩Fβ

0 , we have α = [f ◦ σ∗
F ◦ f−1] = β.

Lemma 5.2. Let α∈ PA. The anti-holomorphic involution α : F0 →F0 commutes with the
period map P : F0 →CH2 and the anti-holomorphic involution α : CH2 →CH2.

Proof. If conj : C→C is complex conjugation, then for any F ∈X0(C), the induced map
σ∗
F ⊗ conj : Vκ(F ) ⊗Z C→VF ⊗Z C is anti-linear and preserves the Hodge decompositions [Sil89,

Chapter I, Lemma 2.4] as well as the eigenspace decompositions. �

By Lemma 5.2, we obtain a real period map

P : F0(R) α∈P Fα
0 α∈P RH2

α Y . (29)

Let σ : GL2(C) → GL2(C) be the anti-holomorphic involution that sends a matrix to its complex
conjugate, and note that σ descends to an anti-holomorphic involution σ : G(C) →G(C); define

G(R) := G(C)σ.
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Lemma 5.3. The natural map GL2(R) →G(R) is an isomorphism.

Proof. Indeed, if M ∈ GL2(C) is a matrix such that σ(M) = ζj ·M for some j ∈ {0, . . . , 4}, then
we can write ζj = ζ2k for some k ∈ {0, . . . , 4}, and hence σ(ζk ·M) = ζ−kζj ·M = ζk ·M , so that
ζk ·M ∈ GL2(R). This proves that GL2(R) →G(R) is surjective. Injectivity follows from the
fact that the kernel of GL2(R) →G(R) is spanned by the elements of D =

{
1, ζ, . . . , ζ4

}
that

are invariant under complex conjugation; the only such element is 1 ∈D. �

The map (29) is constant on G(R)-orbits, as the same is true for P : F0 →CH2. By abuse of
notation, we write RH2

α −H = RH2
α − (H ∩RH2

α

)
for α∈ PA.

Proposition 5.4. The period map (29) descends to a PΓ-equivariant diffeomorphism

PR : M0(R)f := G(R) \ F0(R) ∼=
∐

α∈PA

(
RH2

α −H
)
. (30)

Let CA ⊂ PA be a set of representatives for the action of PΓ on PA. By PΓ-equivariance, the
map (30) induces an isomorphism of real-analytic orbifolds

PR : M0(R) = G(R) \X0(R) ∼=
∐

α∈CA

PΓα \ (RH2
α −H

)
. (31)

Proof. We follow the proof of [ACT10, Theorem 3.3]. The first thing to observe is that the map

PR : G(R) \ F0(R) →
∐

α∈PA

(
RH2

α −H
)

is a local diffeomorphism, as the same holds for P : G(C) \ F0 →CH2 −H by Theorem 4.1. To
prove the surjectivity and injectivity of PR, notice that the arguments used in [ACT10] to prove
the analogous claims for cubic surfaces readily carry over to our situation. �

Our next goal is to prove the real analogue of Theorem 4.1. By the naturality of the Fox
completion, for every α∈ PA the involution α : F0 →F0 extends to an involution α on Fs.

Lemma 5.5. The restriction of the map Ps : Fs →CH2 to Fα
s induces a diffeomorphism

Pα
s : G(R) \ Fα

s
∼= RH2

α.

Proof. The map Pα
s : G(R) \ Fα

s →RH2
α is a local diffeomorphism because its differential at any

point is an isomorphism by Theorem 4.1. Let us prove that Pα
s is injective. Apply [ACT10,

Lemma 3.5] with X = F0, G= G(C) and φ = α; then Xφ = Fα
s and Z = G(R). Note that we

may apply this lemma because G(C) acts freely on Fs (see Lemma 3.12). The conclusion is that
the map

G(R) \ Fα
0 →G(C) \ F0 = CH2 −H

is injective. To prove the surjectivity of Pα
s , one uses [ACT10, Lemma 11.2] to see that the

map G(R) \ Fα
s →G(C) \CH2 is proper. By Proposition 5.4, its image contains the dense open

subset Ps(Fα
0 ) = RH2

α −H, so Pα
s is surjective. �

Definition 5.6. (See [GF24, Definition 1.1].) Define an equivalence relation ∼ on the disjoint
union

∐
α∈PA RH2

α in the following way. Consider two points (x, β) ∈RH2
β ⊂∐α∈PA RH2

α and

(y, γ) ∈RH2
γ ⊂∐α∈PA RH2

α. Then (x, β) ∼ (y, γ) if x = y ∈CH2 and γ ◦ β ∈G(x).

16
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Hyperbolic geometry and real moduli of five points on the line

By [GF24, Lemma 4.4], the action of PΓ on
∐

α∈PA RH2
α is compatible with this equivalence

relation; define

Y :=

( ∐
α∈PA

RH2
α

)
/∼, M := PΓ \ Y.

Theorem 5.7. Let CA ⊂ PA be a set of representatives for the action of PΓ on PA. There
exists a canonical real hyperbolic orbifold structure on the topological space M = PΓ \ Y
together with a natural open immersion of hyperbolic orbifolds∐

α∈CA

PΓα \ (RH2
α −H

)
↪→M.

Moreover, for each connected component Mi ⊂M there exists a lattice PΓi
R ⊂ PO(2, 1) and an

isomorphism of real hyperbolic orbifolds Mi
∼= PΓi

R \RH2.

