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Hyperbolic geometry and real moduli of five
points on the line

Olivier de Gaay Fortman

ABSTRACT

We show that each connected component of the moduli space of smooth real binary
quintics is isomorphic to an open subset of an arithmetic quotient of the real hyperbolic
plane. Moreover, our main result says that the induced metric on this moduli space
extends to a complete real hyperbolic orbifold structure on the space of stable real
binary quintics. This turns the moduli space of stable real binary quintics into the
quotient of the real hyperbolic plane by an explicit non-arithmetic triangle group.

1. Introduction

For interesting classes of complex varieties, there is a period map that identifies the moduli
space with an open subset of an arithmetic quotient of a hermitian symmetric domain. Classical
examples include abelian varieties, K3-surfaces, and configurations of points on the line. To study
moduli of real algebraic varieties, several authors have analyzed the equivariance of the complex
period map with respect to the action of complex conjugation on cohomology [Kha76, Nik79,
Kha84, SS89, Yos98, AY98, DIK00]. An important difference between the complex and the real
case is that moduli spaces of smooth real varieties are often not connected. This implies that a
real period map has to be defined on each connected component of the moduli space separately;
in favorable cases, this defines an isomorphism between any such component and the quotient of a
Riemannian manifold by a discrete group of isometries (see e.g. [GH81, ACT10, Chull, HR18]).

To salvage the non-connectedness of the real moduli space, one can sometimes define a
slightly larger moduli space by allowing mild singularities. The idea is that, in such a larger space,
the smooth varieties of one topological type do now deform into smooth varieties of another
topological type, making the moduli space connected. In their beautiful paper [ACT10], Allcock,
Carlson and Toledo showed that, for cubic surfaces, the real period maps defined on the various
connected components of the moduli space of smooth surfaces extend to a global period map,
defined on the moduli space of stable real cubic surfaces. In this way, they identified the latter
with a single non-arithmetic real hyperbolic quotient. They proved analogous results for moduli
of stable binary sextics, and stable binary sextics with a double root at infinity [ACT06; ACTO07].
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OLIVIER DE GAAY FORTMAN

It turns out that binary quintics provide a new example of this phenomenon. Let X = A% be
the real algebraic variety that parametrizes homogeneous polynomials F' € R|z, y| of degree five.
Let Xy C X parametrize polynomials with distinct roots, and X; C X polynomials with roots
of multiplicity at most two (i.e. stable in the sense of geometric invariant theory). The principal
goal of this paper is to study the geometry of the moduli space of stable real binary quintics

M, (R) := GLy(R) \ X,(R) D GLy(R) \ Xo(R) =: Mo(R).

Let P, C P1(C)? be the set of five-tuples (z1,...,xs5) such that no three x; € P!(C) coincide
(cf. [MST72]), and let Py C P, be the subset of five-tuples whose coordinates are distinct. These
spaces are naturally acted upon by &5, the symmetric group on five letters. Moreover, complex
conjugation o: P1(C)® — P1(C)® induces an anti-holomorphic involution o: Ps/&5 — Ps/Gs
that preserves Py/Ss. Let (Py/S5)(R) and (Ps/S5)(R) denote the respective fixed loci. Then

Mo(R) =PGL2(R) \ (Py/65)(R) and M (R)=PGL2(R)\ (Ps/65)(R).

In other words, Mg(R) is the space of subsets S C P!(C) of cardinality |S| =5 that are stable
under complex conjugation modulo real projective transformations; in M4(R) one or two pairs
of points are allowed to collapse.

By the Deligne-Mostow theory, the coarse moduli space M (C) = GLy(C) \ Xs(C) of stable
complex binary quintics has a complex hyperbolic orbifold structure. Indeed, for five distinct
points uy, . ..,us € A(C) C P1(C), the projective model of the normalization of the affine
curve 2% = (x —uy)?---(x —us)? is a smooth curve C of genus six; this curve C carries an
automorphism of order five that induces an automorphism on the space H(C, Q) of holomor-
phic one-forms on C' whose 2™/ S_eigenspace defines a line in the corresponding eigenspace in
H!(C(C), C). This line is negative for a natural hermitian form, and hence one can associate to
{uq,...,us} a point in a certain two-dimensional complex ball quotient PT'\ CH?. This con-
struction was already known to Shimura; see [Shi63; Shi64]. By varying the subset {u1, ..., us}
of points on P!(C), or rather the associated complex binary quintic, one obtains a period map
M(C) = GLy(C) \ Xo(C) — PT'\ CH? (see Section 4.1 for details). The results of Deligne and
Mostow [DMS86] imply that this period map extends to an isomorphism of complex analytic
spaces M(C) = GLy(C) \ X4(C) = PI'\ CH?; see Theorem 4.1. Since strictly stable quintics
correspond to points in a hyperplane arrangement #C CH? (see Proposition 4.3), one thus
obtains an isomorphism

M(C) =GLy(C) \ Xo(C) = PI'\ (CH? — ¢) . (1)

By investigating the equivariance of the period map with respect to suitable anti-holomorphic
involutions o;: CH 2 5 CH?, we obtain the following real analogue.

THEOREM 1.1. For j€{0,1,2}, let .#; be the connected component of My(R) parametrizing
Gal(C/R)-stable subsets S C P'(C) with 2j complex and 5 — 2j real points. The period map
induces an isomorphism of real analytic orbifolds

;%5 P\ (RH? — 15) @)

Here RH? is the real hyperbolic plane, #¢; a union of geodesic subspaces in RH?, and PT;
an arithmetic lattice in PO(2,1). Moreover, the lattices PI'; are projective orthogonal groups
attached to explicit quadratic forms over Z[\], A= (s + (5 ' = (V5 — 1)/2; see (41).

In particular, Theorem 1.1 endows each connected component .#; C My(R) with a hyper-
bolic metric. Since one can deform the topological type of a Gal(C/R)-stable five-element subset
of P1(C) by allowing two points to collide, the compactification Ms(R) D Mo(R) is connected.
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(0,—1,00, A+ 1,A) —
(0, =i, o, 20,i)

(0,-1,00,20,1)

(0, =1, 00, w, w?)

FIGURE 1. The moduli space of stable real binary quintics as the hyperbolic triangle
Azs510 C RH?. Here A= (5 + C5_1 =(v/5—1)/2 and w = (3 (where ¢, = e2mi/n ¢ C for n € Z-3).

One may wonder whether the metrics on the components .#; extend to a metric on the whole of
M (R). If so, what does the resulting space look like at the boundary? Our main result answers
these questions in the following way.