Proof. By Lemma 3.2 and [GF24, Example 2.12], this is a special case of [GF24,
Theorem 1.2]. �

Let p :
∐

α∈PA RH2
α → Y be the quotient map, consider the map π : Fs →Xs(C) (see

Corollary 3.11), and define a union of embedded real submanifolds of Fs as follows:

Fs(R) =
⋃

α∈PA

Fα
s = π−1 (Xs(R) .

We arrive at the main theorem of Section 5.

Theorem 5.8. There is a smooth map

PR
s :

∐
α∈PA

Fα
s →

∐
α∈PA

RH2
α (32)

that extends the real period map (29). The map (32) induces the following commutative diagram
of topological spaces, in which PR

s and T R
s are homeomorphisms.

∐
α∈P Fα

s

PR
s ��

��

∐
α∈P RH2

α

p

��

Fs(R)
PR

s ��

��

Y

Ms(R)f

��

G(R) \ Fs(R)
R
s

∼ ��

��

Y

��

Ms(R) G(R) \ Xs(R) s
R

∼ �� PΓ \ Y

Proof. The existence of PR
s follows from the compatibility between Ps and the involutions α∈

PA. We claim that the composition p ◦ PR
s factors through Fs(R). To prove this, let (f, α)

and (g, β) be elements of the disjoint union
∐

γ∈PA Fγ
s , with f ∈RH2

α and g ∈RH2
β . Then

(f, α) and (g, β) have the same image in Fs(R) if and only if f = g ∈Fα
s ∩Fβ

s , in which case
Ps(f) = Ps(g) =: x∈RH2

α ∩RH2
β . Let (x, α) and (y, β) be elements of the disjoint union Ỹ =
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Olivier de Gaay Fortman∐
γ∈PA RH2

γ , with x∈RH2
α and y = x∈RH2

β . We need to prove that (x, α) ∼ (x, β) ∈ Ỹ , for the

equivalence relation ∼ on Ỹ defined in Definition 5.6. Note that αβ ∈ PΓf , and that Ps induces
an isomorphism PΓf

∼= G(x) (see Lemma 4.4). Hence αβ ∈G(x) so that (x, α) ∼ (x, β), proving
what we want. We conclude that the composition p ◦ PR

s factors through a map PR
s : Fs(R) → Y.

Next, we prove the G(R)-equivariance of PR
s . Suppose that f ∈Fα

s , g ∈Fβ
s such that a ·

f = g ∈Fs(R) for some a∈G(R). Then x := Ps(f) = Ps(g) ∈CH2, so we need to show that
αβ ∈G(x). The actions of G(C) and PΓ on CH2 commute, and the same holds for the actions
of G(R) and PΓ′ on FR

s , where PΓ′ is the group defined in Definition 5.1. It follows that α(g) =

α(a · f) = a · α(f) = a · f = g, and hence g ∈Fα
s ∩Fβ

s . This implies in turn that (α ◦ β)(g) = g,
and hence αβ ∈ PΓg

∼= G(x) (see Lemma 4.4). Therefore (x, α) ∼ (x, β), so that αβ ∈G(x) as
desired.

Let us prove that PR
s is injective. To do so, let f ∈Fα

s and g ∈Fβ
s and suppose that these

elements have the same image in Y . Thus, x := Ps(f) = Ps(g) ∈RH2
α ∩RH2

β, and β = φ ◦ α for
some φ∈G(x). We have φ∈G(x) ∼= PΓf (Lemma 4.4), and hence β(f) = φ (α(f)) = φ(f) = f .

Therefore f, g ∈Fβ
s ; since Ps(f) = Ps(g), it follows from Lemma 5.5 that there exists a∈G(R)

such that a · f = g. This proves the injectivity of PR
s . The surjectivity of PR

s : G(R) \ Fs(R) → Y
is straightforward: it follows from the surjectivity of PR

s (see Lemma 5.5). Finally, we claim
that PR

s is open. Let U ⊂G(R) \ FR
s be open. Let V be the preimage of U in

∐
α∈PA Fα

s .

Then V = (PR
s )−1

(
p−1

(
PR

s (U)
))

, hence PR
s (V ) = p−1

(
PR

s (U)
)
, so that it suffices to show

that PR
s (V ) is an open subset of

∐
α∈PA RH2

α. This follows, because PR
s is open, being the

coproduct of the maps Fα
s →RH2

α, which are open since they have surjective differential at each
point. �

Corollary 5.9. Let CA ⊂ PA be a set of representatives for the action of PΓ on PA. Then
there is a lattice PΓR ⊂ PO(2, 1), an open immersion of hyperbolic orbifolds∐

α∈CA

PΓα \ (RH2
α −H

)
↪→ PΓR \RH2, (33)

and a homeomorphism

PR
s : Ms(R) = G(R) \Xs(R) ∼= PΓR \RH2, (34)

such that the restriction of (34) to M0(R) ⊂Ms(R) coincides with the isomorphism (31).

Proof. This follows directly from Theorems 5.7 and 5.8. �

Remark 5.10. The proof of Corollary 5.9 also shows that Ms(R) is homeomorphic to a complete
hyperbolic orbifold in the cases where Ms is the stack of cubic surfaces or of binary sextics over R.
This strategy to uniformize the real moduli space differs from the one used in [ACT06, ACT07,
ACT10], since we first glue the real ball quotients together (by using the general construction
of [GF24]) and then prove that the real moduli space is homeomorphic to the resulting glued
space.

6. The moduli space of real binary quintics as a hyperbolic triangle

Consider the moduli space Ms(R) = GL2(R) \Xs(R) of stable real binary quintics. Let |Ms(R)|
be the underlying topological space of Ms(R).