THEOREM 1.2. There exists a complete hyperbolic metric on Ms(R) that restricts to the met-
rics on .#; induced by (2). Let .#r denote the resulting metric space, and define I'3 510 as

the group
I's510=(a,b,c| === (ab)3 = (ac)5 = (bc)10 =1). (3)
There exist an open embedding ]_[j PT;\ (RH2 — I ) —T'3510\ RH? and an isometry
Mp=T3510\ RH? (4)

that extend the real analytic orbifold isomorphisms (2) in Theorem 1.1. In particular, AR is
isometric to the hyperbolic triangle As 510 with angles 7/3,7/5,7/10; see Figure 1.

Note that the closure
%0 C %R
of My in R is the moduli space of stable configurations of five real points s on P%{. This moduli
space was investigated by Apéry and Yoshida in [AY98], who proved that .# is the hyperbolic
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triangle with angles 7/2, /4 and 7 /5. From this, together with the knowledge of the angles of
Arw and the fact that the two hyperplanes in Figure 1 intersect orthogonally, one can deduce
the remaining angles of the closures .#; C .#g of the subsets .#; C .#r (j €{0,1,2}).

THEOREM 1.3. Consider Figure 1. For j=0,1, 2, let ZJ C /R be the closure of M; C MR
(i) The angle of .#y at (0,—1,00,00,1) is 7/2, and its angle at (0, —1,—1, 00, oc) is /4.
(ii) The angle of #1 at (0,—1,00,00,1) is 7/2, and its angle at (0, —i, 00, 00, 1) is 7/2.

(iii) The angle of .#5 at (0,—1, —1,00,00) is w/4, and its angle at (0, —i, 00, 00, ) is m/2.

Remark 1.4.

(i) The lattice I's 5 190 C PO(2, 1) is non-arithmetic; see [Tak77].

(ii) The topological space M (R) underlies two topological orbifold structures: the natural
orbifold structure on GLa(R)\ X,(R) and the orbifold structure on .#g induced by (4).
These orbifold structures only differ at one point of M(R), which is (oo,i,, —i, —i)
(see Figure 1). The stabilizer group of M (R) at (oo, 1,7, —i, —i) is isomorphic to Z/2,
whereas the stabilizer group of .#Zg at (oo, i,i, —i, —i) is isomorphic to the dihedral group of
order 20.

(iii) Important ingredients in the proof of Theorem 1.2 are:

(a) the fact that under the complex period map (1), moduli of singular binary quintics
correspond to points in the quotient of a certain hyperplane arrangement ¢ C CH?;
and

(b) the fact that the hyperplane arrangement .# C CH? is an orthogonal arrangement in the
sense of [ACT02a).

We prove (a) in Proposition 4.3, and (b) holds by [GF24, Theorem 2.5 and Example 2.12].

Remark 1.5. Let PXy(C) denote the space of C*-equivalence classes of smooth complex binary
quintics F' € C[z,y|. The natural map Py — PXo(C) induces a PGLy(C)-equivariant isomor-
phism Py/&5 = PX((C), and the quotient Mq(C)=PGL2(C)\ PX((C) is the moduli space
of smooth complex binary quintics. It turns out that neither 71 (PXo(C)) nor 7¢™ (Mo(C))
is a lattice in any Lie group with finitely many connected components. In view of [ACT02a,
Theorem 1.2], this follows from the isomorphism M(C) = PT'\ (CH? — %) (see (1) above)
and the orthogonality of the hyperplane arrangement # C CH? (see Remark 1.4(iii)(b) above).

1.1 Overview of this paper

In Section 3, we recall known results on families of quintic covers of the complex projective line,
branched along a binary quintic. We consider moduli of complex binary quintics in Section 4.
In particular, we show that the Deligne-Mostow theory provides an isomorphism between the
space of stable complex binary quintics and an arithmetic ball quotient. In Section 5, we prove
that moduli of stable real binary quintics are in one-to-one correspondence with points in the
real hyperbolic quotient space PT'r \ RH? defined by a lattice PT'g C PO(2,1). We calculate
PT'r in Section 6: it is conjugate to the lattice I's 510 defined in (3). In Section 7, we study
monodromy groups of moduli spaces of smooth binary quintics over C and over R, and prove
Theorems 1.2 and 1.3. In Section 8, we use [GF24, Theorem 1.8] and the main results of this
paper to provide an explicit sequence {I', CPO(n, 1)}, of non-arithmetic lattices I',,, with
I'y=PI'gr.
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2. Notation

Let K be the cyclotomic field Q((), where
(== ecC.

The ring of integers Ok of K is Z[(] (see e.g. [Neu99, Chapter I, Proposition 10.2]). Let ux C O
be the torsion subgroup of the unit group O}, and recall that px is cyclic of order ten, generated
by —(. Define an involution p: K — K by p(¢) =¢~!, and let F = K” be the maximal totally
real subfield of K. Recall that F' is generated over Q by the element

A=C+¢ T =(V5-1)/2
Define
n=¢—(? €0k,
and consider the different ideal D C Ok (see e.g. [Neu99, Chapter III, Section 2, Definition
2.1] or [Ser79, Chapter I11, Section 3]). We have (¢ —¢71) - (¢2 —¢72)- (3= ¢73) - (¢t = ¢4 =5,

and hence (n)* = (5) as ideals of Ok. This implies (see e.g. [Neu99, Chapter III, Theorem 2.6])
that

Dk =(5/n)=(n)°

3. Preliminaries on quintic covers of the projective line branched along five points

In this section, we recollect some known results on quintic covers C' — Plc ramified along five
points with local monodromy exp(47i/5) around each point. Some of these results are well known
but hard to find in the literature; we state and prove these for the convenience of the reader.
Other results of this section are available in the literature, but we formulate them in a different
manner.

Recall from the introduction that X %A% is the real algebraic variety that parametrizes
homogeneous polynomials of degree five, Xy the subvariety of polynomials with distinct roots,
and Xy C X the subvariety of polynomials with roots of multiplicity at most two (i.e. non-zero
polynomials whose class in the associated projective space is stable in the sense of geometric
invariant theory [MFK94] for the action of SLy g on it).