18
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Hyperbolic geometry and real moduli of five points on the line

Definition 6.1. Let MR be the orbifold with |Ms(R)| as underlying space whose orbifold
structure is induced by the homeomorphism (34) and the natural orbifold structure of PΓR \
RH2.

The goal of Section 6 is to prove the following result.

Theorem 6.2. Consider the lattice PΓR ⊂ PO(2, 1) (see Corollary 5.9) and the hyperbolic
orbifold MR

∼= PΓR \RH2 (see Definition 6.1). Then MR is isometric to the hyperbolic triangle
with angles π/3, π/5, π/10. In particular, PΓR is conjugate to the lattice Γ3,5,10 defined in (3).

To prove Theorem 6.2, we need to understand the orbifold structure of Ms(R) and how this
structure differs from the orbifold structure of the quotient space PΓR \RH2 (see Corollary
5.9). To this end, we will first analyze the orbifold structure of Ms(R) by listing its stabilizer
groups.

6.1 Automorphism groups of stable real binary quintics

Recall that there is a canonical orbifold isomorphism

Ms(R) = G(R) \Xs(R) = PGL2(R) \ (Ps/S5)(R).

Thus, to list those groups that occur as the automorphism groups of a binary quintic is to classify
the stabilizer groups PGL2(R)x of points x = (x1, . . . , x5) ∈ (Ps/S5)(R).

Proposition 6.3. Consider the stabilizer group PGL2(C)x of a point x∈ P0/S5. If PGL2(C)x
is non-trivial, then PGL2(C)x is isomorphic to one of Z/2,Z/4, D3 or D5. Moreover, the con-
jugacy class of each such subgroup of PGL2(C) is unique. If H equals any of the subgroups
Z/4, D3 or D5 of PGL2(C), then there is a unique PGL2(C)-orbit in P0/S5 with stabilizer
group H.

Proof. By [Bea10, Theorem 4.2], any finite subgroup of PGL2(C) is isomorphic to Z/n, Dn (the
dihedral group of order 2n), A4, S4 or A5, and there is only one conjugacy class for each of these
groups. Let H be any of these groups, considered as a subgroup of PGL2(C). Assume that, with
respect to the action of H on the finite subsets of P1(C), one has

H · {z1, . . . , z5}= {z1, . . . , z5} ⊂P1(C) for z1, . . . , z5 ∈P1(C) distinct.

This gives a homomorphism ρ : H →S5 as follows: for an element j ∈ {1, 2, 3, 4, 5}, we let
ρ(h)(j) ∈ {1, 2, 3, 4, 5} be the element with zρ(h)(j) = h · zj .

Note that ρ is injective, as h · zi = zi for each i implies h = id. Therefore,

H ∈ {Z/2,Z/3,Z/4,Z/5,Z/6, D3, D4, D5,A4,S4,A5}.
Next, assume that H = StabPGL2(C)(x) for the five-element subset x = {z1, . . . , z5} ⊂P1(C).
Suppose that φ∈H is an element of order three. Note that there must be three distinct elements
zi ∈ x with φ(zi) �= zi. We may assume that these are z1, z2 and z3. Moreover, we may assume
that φ(z1) = z2, φ(z2) = z3 and φ(z3) = z1. By replacing φ by gφg−1 for some g ∈ PGL2(C), we
may assume that z1 = 1, z2 = ζ3 and z3 = ζ23 , and that φ(z) = ζ3 · z for z ∈P1(C). This gives
x =

{
1, ζ3, ζ

2
3 , z4, z5

} ⊂P1(C). As φ(z4) �= z5, we have φ(z4) = z4 and φ(z5) = z5, so that

x =
{

1, ζ3, ζ
2
3 , 0,∞} ⊂P1(C). (35)
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Let ν ∈ PGL2(C) be the element with ν(z) = 1/z for z ∈P1(C). Then (35) implies that ν is
contained in H, and one readily observes that H = D3. We conclude that

H = StabPGL2(C)(x) ∈ {Z/2,Z/4,Z/5, D3, D4, D5}.
It remains to exclude Z/5 and D4. Suppose that H contains an element φ of order five. As above,
one can readily show that one may assume that

x =
{

1, ζ5, ζ
2
5 , ζ

3
5 , ζ

4
5

} ⊂P1(C), φ(z) = ζ5 · z for z ∈P1(C).

This implies that the element ν ∈ PGL2(C) as defined above is contained in H, and H = D5.
Finally, assume H contains an element φ of order four. We may assume that

x = {1, i,−1,−i, 0} , φ(z) = i · z for z ∈P1(C).

As a consequence, we have H = Z/4, and the proof is finished. �

We proceed to prove the real analogue of Proposition 6.3.

Proposition 6.4. Let x∈ (Ps/S5)(R) such that the stabilizer group PGL2(R)x ⊂ PGL2(R)
of x is non-trivial. Then its stabilizer group PGL2(R)x is isomorphic to Z/2, D3 or D5. For
each n∈ {3, 5}, there is a unique PGL2(R)-orbit of points x in (Ps/S5)(R) with stabilizer Dn.

Proof. We have an injection (Ps/S5)(R) ↪→ Ps/S5 which is equivariant for the embedding
PGL2(R) ↪→ PGL2(C). In particular, PGL2(R)x ⊂ PGL2(C)x for every x∈ (Ps/S5)(R). Note
that none of the groups appearing in Proposition 6.3 have subgroups isomorphic to D2 =
Z/2�Z/2 or D4 = Z/2�Z/4. Consider the involution ν = (z �→ 1/z) ∈ PGL2(R). We will prove
the proposition by using the following steps.

Step 1: Let τ ∈ PGL2(R). Consider a subset S = {x, y, z} ⊂P1(C) stabilized by complex con-
jugation, such that τ(x) = x, τ(y) = z and τ(z) = y. There is a transformation g ∈ PGL2(R) that
maps S to either {−1, 0,∞} or {−1, i,−i}, and that satisfies gτg−1 = ν = (z �→ 1/z) ∈ PGL2(R).
In particular, τ2 = id.

Proof of Step 1. Indeed, two transformations g, h∈ PGL2(C) that satisfy g(xi) = h(xi) for three
different points x1, x2, x3 ∈P1(C) are necessarily equal. �

Step 2: There is no φ∈ PGL2(R) of order four that fixes a point x∈ (Ps/S5)(R).

Proof of Step 2. By [Bea10, Theorem 4.2], all subgroups G ⊂ PGL2(R) that are isomorphic to
Z/4 are conjugate to each other. Since the transformation I : z �→ (z − 1)/(z + 1) is of order four,
it gives a representative GI = 〈I〉 of this conjugacy class. It is easily shown that I cannot fix any
point x∈ (Ps/S5)(R). �

Step 3: Define ρ∈ PGL2(R) by ρ(z) = −1
z+1 . Let x = (x1, . . . , x5) ∈ (Ps/S5)(R). Let φ∈

PGL2(R) be of order three, with φ(x) = x. There is a transformation g ∈ PGL2(R) mapping
x to (−1,∞, 0, ω, ω2) with ω a primitive third root of unity. The stabilizer of x is the subgroup
of PGL2(R) generated by ρ and ν. In particular, we have PGL2(R)x ∼= D3.

Proof of Step 3. By Step 1, there are elements x1, x2, x3 which form an orbit under φ. Since com-
plex conjugation preserves this orbit, one element in it is real; since g is defined over R, they are
all real. Let g ∈ PGL2(R) such that g(x1) = −1, g(x2) = ∞ and g(x3) = 0. Define κ = gφg−1.
Then κ3 = id, and κ preserves {−1,∞, 0} and sends −1 to ∞ and ∞ to 0. Consequently,
κ(0) = −1, and it follows that κ = ρ. Hence x is equivalent to an element of the form
(−1,∞, 0, α, β) with β = ᾱ and α2 + α + 1 = 0. �
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Hyperbolic geometry and real moduli of five points on the line

Recall that λ = ζ5 + ζ−1
5 ∈R. Define γ ∈ PGL2(R) by γ(z) = (λ+1)z−1

z+1 for z ∈P1(C).
Step 4: Let x = (x1, . . . , x5) ∈ (Ps/S5)(R). Suppose x is stabilized by a subgroup of PGL2(R)
of order five. There is a transformation g ∈ PGL2(R) mapping x to z = (0,−1,∞, λ + 1, λ) and
identifying the stabilizer of x with the subgroup of PGL2(R) generated by γ and ν. In particular,
the stabilizer PGL2(R)x of x is isomorphic to D5.

Proof of Step 4. Let φ∈ PGL2(R)x be an element of order five. Using Step 1, one shows that
the xi are pairwise distinct, and we may assume that xi = φi−1(x1) for i = 2, . . . , 5. Since there
is one real xi and φ is defined over R, all xi are real.

Let z = {0,−1,∞, λ + 1, λ}. Note that z is the orbit of 0 under γ : z �→ ((λ + 1)z − 1)/
(z + 1). The reflection ν : z �→ 1/z preserves z as well: we have λ + 1 = −(ζ25 + ζ−2

5 ) = −λ2 + 2,
so that λ(λ + 1) = 1. We conclude that PGL2(R)z ∼= D5. Thus, by Proposition 6.3, there exists
g ∈ PGL2(C) such that g(x1) = 0, g(x2) = −1, g(x3) = ∞, g(x4) = λ+ 1 and g(x5) = λ, and such
that gPGL2(R)xg

−1 = PGL2(R)z. Since all xi and zi ∈ z are real, we have ḡ(xi) = zi for each i.
Hence, g and ḡ coincide on three points, which implies that g = ḡ, i.e. g ∈ PGL2(R). �

By Steps 1–4 above, together with Proposition 6.3, we are done. �

6.2 Comparing the orbifold structures

There are two orbifold structures on the space |Ms(R)|. On the one hand, one has the natural
orbifold structure on Ms(R) by considering it as the real locus of a smooth separated Deligne–
Mumford stack over R (see [GF22, Proposition 2.12]); this is the orbifold structure of the quotient
G(R) \Xs(R). On the other hand, one has the orbifold structure MR introduced in Definition
6.1. The goal of Section 6.2 is to calculate the difference between these orbifold structures.

We first show that there are no cone points in the orbifold PGL2(R) \ (Ps/S5)(R). These are
orbifold points whose stabilizer group is Z/n (n≥ 2) acting on the orbifold chart by rotations.
By Proposition 6.4, the fact that PGL2(R) \ (Ps/S5)(R) has no cone points follows from the
following lemma.

Lemma 6.5. Let x = (x1, . . . , x5) ∈ (Ps/S5)(R) such that PGL2(R)x = 〈τ〉 has order two. There
is a PGL2(R)x-stable open neighborhood U ⊂ (Ps/S5)(R) of x such that PGL2(R)x \U →
Ms(R) is injective, and a homeomorphism φ : (U, x) → (B, 0) for 0∈B ⊂R2 an open ball, such
that φ identifies PGL2(R)x with Z/2 acting on B by reflections in a line through 0.