3.1 Refined Hodge numbers of a quintic cover of P! branched along five points

Let F' € Xo(C) be a smooth binary quintic; thus F' = F(x,y) € C[z, y] is a homogeneous poly-

nomial of degree five whose zeros in P1(C) all have multiplicity one. Let t1,...,t5 € P(C) be
the zeros of F, with ¢; = [u;: v;] in homogeneous coordinates of P*(C), for j=1,...,5. Let
Cr— P& (5)
be the cyclic quintic cover with branch points ¢4, ..., t5 € P}(C) and local monodromy
exp(2mi - 2/5) € s (6)

around ¢; for each j € {1,...,5}. If the points t; = [u;: 1] are all in A'(C), the cover (5) is, in
affine coordinates, given by the normalization of the curve defined by the equation

D=(r—u)? (x—u)? - (x —us)?,
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with ¢ € us C C acting by (z, z) — (z,( - z). We have g =6 for the genus g = g(Cr) of the curve
Cp. Let JCg be the Jacobian of the curve C'r, so that

JCr(C)=H'(Cr(C), Oc,)/H' (Cr(C), Z)(1),
with weight —1 Hodge decomposition
Hi(JCp(C),C)=H'(Cp(C),Z)(1)  C=H "*(JCp) ©H* 1 (JCp). (7)

Note that H>~!(JCF) is naturally isomorphic to the space H(Cr, Q!) of global holomorphic
differentials on the curve Cr. The order five automorphism

¢:Cp = Cp
defined above induces an embedding of rings

¢: Z[() = End(JCR), @(Q)=(¢C7),
which is compatible with the Hodge decomposition (7). For k € {1, 2, 3,4}, define

HO L (JCOp)or = {x c HOL(JOF) | o(¢) = gk} CHOL(JCp) = HYO(CF) = HY(Cp, 1),

and define H™0(JCp)ee CHH(JCF) in a similar way.
The way to calculate the refined Hodge numbers ho’_l(JCF)Ck =dim HO’_l(JC'F)Ck and
h=10(JCF)er =dimH10(JCp)ex for k=1,2,3,4 is well known; the result is as follows.

LEMMA 3.1. Let F € Xo(C) be a smooth binary quintic, and let JCp be the Jacobian of
the cyclic cover Cp — P1(C) associated to F as in (5). One has the following refined Hodge
numbers:
ho’_l(JCF)C = 1, ho’_l(JCF)Cz = 3, ho’_l(JCF)Cz = 0, h07_1(JCF)C4 = 2,
hil’O(JCF)C =2, hil’O(JCF)Cz =0, hil’o(JCst =3, hil’O(JCF)C; =1.

Proof. This follows from the Hurwitz—Chevalley—Weil formula (see [MO13, Proposition 5.9]).
Alternatively, see [Loo07, Lemma 4.2]. O

3.2 The hermitian lattice
We fix a smooth binary quintic Fy € X¢(C). Let C — Pg be the cyclic cover of P& associated
to Fy as in (5), and consider the Jacobian variety with Ox-action
(JC, ¢: Og=2Z[¢(]—~End(A).
See Section 3.1 above. Define A as the free Og-module
A=H'(C(C),Z).
The canonical principal polarization of the Jacobian JC' is given by a symplectic pairing
E: Ax A=H'(C(C),Z) x H(C(C),Z) — H*(C(C),Z)=Z

which satisfies E(¢(a)z,y) = E(z, ¢(p(a))y) for each a € Ok and z,y € A, where p is the auto-
morphism K — K, +— ¢~! (see Section 2). Consider the different ideal D C Ok, and define a
skew-hermitian form 7 on A as follows:
4
1 . .
T:AxA—=Dy, T(z,y)= = ZC]E (z, (¢)y).
j=0
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By [GF24, Example 11.2.2], this is the skew-hermitian form corresponding to E, via [GF24,
Lemma 11.1]. Let n € Ok be the purely imaginary element

n=¢—(?e0k,

and note that the different ideal ®x C O is generated by 5/n (see Section 2). We obtain a
hermitian form on the free Ox-module A as follows:

CZ _ C—Q

By [GF24, Lemma 11.1], we have that (A, ) is unimodular as a hermitian lattice over O,
because (A, E) is unimodular as an alternating lattice over Z.

4
b: A x A= Orc, B g) = Tlavy) = =emg 3B (9O, 3)
=0

3.3 The signature

Recall that a CM type on a CM field L of degree 2g over Q is a set ® C Hom(L,C) of ¢
embeddings of L into C, such that for each embedding ¢: L — C, either ¢ lies in ¢ or the

complex conjugate of ¢ does.
Define a CM type ® C Hom(K, C) as

d={01,00: K= C}, op(Q)=¢" for k=1,2. 9)
Observe that, for k=1, 2, we have
A®0, .5, C=(A®z C), =H(C(C), C)¢r.

LEMMA 3.2. For k € {1, 2}, consider the hermitian form
b= : HY(C(C), C)¢ x H(C(C), C)¢x — C.
Then sign(h?) = (2, 1) and sign(h??) = (3, 0), where sign(h?*) is the signature of h7*.

Proof. Write Ac = A ®z C=H!'(C(C), C). For each embedding ¢: K — C, the restriction of
the hermitian form

¢ (5/n)-Ec(z,y): Ac x Ac = C
to (Ac)y C Ac coincides with h® by [GF24, Lemma 11.3]. Moreover, the hermitian form
i Ec(z,5): H(C(C), C) x H{(C(C),C) = C

is positive definite on HO(C, Q') = HY0(C) = HO~1(JC) and negative definite on H=10(JC) =
H%L(C) (see [Voi02, Théoreme 6.32]). As I(a1(n)) >0 and S(02(n)) < 0, we have I(a1(5/7)) <0
and S(o2(5/n)) > 0. Consequently, the hermitian form

01(5/n) - Ec(2,5) = (z,y): H'(C(C), C)¢ x H'(C(C),C)¢ = C
is negative definite on H%~1(JC), and positive definite on H~10(JC)¢, so that sign(h”*) = (2,1)
by Lemma 3.1. Similarly, the hermitian form

a2(5/n) - Bc(z, §) = h7(z, y): H(C(C), C)¢= x HY(C(C), C)2 = C

is positive definite on H%~1(JC).2 and negative definite on H™1°(.JC))¢2. Hence, using Lemma 3.1
again, we conclude that sign(h??) = (3,0). O
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3.4 The monodromy representation

Consider the real algebraic variety Xy introduced in Section 1. Let D C GL2(C) be the subgroup
D={¢’-1d} C GLy(C) of scalar matrices of the form ¢’ -Id with j€{0,1,2,3,4} and Id €
GL2(C) the identity two-by-two matrix. Define

G(C)=GLy(C)/D. (10)
The group G(C) acts from the left on Xo(C) in the following way: if