Proof. Using Step 1 in the proof of Proposition 6.4, one checks that the only possibilities
for the element x = (x1, . . . , x5) ∈ (Ps/S5)(R) are (−1, 0,∞, β, β−1), (−1, i,−i, β, β−1),
(−1,−1, β, 0,∞), (−1,−1, β, i,−i), (0, 0,∞,∞,−1) and (−1, i, i,−i,−i) for some
β ∈P1(R). �

To analyze the difference between the two orbifolds Ms(R) and MR, we also need the
following general lemma.

Lemma 6.6. Let X be a set and let Γ and G be groups with commuting actions on X. Let x∈X
with images x̄∈ Γ \X and [x] ∈G \X. Let Γ[x] be the stabilizer of [x] ∈G \X in Γ, and let Gx̄

be the stabilizer of x̄ in G. Then for each γ ∈ Γ[x] there exists an element φ(γ) ∈Gx̄, unique up
to multiplication by an element of Gx, such that γ · x = φ(γ) · x; moreover, the map

Γ[x]/Γx →Gx̄/Gx, γ �→ φ(γ) (36)

is an isomorphism.
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Proof. The map (36) is well-defined because if g, g′ ∈G are such that γ · x = g · x = g′ · x then
(g′)−1g ∈Gx. Since the construction is symmetric in Γ and G, the analogous map Gx̄/Gx →
Γ[x]/Γx is also well-defined. The latter is a left and right inverse of (36), and we are done. �

Recall (see [Thu80, Proposition 13.3.1]), that the singular locus of a two-dimensional orbifold
has the following types of local models: (i) R2/(Z/2), where Z/2 acts on R2 by reflection in the
y-axis (mirror points); (ii) R2/(Z/n), with Z/n acting by rotations (cone points of order n);
and (iii) R2/Dn, with Dn the dihedral group of order 2n (corner reflectors of order n).

Proposition 6.7. Consider the orbifold structures Ms(R) and MR on the space |Ms(R)|.
(i) For x0 ∈Ms(R), the isomorphism class of stabilizer groups of Ms(R) and MR at x0 differ

if and only if x0 ∈Ms(R) is the moduli point attached to the five-tuple (∞, i, i,−i,−i).

(ii) The stabilizer group of Ms(R) at the point x0 is isomorphic to Z/2, whereas the stabilizer
group of MR at x0 is isomorphic to the dihedral group D10 of order 20.

(iii) The orbifold MR has no cone points and three corner reflectors, whose angles are π/3, π/5
and π/10.

Proof. The statements can be deduced from Proposition 6.4, Lemmas 6.5 and 6.6, and [GF24,
Proposition 5.19]. To show how this works, let us introduce some notation. Let F̃ ∈Fs(R)
with image F ∈Xs(R). Let f ∈ Y be the image of [F̃ ] ∈G(R) \ Fs(R) under the isomorphism
G(R) \ Fs(R)

∼−→ Y of Theorem 5.8. Let PΓf ⊂ PΓ be the stabilizer of f ∈ Y in the group PΓ.
Let k ∈ {0, 1, 2} be the number of nodes of F , and write k = 2a + b, where a is the number of
pairs of complex conjugate nodes and b the number of real nodes. Then the image x∈CH2 of
F̃ under (23) lies on exactly k distinct mutually orthogonal hyperplanes H ∈H, with H the set
defined in (26). Since F ∈Xs(R), we have that F̃ ∈Fα

s for some α∈ PA. We get x∈RHn
α .

Let H(x) ⊂H be the set of hyperplanes H ∈H such that x∈H. Then a equals the number
of pairs of hyperplanes H1, H2 ∈H(x) with α(H1) = H2, and b equals the number of hyperplanes
H ∈H(x) with α(H) = H. Define Bf ⊂ PΓf as the group generated by reflections in all H ∈H(x)
such that α(H) = H. Consider the quotient map p : �α∈PA RH2

α → Y, let α1, . . . , α
 ∈ PA be the
elements such that (x, αi) ∼ (x, α), and define Yf = ∪


i=1p(RH2
αi

) ⊂ Y . The subgroup PΓf ⊂ PΓ
preserves the subset Yf ⊂ Y by [GF24, Lemma 5.9]. Moreover, by [GF24, Proposition 5.19.4],
there is an isometry between Bf \ Yf and the union of 10a copies of B2(R). Let B be any one
of these copies of B2(R), and define

Sf := StabPΓf/Bf
(B),

the stabilizer of B in the group PΓf/Bf . By construction of the orbifold MR (see [GF24,
Propositions 5.1 and 5.19]), the group Sf is a representative of the isomorphism class of stabi-
lizer groups of the orbifold MR at the moduli point [F ] ∈Ms(R) induced by F . Clearly, the
stabilizer G(R)F ⊂G(R) of F ∈Xs(R) yields the isomorphism class of stabilizer groups of the
orbifold Ms(R) at the moduli point [F ] ∈Ms(R). In particular, we need to compare the iso-
morphism classes of the groups Sf and G(R)F . To do so, we claim that there is a canonical
isomorphism

G(R)F
∼−→ PΓf/G(x). (37)

Indeed, the actions of the groups PΓ and G(R) on Fs(R) commute, so we can apply Lemma 6.6.
Recall that F̃ ∈Fs(R) has images F ∈Xs(R) and f ∈ Y , and that the map Fs(R) → Y factors
through an isomorphism G(R) \ Fs(R)

∼−→ Y . Moreover, if PΓF̃ ⊂ PΓ denotes the stabilizer of
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Hyperbolic geometry and real moduli of five points on the line

F̃ in PΓ, then PΓF̃ = G(x) by Lemma 4.4. As the group G(C) acts freely on Fs by Lemma 3.12,
the group G(R) acts freely on Fs(R). Thus, (37) follows from Lemma 6.6.

If F has no nodes (k = 0), then G(x) is trivial by [GF24, Proposition 5.19.1], and PΓf = Sf .
Thus, G(R)F ∼= Sf in view of (37).

If F has only real nodes, then Bf = G(x) and PΓf/G(x) = Sf . Thus, G(R)F ∼= Sf by (37).
Finally, suppose that F has a pair of complex nodes (a = 1 and b = 0). The zero set of F

defines a five-tuple z = (z1, . . . , z5) ∈P1(C)5, well defined up to the PGL2(R) ×S5 action on
P1(C), where z1 ∈P1(R) and z3 = z̄2 = z5 = z̄4 ∈P1(C) \P1(R). Write z = (w, z, z̄, z, z̄) with
w ∈P1(R) and z ∈P1(C) \P1(R). There is a unique T ∈ PGL2(R) such that T (w) = ∞ and
T (z) = i. This gives T (z) = (∞, i,−i, i,−i). In particular, F is unique up to isomorphism.

We have G(x) ∼= (Z/10)2, and as there are no real nodes, Bf is trivial. With respect

to the isometry CH2(C)
∼−→B2(C) of [GF24, Lemma 5.16], the anti-holomorphic involutions

αj : B2(C) →B2(C) induced by the αj ∈ PA are (t1, t2) �→ (t̄2ζ
j , t̄1ζ

j), for j ∈Z/10. The fixed
point sets are given by B2(R)αj

= {t2 = t̄1ζ
j} ⊂B2(C). The subgroup Ef ⊂G(x) that stabi-

lizes B2(R)αj
is the group Ef

∼= Z/10 generated by the transformations (t1, t2) �→ (ζt1, ζ
−1t2).

There is only one non-trivial T ∈ PGL2(R) fixing ∞ and preserving {i,−i} ⊂P1(C), and T
has order two, so G(R)F = Z/2. Therefore, by (37), we have an exact sequence of groups 0 →
G(x) ∼= (Z/10)2 → PΓf →Z/2→ 0 inducing an exact sequence 0 →Ef

∼= Z/10 → Sf →Z/2→ 0.
By Proposition 6.4 and Lemma 6.5, the proposition follows. �

6.3 The real moduli space as a hyperbolic triangle

The goal of Section 6.3 is to prove Theorem 6.2.
The results in the above Sections 6.1 and 6.2 give the orbifold singularities of MR together

with their stabilizer groups. In order to determine the hyperbolic orbifold structure of MR,
we also need to know the underlying topological space |Ms(R)| of MR. The first observation is
that Ms(R) is compact. Indeed, it is classical that the topological space Ms(C) = G(C) \Xs(C),
parametrizing complex stable binary quintics, is compact. This follows from the proper surjective
map M0,5(C)/S5 →Ms(C) and the properness of the stack of stable five-pointed curves M0,5

[Knu83], or from the fact that Ms(C) is homeomorphic to a compact ball quotient [Shi64].
Moreover, the map Ms(R) →Ms(C) is proper, which proves the compactness of Ms(R). The
second observation is that Ms(R) is connected, since Xs(R) is obtained from the euclidean space
X(R) = {F ∈R[x, y] : F homogeneous and deg(F ) = 5} by removing a subspace of codimension
two. In the following lemma we generalize both of these observations.

Lemma 6.8. The moduli space Ms(R) is homeomorphic to a closed disc D ⊂R2.

Proof. The idea is to show that the following holds.

(i) For each j ∈ {0, 1, 2}, the embedding Mj ↪→Mj ⊂Ms(R) of the connected component Mj

of M0(R) into its closure in Ms(R) is homeomorphic to the embedding D ↪→D of the open
unit disc into the closed unit disc in R2.

(ii) We have Ms(R) = M0 ∪M1 ∪M2, and this gluing corresponds, up to homeomorphism, to
the gluing of three closed discs Di ⊂R2 as in Figure 1.

To prove this, one considers the moduli spaces of real smooth (respectively stable) genus
zero curves with five real marked points, as well as twists of this space. Define two anti-
holomorphic involutions σi : P

1(C)5 →P1(C)5 by σ1(x1, x2, x3, x4, x5) = (x̄1, x̄2, x̄3, x̄5, x̄4), and
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σ(x1, x2, x3, x4, x5) = (x̄1, x̄3, x̄2, x̄5, x̄4). Then define

P 1
0 (R) = P σ1

0 , P 1
s (R) = P1(C)σ1 , P 2

0 (R) = P σ2

0 , P 2
s (R) = P1(C)σ2 .

It is clear that M0 = PGL2(R) \ P0(R)/S5. Similarly, we have

M1 = PGL2(R) \ P 1
0 (R)/S3 ×S2 and M2 = PGL2(R) \ P 2

0 (R)/S2 ×S2.

Moreover, we have M0 = PGL2(R) \ Ps(R)/S5. We define

M1 = PGL2(R) \ P 1
s (R)/S3 ×S2, and M2 = PGL2(R) \ P 2

s (R)/S2 ×S2.