F=F(x,y) € Clz,y]
is a binary quintic, we may view F as a function C? — C, and define g - F = F((g~!) for g € G(C).
This gives a canonical isomorphism of complex analytic orbifolds

Mo(C) =G(C) \ Xo(C),
where Mg is the moduli stack of smooth binary quintics. Define
g: €— Xo (11)

as the universal family of cyclic quintic covers C' — P! ramified along a smooth binary quintic
{F =0} c P! with local monodromy given by (6), and let

J:J(%%Xg

be the relative Jacobian of 4/Xy. By Lemma 3.2, J is a polarized abelian scheme of relative
dimension six over X, equipped with Og-action of signature {(2, 1), (3,0)} with respect to ® =
{o1,02}. Let V= R'g,Z be the local system of hermitian Ox-modules underlying the abelian
scheme J/Xj. Attached to V and the base point Fy € X((C), we have a representation

pr: m(Xo(C), Fo) = I':= Auto, (A, h) (12)
whose composition with the quotient map I' = PT' =T/ defines a homomorphism
Plpr): m1(Xo(C), Fy) — PT. (13)

3.5 Marked binary quintics and points on the projective line
Let F € Xo(C) and consider the hypersurface Zp:={F =0} CP&. A marking of F is an
ordering m: Zp(C) = {1,2,3,4,5} of the five-element set Zz(C) = {z € P}(C) | F(z) =0}.

Remark 3.3. Let F € Xo(C). To give a marking of F is to give an isomorphism of rings
H%(Zp(C), Z) =+ Z5. Moreover, sending a ring automorphism of Z® to the induced permutation
of the canonical basis of {e1, ..., e5} CZ5 defines a group isomorphism Autying(Z°) = &s.

Define Ny as the set of marked smooth complex binary quintics (F, m), and consider the map
that forgets the marking:

No— Xo(C),  (F.m)w F. (14)

To provide Ny with a complex manifold structure such that (14) is a finite covering map, we
define Ny in a slightly different but equivalent way. Define an algebraic subgroup

T:={(M\,...,X5) €(C*)° | A1 --- A5 =1} C(C*)°.
The group T acts freely on (C? — {0})° in the usual way, i.e. by letting (A1,...,\5) €T act as
((al, bl), ceey (CL5, b5) ) — ()\1 : (al, bl), ey A5 (CL5, b5)) .
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As dim(T') =4, the quotient variety N := (C? — {0})°/T is a complex manifold of dimension six,
equipped with a holomorphic principal C*-bundle map

f: N =P{C)>, (v1y. .. 05 )= ([v1], -+, [vs)), (15)

where C* acts on N by X-(v1,v2,...,05)=(Avy,v2,...,05)=(v1, A\Va,...,05) =" =
(vi,v9, ..., Avs) €N for A€ C* and (vy,v2,...,v5) EN. For 4,5 €{1,...,5} with i < j, define

Aij={(z1,...,25) € PY(C)’ |2; =x;}, and let
Aij =71 (Ay),
where f is the principal bundle map (15). Since A;; C P}(C)? is Zariski closed in P(C)°, we
see that A;; is Zariski closed in V. Define a Zariski open subset Ny C N as follows:
N() 2:N - U Azg
1<j
LEMMA 3.4. The complex manifold Ny is connected and there is a canonical bijection between

Ny and the set of marked smooth complex binary quintics (F,m). Under this bijection,
the map

5
No—)XO(C), ((al,bl),(ag,bg),...,(a5,b5))r—>H(bj'x—aj-y) (16)
j=1
corresponds to the map (14) that forgets the marking, and (16) is a Galois covering with Galois
group Ss.

Proof. Note that Aj is connected because (C?—{0})? is connected. For v=((ay,bs),...,
(as,bs)) € Ny, define F, :H?:1(bj -x —aj-y). The polynomial F, is a smooth binary quin-
tic, equipped with the marking m, defined by the ordering {[a1: b1], ..., [as: bs])} of the roots
[a;: bj] € P1(C) of F,. The association v+ (F,, m,) defines the bijection alluded to in the first
statement of the lemma. The rest is clear. g

In a similar way, we define, for i, j, k € {1,...,5} with i < j <k, closed subsets
Zijk = {(ml, .o, 5) € Pl(C)5 |z = x; :xk} , Ajji = f—l(&jk) CN,
and put
Ny =N — U Ajj.-
i<j<k

The space N is equipped with a finite ramified covering map

5
N: = X,(C),  ((a1,b1), (a2, b2), - .-, (a5, b5) ) = [ [ (b - & — a; - ) € Cla, ),
j=1

that commutes with (16) and the natural open embedding Ny C Ns. Observe that Ny — X,(C)
is the Fox completion (cf. [Fox57] or [DM86, Section 8.1]) of the spread Ny — Xo(C) — X,(C).

3.6 Monodromy

Choose a marking my lying over our base point Fy € Xo(C). By Lemma 3.4, we have a surjective
homomorphism

ps: T1(Xo(C), Fo) - &5 (17)
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whose kernel is given by the image of the natural embedding 1 (Noy, mo) — 71 (Xo(C), Fp).
Composing the latter with the maps pr and P(pr) of (12) and (13) yields homomorphisms

p: m(No,mo) =T and  P(u): m1 (N, mg) — PL. (18)
Consider the three-dimensional F5 vector space A/(1 —()A, as well as the quadratic space
Wi=(A/(1-¢)A q)

over F5. Here, q is the quadratic form obtained by reducing b modulo (1 — {)A. Define two
groups ['g and PI'y as follows:

Iy =Ker ([ — Aut(W)), PLy=Ker (PT — PAut(W)).
The following proposition seems to be due to Terada [Ter83] and Yamazaki and Yoshida [YY84].

PROPOSITION 3.5. The image of the map P(u) defined in (18) is the group PT'y. Moreover, the
map PI' — PAut(W) is surjective, and the induced homomorphism

or: G;5 :Wl(Xo(C),Fo)/ﬂ'l (N(),mo ) —>PF/PP9 :PAut(W)

is an isomorphism. As a consequence, we obtain the following commutative diagram with exact

Irows.
0—— m1 (N, mo) —— m(Xo(C), Fy) — 22— &5 » 0
lP(u) lP(PF) ler (19)
0—— PIy PT y PAut(W) —— 0

Proof. The equality P(u) (m1(Np, mg)) = PTy follows from pu (71 (Np, mg)) =Ty. For the lat-
ter, see [YY84, Propositions 4.2 and 4.3]. The group PAut(W)=PO3(F5) is isomorphic
to &5, and pp: 65— PI'/Ty is an isomorphism (cf. [YY84, Propositions 4.2 and 4.3] and
[AY9S, p. 10]). O

COROLLARY 3.6. The monodromy representation P(pr): m1(Xo(C), Fy) — PT is surjective.