Each Mj is homeomorphic to a closed disc in R2. Moreover, the natural maps Mj →Ms(R)
are closed embeddings of topological spaces, and one can check that the images glue to form
Ms(R) in the prescribed way. We leave the details to the reader. �

Proof of Theorem 6.2. To any closed two-dimensional orbifold O one can associate a set of natural
numbers SO = {n1, . . . , nk; m1, . . . , ml} by letting k be the number of cone points of XO, l the
number of corner reflectors, ni the order of the ith cone point and mj the order of the jth corner
reflector (see [Thu80, Proposition 13.3.1]). A closed two-dimensional orbifold O is determined,
up to orbifold-structure preserving homeomorphism, by its underlying space XO and the set
SO [Thu80]. By Lemma 6.8, MR is homeomorphic to a closed disc in R2. By Proposition 6.7,
MR has no cone points and three corner reflectors whose angles are π/3, π/5 and π/10. This
implies that MR and Δ3,5,10 are isomorphic as topological orbifolds. Consequently, the orbifold
fundamental group of MR is abstractly isomorphic to the group Γ3,5,10 defined in (3).

Let φ : Γ3,5,10 ↪→ PSL2(R) be any embedding such that X := φ (Γ3,5,10) \RH2 is a hyperbolic
orbifold; we claim that there is a fundamental domain Δ for X isometric to Δ3,5,10. To see
this, consider the generator a∈ Γ3,5,10. Since φ(a)2 = 1, there exists a geodesic L1 ⊂RH2 such
that φ(a) ∈ PSL2(R) = Isom(RH2) is the reflection across L1. Next, consider the generator b∈
Γ3,5,10. There exists a geodesic L2 ⊂RH2 such that φ(b) is the reflection across L2, and we have
L2 ∩L1 �= ∅. Let x∈L1 ∩L2. Then φ(a)φ(b) is an element of order three that fixes x, and hence
is a rotation around x. Therefore, one of the angles between L1 and L2 must be π/3. Finally,
we know that φ(c) is an element of order two in PSL2(R), and hence a reflection across a line
L3. As L3 ∩L2 �= ∅ and L3 ∩L1 �= ∅, the three geodesics Li ⊂RH2 enclose a hyperbolic triangle.
As the orders of the three elements φ(a)φ(b), φ(a)φ(c) and φ(b)φ(c) are respectively three, five
and ten, the three interior angles of the triangle are π/3, π/5 and π/10. Thus, X is isometric to
Δ3,5,10.

Consequently, PΓR \RH2 is isometric to Γ3,5,10 \RH2. It follows that the lattices PΓR and
Γ3,5,10 are conjugate in PO(2, 1) (see e.g. [Rat99, Lemma 1]). �

7. The monodromy groups

In this section, we describe the monodromy group PΓ attached to the moduli space X0(C), as
well as the groups PΓα appearing in Proposition 5.4. As for the lattice (Λ, h) (see (8)), we have
the following.

Theorem 7.1 (Shimura). There is an isomorphism of hermitian OK-lattices

(Λ, h ) ∼= (O3
K , diag (−λ, 1, 1)

)
, λ= ζ5 + ζ−1

5 =

√
5− 1

2
.
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Proof. See [Shi64, Section 6] as well as item (5) in the table on page 1 of that paper. �

Write Λ = O3
K and h= diag(−λ, 1, 1). Consider the F5-vector space W = Λ/(1 − ζ5)Λ

equipped with the quadratic form q = h mod θ. Define three anti-isometric involutions as
follows:

α0 : (x0, x1, x2) �→ (x̄0, x̄1, x̄2),

α1 : (x0, x1, x2) �→ (x̄0,−x̄1, x̄2),

α2 : (x0, x1, x2) �→ (x̄0,−x̄1,−x̄2). (38)

Lemma 7.2. An anti-unitary involution of Λ is Γ-conjugate to exactly one of the ±αj . In
particular, |PΓ \ PA | = 3 and the αi defined in (38) form a set of representatives for PΓ \ PA.

Proof. For isometries α : W →W , the dimension and determinant of the fixed space (Wα, q|Wα)
are conjugacy-invariant. Using this, one can show that the elements ±αi are pairwise non
Γ-conjugate. Moreover, |PΓ \ PA | = |π0(M0(R))| = 3 by Proposition 5.4 and Theorem 7.1. �

Define

θ = ζ5 − ζ−1
5 ∈OK .

Note that |θ|2 =
√
5+5
2 . The fixed lattices of the anti-unitary involutions αi defined in (38) are

Λα0 = Z[λ] ⊕Z[λ] ⊕Z[λ],

Λα1 = Z[λ] ⊕ θZ[λ]⊕Z[λ],

Λα2 = Z[λ] ⊕ θZ[λ]⊕ θZ[λ], (39)

where

λ = ζ5 + ζ−1
5 =

√
5 − 1

2
. (40)

Restricting h to the Λαj yields quadratic forms q0, q1 and q2 on Z[λ]3 defined as follows:

q0(x0, x1, x2) = −λx20 + x21 + x22,

q1(x0, x1, x2) = −λx20 +

(√
5 + 5

2

)
· x21 + x22,

q2(x0, x1, x2) = −λx20 +

(√
5 + 5

2

)
· x21 +

(√
5 + 5

2

)
· x22, (41)

We consider Z[λ] (with λ as in (40)) as a subring of R via the embedding that sends λ to a
positive element.

Theorem 7.3. Consider the quadratic forms qj defined in (41), with λ as in (40). There is
a union of geodesic subspaces Hj ⊂RH2 (j ∈ {0, 1, 2} ) and an isomorphism of hyperbolic
orbifolds

M0(R) ∼=
2∐

j=0

PO(qj ,Z[λ]) \ (RH2 −Hj

)
. (42)

Proof. By Proposition 5.4 and Lemma 7.2, we obtain an isomorphism

M0(R) ∼=
2∐

j=0

PΓαj
\ (RH2

αj
−H ).
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Note that PΓαj
= NPΓ(αj) for the normalizer NPΓ(αj) of αj in PΓ. If hj denotes the restriction

of h to Λαj , there is a natural embedding

ιj : NPΓ(αj) ↪→PO(Λαj , hj ,Z[λ]).