3.7 Framed binary quintics, nodal binary quintics and local monodromy

By a framing of a point F' € Xy(C) we mean a projective equivalence class [f], where
f: Vp=H'(CFr(C),Z) = A

is an O-linear isometry: two such isometries are in the same class if and only if they differ by
an element in g = (O )tors- Let Fo be the collection of all framings of all points F' € Xy(C).
The set Fy can naturally be given the structure of a complex manifold, in a way similar to the
procedure described in [ACT02b, (3.9)]. In what follows, we consider Fy as a complex manifold.

LEMMA 3.7.
(i) The complex manifold Fy is connected and the map
Fo—Xo(C), (B [f)—=F (20)

that forgets the framing is a Galois covering map, with Galois group PT.

(ii) The spaces PT'y\ Fo and Ny are isomorphic as covering spaces of Xo(C). In particular,
there is a covering map JFo — Ny with Galois group PTy.

10
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Proof. Indeed, Fy is connected by Corollary 3.6. The isomorphism PTy\ Fy =N of covering
spaces of Xo(C) follows from the isomorphism PI'/PT'y =~ &5 as quotients of m1(X(C), Fp),
which was shown in Proposition 3.5. The lemma follows. O

LEMMA 3.8. The subvariety A := Xy — Xy is an irreducible normal crossings divisor in Xs.

Proof. The irreducibility of A is well known; see e.g. [Voi02, Section 14.1.1]. Let (p, F') be a
point on the incidence variety Z = {(p, F') € P! x X, |p € Sing(F)}, choose a hyperplane away
from p, and view p € C and F as a polynomial f(z). Since f”(p) is non-zero, the tangent map

Tq: T(p’f) (I) — Tf(XS) = X(C)
of the projection ¢q: Z — X is injective, and its image consists of the linear subspace X,, C X of

binary quintics that contain p as a root. If f has k double points p;, where k € {1,2}, then A is
locally isomorphic to the union Ué?:lij. These X, intersect transversally, and we are done. [J

DEFINITION 3.9. A node p € Zr(C) C P'(C) of a binary quintic F' is a double point, i.e. a zero
with multiplicity two. For k=1, 2, let Ay C A= X, — X be the locus of stable binary quintics
with exactly k& nodes.

The following result is due to Deligne and Mostow [DMS86].

LEMMA 3.10. The local monodromy transformations of Fy— Xo(C) around every F' € A are of
finite order. More precisely, if F' € Ay, then the local monodromy group around F' is isomorphic
to (Z/10)*.

Proof. Let F1 € A1 be a binary quintic with one node. Consider the universal family — X
of quintic covers of P! ramified along a stable binary quintic, whose restriction to X is (11).
Let D C X4(C) be an open disc transverse to Ay at Fy. For F' € D*, one obtains a monodromy
transformation T': H(Cr(C), Z) — H!(Cr(C), Z) induced by a vanishing cycle, and T has order
ten by [DM86, Proposition 9.2]. Similarly, if F; € Ag has two nodes, we may choose an embedding
D? C X,4(C) of the polydisc D?= D x D transversal to Ay at Fh. Since distinct nodes have
orthogonal vanishing cycles, the local monodromy transformations commute. O

In the following corollary, we let D={z€ C: |z| <1} denote the open unit disc, and
D* =D — {0} the punctured open unit disc.

COROLLARY 3.11. There is an essentially unique branched cover

m: Fs — X4(C),
with Fs a complex manifold, such that for any x € A, any open x € U C X4(C) with
U=DFx D% and UnNXy(C)=(D*)* x D,

and any component U’ of 7= Y(U) C Fs, there is an isomorphism U’ = D* x D57F such that the
composition
D¥ x D%*~y’ 5 U =~ D%is the map (z1,...,2) (212, ... ,zéo,zkH, ey 26)-

Proof. In view of [Bea09, Lemma 7.2] (see also [Fox57] and [DM86, Section 8.1]), this follows
from Lemma 3.10. U

The group G(C) = GL2(C)/D (see (10)) acts on Fy over its action on Xy. Explicitly, if g € G(C)
and if ([¢], : VF = A) is a framing of F € X(C), then

([pog*],¢og*: Vgr = A)

11
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is a framing of g - F' € X((C). This is a left action. The group PI" also acts on Fy from the left,
and the actions of PI" and G(C) on Fy commute. By functoriality of the Fox completion, the
action of G(C) on F extends to an action of G(C) on Fs.

LEMMA 3.12. The group G(C) = GL2(C)/D acts freely on Fs.

Proof. Consider the natural action of G(C) on Nj, and the action of G(C) on PT'y \ Fs induced
by the action of G(C) on Fs. With respect to these actions, the isomorphism of ramified cov-
ering spaces PTy \ Fs 2 N of X;(C) that results from Lemma 3.7(ii) is G(C)-equivariant. In
particular, the natural ramified covering map Fs — N is G(C)-equivariant, and so it suffices to
show that G(C) acts freely on Nj.

To this end, note that N, admits a natural C*-quotient map

Ns = P, (21)
where P, C P(C)® is the space of stable ordered five-tuples in P!(C) introduced in
Section 1, and where C* acts on Nz by A« (v1,v2, ..., v5) = (Avy, v2, ..., v5) = (v1, Avg, ..., v5) =

o= (v1,v2,..., v5) ENy for A€ C* and (v1,ve,...,v5) €Ny (see the description of N in
Section 3.5), and (21) is equivariant for the natural homomorphism G(C)— PGLy(C). Let
g € GLo(C) and x € N such that gz =z. Since any element of PGLy(C) that fixes three dis-
tinct points on P!(C) is the identity, we have that PGLy(C) acts freely on Ps. Therefore,
g€ C* CGLy(C). Let F € X¢(C) be the image of x € Ns; then

F(z,y)=gF(z,y)=F(g ' (z,9)) = F(g"'z, g7 'y) = g " F(z,y).
Thus, we have g° =1 € C*, and we conclude that g € D C GL3(C). O

4. Deligne—Mostow uniformization of the moduli space of complex binary quintics

In this section, we show that the results of Deligne and Mostow [DM86] yield an isomorphism
of complex analytic spaces M(C) = PI'\ CH?. This map is induced by the Riemann extension
Py: Fs — CH? of a holomorphic map P: Fy — CH? whose definition follows rather directly
from the set-up and results of the previous section. We also show that this isomorphism induces
an isomorphism between the divisor G(C) \ A(C) = M4(C) — M(C) and the divisor PT"\ 5 C
PT'\ CH? defined by a certain hyperplane arrangement .7 C CH?, and prove that P identifies
binary quintics with k nodes (k =1, 2) with points in J#where exactly k hyperplanes meet.

4.1 The period map

Define a complex hermitian vector space V as
V - (A ®OK70'1 Cv []01) I

where h7 is the hermitian form defined in Section 3.3. Let CH? be the space of negative lines
in V. Using [GF24, Proposition 11.7] and Lemma 3.2, we see that the abelian scheme J — X
induces a holomorphic map, the period map:

P: Fo— CH>. (22)

Explicitly, if (F, [f]) € Fo is the framing [f: H!(Cr(C), Z) = A] of the binary quintic F € X,(C),
and if JCF is the Jacobian of the curve Cp, then

FOO1(ICE)E) = f (B9(Cr)c) €HY(C(C), )t =A B0, C=V

12
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is a negative line in V;, and we have P(F, [f]) = f (H'"°(CF)¢ ) € CH?. The map P is holomorphic,
and descends to a morphism of complex analytic spaces

My(C)=G(C)\ X((C) — PI'\ CH?.
Moreover, by Riemann extension, (22) extends to a G(C)-equivariant holomorphic map
Ps: Fs — CH?. (23)

THEOREM 4.1 (Deligne-Mostow). The period map (23) induces an isomorphism of complex
manifolds

G(C)\ F, = CH?>. (24)
Taking PI'-quotients gives an isomorphism of complex analytic spaces
M,(C)=G(C)\ X,(C)= PI'\ CH?. (25)

Proof. Recall that Py C PY(C)® is the set of (z1,...,25) € P}(C)® such that all z; are dis-
tinct. In accordance with [DM86], define Q@ = G(C) \ Ny = PGL2(C) \ By and Qs := G(C) \ N, =
PGLy(C) \ Ps. Fix a base point 0 € Q whose image in S5\ @ coincides with the image of
Fy € Xo(C) under the canonical map Xy(C) — My(C) =65\ Q.

By Lemma 3.7, we have that Fjo is a covering space of N, with Galois group PT's. In [DM86],
Deligne and Mostow define Q — @ to be the covering space corresponding to the monodromy
representation 71 (@, 0) — PT'; since the image of this homomorphism is PT'y (see Proposition
3.5), it follows that G(C) \ Fy = @ as covering spaces of Q). Consequently, if Qg — Qg denotes
the Fox completion (cf. [Fox57], [DM86, Section 8.1]) of the spread

QHQ%QSM

then there is an isomorphism G(C) \ Fs = @St of branched covering spaces of Q¢. We obtain the
following commutative diagram, in which the horizontal arrows on the left are isomorphisms.

G(C)\ Fs ~ » Qst >Cf2
G(C) \ N = > Qst » PT'y \ CH?
G(C) \ X5(C) ————— &5 \ Qsy ————— PT'\ CH?

The map Qs — CH? is an isomorphism by [DMS86, (3.11)]. It follows that Qg — Py \ CH? and
G5\ Qst — PI'\CH 2 are isomorphisms as well. Therefore, we are done if we can show that the
composition Fy — Q — CH? agrees with the period map P of equation (22). This follows from
[DMS6, (2.23) and (12.9)]. O

4.2 Nodal binary quintics and orthogonal hyperplanes

Consider the CM type ® = {01,092} C Hom(K, C) defined in (9), the hermitian Og-lattice (A, b)
defined in (8), and the following sets (cf. [GF24, Sections 2.2 and 2.3]):

H={H. CCH*|re#} and #=|J) HCCH” (26)
HeH

Here, #Z C A is the set of short roots, i.e. the set of » € A with h(r,r) =1, and for each r € Z,
H, Cc CH? is the hyperplane of elements 2 € CH? that are orthogonal to .

13
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PROPOSITION 4.2. The hyperplane arrangement # C CH? is an orthogonal arrangement in
the sense of [ACT02a]. In other words, any two different hyperplanes Hy, Hy € H either meet
orthogonally, or not at all.

Proof. By Lemma 3.2, we have that h has signature (2,1) with respect to the embedding
o1: K — C, and signature (3,0) with respect to the embedding o9: K < C, where o1 and o9
are defined in (9). Therefore, the result follows from [GF24, Theorem 2.5] and [GF24, Example
2.12]. O

PROPOSITION 4.3. The map (25) induces an isomorphism of complex analytic spaces
Mo(C)=G(C)\ Xo(C)= PT'\ (CH? - 7).

Proof. We have Ps(Fy) C CH? — # by [GF24, Proposition 11.12], because the Jacobian of a
smooth curve cannot contain a non-trivial abelian subvariety whose induced polarization is prin-
cipal. Therefore, we have P, 1(#) C Fs — Fo. Since F is irreducible (it is smooth by Corollary
3.11 and connected by Lemma 3.7(i)), the analytic space Py () is a divisor. Since Fs — Fy is
also a divisor by Corollary 3.11, we have P;1(#) = F, — Fo. O

Define A = F, — Fo, and for k € {1,2}, let Ak C A be the inverse image of Ay in A under
the map A=A, Here, A C A is the subvariety defined in Definition 3.9. Moreover, for k=1, 2,
define J4. C s as the set

M, = {x € CH*: |H(z)|=k}.

Thus, this is the locus of points in % where exactly k hyperplanes meet. For r € %, define an
isometry

i A=A, Op(r) =2 —(1=Q)b(z,r) -7

Let [¢,] € PT be the image of ¢, € I' in the group PT'=T"/ux, and for x € CH?, define

G(z) = {[¢r]|reZ|h(z,r)=0) C PT. (27)
LEMMA 4.4.
(i) The period map Ps of (23) satisfies Ps(Ay) C H4..
(ii) Let F € Ay C Fy and & =Ps(F) € #; c CH?. Let PT';, C PT be the stabilizer of F in PT.

Then PT 7 = G(z), where G(z) = (Z/10)% is as in (27).

Proof.

(i) We know that P, induces an isomorphism G(C) \ A = 7 by Theorem 4.1 and Proposition
4.3. This map must identify the smooth (respectively singular) locus of one analytic variety
with the smooth (respectively singular) locus of the other, from which the result follows.