We claim that ιj is an isomorphism. This holds because the natural homomorphism
πj : NΓ(αj) →O(Λαj , hj) is surjective, where NΓ(αj) = {g ∈ Γ: g ◦ αj = αj ◦ g} is the normalizer
of αj in Γ. The surjectivity of πj follows in turn from the equality

Λ = OK · Λαj + OK · θ (Λαj )∨ ⊂K3, (43)

and (43) follows from (39). Since PO(Λαj , hj ,Z[λ]) = PO(qj ,Z[λ]), we are done. �

Proof of Theorem 1.2. This follows from Corollary 5.9, Theorem 6.2 and Theorem 7.3. �

Proof of Theorem 1.3. In [AY98], Apéry and Yoshida proved that M0 is the hyperbolic triangle
with angles π/2, π/4 and π/5. As the two hyperplanes in Figure 1 intersect orthogonally, this
implies that the bottom angle of the triangle M0 in Figure 1 (i.e. its angle at (0,−1,∞,∞, 1))
equals π/2, and that the angle of M0 at (0,−1,−1,∞,∞) equals π/4. One deduces that the left
angle of M1 is π/2, and that the angle of M2 at (0,−1,−1,∞,∞) equals π/4.

For a hyperbolic triangle with angles α, β, γ and sides a, b, c such that a is the side opposite
to α, b the side opposite to β and γ the side opposite to c, one has the hyperbolic law of
cosines

cosh(c) =
cos(α) cos(β) + cos(γ)

sin(α) sin(β)
. (44)

Applying (44) to the triangles M0 and MR, one can calculate the length of the side of M2

that connects (0,−1,−1,∞,∞) and (∞, i, i,−i,−i). Applying (44) again, it follows that the
angle of M2 at the point (0,−i,∞,∞, i) is π/2. Thus, the angle of M1 at (0,−i,∞,∞, i) is
also π/2. �

8. Non-arithmetic lattices in the projective orthogonal group

In a previous paper we proved a result, see [GF24, Theorem 1.8], that has the following
consequence. For n≥ 2, define

L n
ζ5(λ) :=

(
Q(ζ5),Z[ζ5]

n,1
λ

)
, λ= ζ5 + ζ−1

5 = (
√

5 − 1)/2.

Here, Z[ζ5]
n,1
λ is the free Z[ζ5]-module of rank n + 1 equipped with the hermitian form h defined

as h(x, y) = −λ · x0ȳ0 + · · · + xnȳn. Then Ln
ζ5(λ) is a hermitian lattice of rank n + 1 in the sense

of [GF24, Definition 2.2] (indeed, this follows from [GF24, Example 2.12]). For each n≥ 2,
perform the gluing construction of [GF24, Definition 1.1] to associate to the hermitian lattice
Ln

ζ5(λ) a topological space M(Ln
ζ5(λ)). By [GF24, Theorem 1.2], there exists a canonical real

hyperbolic orbifold structure on M(Ln
ζ5(λ)) such that each connected component of M(Ln

ζ5(λ))
is isomorphic to the quotient of real hyperbolic n-space RHn by a lattice in PO(n, 1). Define an
anti-unitary involution α0 : Z[ζ5]

n,1
λ →Z[ζ5]

n,1
λ by α0(x) = x̄, let

M
(
Ln

ζ5(λ), α0

) ⊂M
(
Ln

ζ5(λ)
)

be the connected component that contains the image of the natural map RHn
α0

→M(Ln
ζ5(λ)),

and let

Γn
ζ5(λ) ⊂ PO(n, 1)
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be a lattice such that M(Ln
ζ5(λ), α0) ∼= Γn

ζ5
(λ) \RHn (compare [GF24, p. 7]).

By combining [GF24, Theorem 1.8] with the main results of this paper, one can prove the
following result.

Theorem 8.1. For each n≥ 2, the lattice Γn
ζ5

(λ) ⊂ PO(n, 1) is non-arithmetic.

Proof. Write Z[ζ5]
2,1
λ = Λ; this abuse of notation is harmless in view of Theorem 7.1. Let

Γ = Aut(Λ). By Lemma 7.2, an anti-unitary involution of Λ is Γ-conjugate to exactly one
of the involutions ±αj defined in (38). We can therefore apply [GF24, Theorem 1.8], which
implies that Γn

ζ5
(λ) ⊂ PO(n, 1) is non-arithmetic for each n≥ 2 provided that Γ2

ζ5
(λ) ⊂ PO(2, 1)

is non-arithmetic. In other words, we are reduced to the case n = 2. By Theorem 7.1, the
lattice Γ2

ζ5
(λ) ⊂ PO(2, 1) is conjugate to the lattice PΓR ⊂ PO(2, 1) defined in Corollary 5.9.

Moreover, by Theorem 6.2, the lattice PΓR is conjugate to the lattice Γ3,5,10 ⊂ PO(2, 1) defined
in (3). Finally, by Takeuchi’s classification of arithmetic triangle groups (see [Tak77]), the sub-
group Γ3,5,10 ⊂ PO(2, 1) is non-arithmetic. Thus, Γ2

ζ5
(λ) is non-arithmetic, and the theorem

follows. �
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