(ii) This follows from Lemma 3.10 and Corollary 3.11 (compare [ACT02b, (3.10)] and [ACT10,
Lemma 10.3]). O

5. The moduli space of real binary quintics

With the period map for complex binary quintics in place, we turn to the construction of the
period map for real binary quintics. Define k as the anti—holomorphic involution

k: Xo(C) = Xo(C), F(z,y)= Z aijzr'yl — F(z,y) = Z a;a'y’.
i+j=>5 i+j=>5

14
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DEFINITION 5.1. (Compare [GF24, Sections 3.1 and 3.2].)

(i) An Op-linear bijection ¢: A =3 A is called anti-unitary if ¢(u-z)=p-¢(x) and
h(é(2), ¢(y)) =b(z,y) for z,y €A, p€ Ok.

(ii) Let I be the group of unitary and anti-unitary Op-linear bijections of A. Let PT" =T"/uk.

(iii) Let o/ be the set of anti-unitary involutions ac: A — A, and define P.o/'= pg \ .

)

)

(iv) For a € Pg/, define RH2 C CH? as the fixed space of a, i.e. RH2 = (CH?)".
(v) For a € P, let PT,, C PI be the stabilizer of the subspace RH2 = (CH?)* C CH?.

For o € P/, the notation RH?2 reflects the fact that RH? is isometric to the real hyperbolic
plane RH?; see [GF24, Lemma 3.4].

For each o € P« there is a natural anti-holomorphic involution a: Fy — Fy lying over the
anti-holomorphic involution k: Xo(C) — Xo(C). To define «, consider a framed binary quintic
(F,[f]) € Fo, where f: Vp— A is an Ok-linear isometry. Let Cp — P& be the induced quin-
tic cover of Pg. Complex conjugation P*(C) — P!(C) induces a bijection Zp(C) = Z,r)(C),
and extends to an anti-holomorphic diffeomorphism op: Cp(C) — Cy ) (C) with pull-back
0% Vr)y— Vi, The composition ao foop: V() — A induces a framing of x(F') € Xo(C),
and we define

a(F, [f]) = (s(F), [ao fook]) € Fo.
Although we have chosen a representative a € & of the class a € P.«Z, the element «(F, [f]) € Fo

does not depend on this choice.
Consider the covering map Fy — Xo(C) defined in (20) in Lemma 3.7, and define Fy(R) as
the preimage of Xo(R) in the space Fy. Then

FoR)= [[ 75 < Fo. (28)
a€Pgf
To see why the union in (28) is disjoint, let « € P.o# then

6 ={(F,[f]) € Fo: (F)=Fand[foopo f']=a}.
Thus, for a, f € P<Z and (F, [f]) E.F[?‘ﬂ}"g, we have a = [fooko f~1]=4.

LEMMA 5.2. Let o€ Pg/. The anti-holomorphic involution «: Fy— Jy commutes with the
period map P: Fy — CH? and the anti-holomorphic involution o: CH?* — CH?.

Proof. If conj: C— C is complex conjugation, then for any F € Xy(C), the induced map
op ®@conj: Vg ®z C— Vp ®z Cis anti-linear and preserves the Hodge decompositions [Sil89,
Chapter I, Lemma 2.4] as well as the eigenspace decompositions. O

By Lemma 5.2, we obtain a real period map
PR Fo(R) == acpy F§ — Uacps RHZ =Y. (29)
Let 0: GLy(C) — GL2(C) be the anti-holomorphic involution that sends a matrix to its complex

conjugate, and note that o descends to an anti-holomorphic involution o: G(C) — G(C); define

G(R) :=G(C)°.

15
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LEMMA 5.3. The natural map GLy(R) — G(R) is an isomorphism.

Proof. Indeed, if M € GLy(C) is a matrix such that o(M) = ¢/ - M for some j € {0, ..., 4}, then
we can write (7 = (¥ for some k € {0, ...,4}, and hence o(¢C* - M) = ("% - M = (- M, so that
¢F- M € GLz(R). This proves that GLa(R) — G(R) is surjective. Injectivity follows from the
fact that the kernel of GLy(R) — G(R) is spanned by the elements of D ={1,¢,...,¢*} that
are invariant under complex conjugation; the only such element is 1 € D. O

The map (29) is constant on G(R)-orbits, as the same is true for P: Fy — CH?2. By abuse of
notation, we write RH2 — 7 =RH2 — (#'NRH2) for a € P

PROPOSITION 5.4. The period map (29) descends to a PI'-equivariant diffeomorphism
PR: Mo(R) :=GR)\ F(R)= [] (RH.-7). (30)
a€Pgf

Let Cof C P4/ be a set of representatives for the action of PI' on Pg/. By Pl'-equivariance, the
map (30) induces an isomorphism of real-analytic orbifolds

PR Mo(R)=G(R)\ Xo(R)= [] PTa\ (RHZ - 7). (31)
aceCod

Proof. We follow the proof of [ACT10, Theorem 3.3]. The first thing to observe is that the map

PR GR)\Fo(R)—~ [[ (RHZ-.7)
acPd/
is a local diffeomorphism, as the same holds for P: G(C) \ Fo — CH? — J# by Theorem 4.1. To
prove the surjectivity and injectivity of PR, notice that the arguments used in [ACT10] to prove
the analogous claims for cubic surfaces readily carry over to our situation. O

Our next goal is to prove the real analogue of Theorem 4.1. By the naturality of the Fox
completion, for every a € Pof the involution a: Fy — Fp extends to an involution o on Fg.

LEMMA 5.5. The restriction of the map Ps: Fs — CH? to F® induces a diffeomorphism
P G(R)\ Fe = RH,.

Proof. The map P&: G(R)\ F¢ — RH?2 is a local diffeomorphism because its differential at any
point is an isomorphism by Theorem 4.1. Let us prove that P is injective. Apply [ACT10,
Lemma 3.5] with X = Fy, G=G(C) and ¢ =q; then X¢=F2 and Z = G(R). Note that we
may apply this lemma because G(C) acts freely on F; (see Lemma 3.12). The conclusion is that

the map
GR)\ Fy = G(C)\ Fo=CH? —

is injective. To prove the surjectivity of P¢, one uses [ACT10, Lemma 11.2] to see that the
map G(R) \ F@ — G(C) \ CH? is proper. By Proposition 5.4, its image contains the dense open
subset Ps(FS) =RH2 — 5, so P& is surjective. O

DEFINITION 5.6. (See [GF24, Definition 1.1].) Define an equivalence relation ~ on the disjoint
union [[,.p,, RH?2 in the following way. Consider two points (z, 8) € RHE C,ep RH2 and

(y,7) €RH2 C ]l epyRHZE Then (z,8) ~ (y,7) if =y € CH? and yo f € G(x).
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By [GF24, Lemma 4.4], the action of PT" on [],.p,, RHZ is compatible with this equivalence
relation; define

Y = ( 11 RHg) /~,  M:=PT\Y.

acePo

THEOREM 5.7. Let Cof C Pof be a set of representatives for the action of PTI' on Pg</. There
exists a canonical real hyperbolic orbifold structure on the topological space M = PT'\Y
together with a natural open immersion of hyperbolic orbifolds

[T Pro\ (RHZ - 5#)— M.
acCo
Moreover, for each connected component M; C M there exists a lattice PT'y C PO(2,1) and an
isomorphism of real hyperbolic orbifolds M; = PFiR \RH2

Proof. By Lemma 3.2 and [GF24, Example 2.12], this is a special case of [GF24,
Theorem 1.2]. O

Let p: [[,cpyRH2—Y be the quotient map, consider the map 7: F; — Xs(C) (see
Corollary 3.11), and define a union of embedded real submanifolds of F, as follows:

FR) = |J Fr=m"(X(R).
aEPA
We arrive at the main theorem of Section 5.

THEOREM 5.8. There is a smooth map
PR [T 72— [ RH: (32)
acPY a€P

that extends the real period map (29). The map (32) induces the following commutative diagram
of topological spaces, in which @;R and ﬂsR are homeomorphisms.

(o' PB 2
HaEP,Qf fs HaeP,Qf RHa
lp
~ R
Fi(R) i Y
~ ﬁzR
M,(R)! G(R)\ Fy(R) — = %
| T
M,(R) ———G(R)\ X,(R) — 2 s PT\ Y

Proof. The existence of PR follows from the compatibility between Ps and the involutions « €
Pg/. We claim that the composition po PR factors through Fs(R). To prove this, let (f,a)
and (g, ) be elements of the disjoint union HvePd‘FZ’ with f € RH2 and gGRHE. Then
(f,a) and (g, B) have the same image in F5(R) if and only if f=ge€ F¢ NFZ, in which case
Ps(f) =Ps(g) =:x € RH? ﬂRHg,. Let (x,a) and (y, 3) be elements of the disjoint union ¥ =
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H%P{%RH?/, withz € RH2 and y =1 € RHE. We need to prove that (z,a) ~ (z, 8) € Y, for the

equivalence relation ~ on Y defined in Definition 5.6. Note that aB € PI'y, and that P, induces
an isomorphism PI'y =2 G(z) (see Lemma 4.4). Hence a8 € G(x) so that (z,a) ~ (z, ), proving
what we want. We conclude that the composition p o PR factors through a map PR: F(R) — Y.

Next, we prove the G(R)-equivariance of PR. Suppose that f € F%, g € 7P such that a-
f=g€Fs(R) for some a € G(R). Then z:=Ps(f)=Ps(g) € CH?, so we need to show that
af € G(x). The actions of G(C) and PT' on CH? commute, and the same holds for the actions
of G(R) and PT” on FR, where PI" is the group defined in Definition 5.1. It follows that a(g) =
ala-f)=a-a(f)=a- f=g, and hence g € F NFP. This implies in turn that (o B)(g9) =y,
and hence aff € PI'y= G(x) (see Lemma 4.4). Therefore (z, o) ~ (z, 3), so that af € G(x) as
desired.

Let us prove that @? is injective. To do so, let f e F and g € ]-f and suppose that these
elements have the same image in Y. Thus, z:=Ps(f) = Ps(g) ERH2 N RHE, and = ¢oa« for
some ¢ € G(x). We have ¢ € G(v) = PI'y (Lemma 4.4), and hence B(f)=¢ (a(f)) =o(f)=f.
Therefore f, g € F2: since Py(f) = Ps(g), it follows from Lemma 5.5 that there exists a € G(R)
such that a - f = g. This proves the injectivity of 9? The surjectivity of Z22: G(R) \ Fs(R) =Y
is straightforward: it follows from the surjectivity of PR (see Lemma 5.5). Finally, we claim
that 2% is open. Let U C G(R)\ FR be open. Let V be the preimage of U in HocpoFs
Then V = (PR)~ (p~! (#8(U))), hence PR (V' )=p~! (2R(U)), so that it suffices to show
that PR(V) is an open subset of [] ach 4 RH2. This follows, because PR is open, being the
coproduct of the maps F& — RH2, which are open since they have surjective differential at each
point. [l

COROLLARY 5.9. Let Co/ C P4/ be a set of representatives for the action of PI' on P</. Then
there is a lattice PI'r C PO(2, 1), an open immersion of hyperbolic orbifolds

I Pro\ (RHZ - #) < PTr \RH?, (33)
acCd
and a homeomorphism
PR M, (R)=GR)\ X,(R)= PI'r \RH?, (34)

such that the restriction of (34) to Mo(R) C Mg(R) coincides with the isomorphism (31).
Proof. This follows directly from Theorems 5.7 and 5.8. O

Remark 5.10. The proof of Corollary 5.9 also shows that M4(R) is homeomorphic to a complete
hyperbolic orbifold in the cases where M is the stack of cubic surfaces or of binary sextics over R.
This strategy to uniformize the real moduli space differs from the one used in [ACT06, ACT07,
ACT10], since we first glue the real ball quotients together (by using the general construction
of [GF24]) and then prove that the real moduli space is homeomorphic to the resulting glued
space.

6. The moduli space of real binary quintics as a hyperbolic triangle

Consider the moduli space Ms(R) = GL2(R) \ Xs(R) of stable real binary quintics. Let |Ms(R)]
be the underlying topological space of M4(R).

18
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DEFINITION 6.1. Let .#Zr be the orbifold with |M(R)| as underlying space whose orbifold
structure is induced by the homeomorphism (34) and the natural orbifold structure of PT'R \
RH?.

The goal of Section 6 is to prove the following result.

THEOREM 6.2. Consider the lattice PI'r CPO(2,1) (see Corollary 5.9) and the hyperbolic
orbifold #wr = PTr \ RH? (see Definition 6.1). Then .4g is isometric to the hyperbolic triangle
with angles m/3,7/5,7/10. In particular, PI'g is conjugate to the lattice I'3 519 defined in (3).

To prove Theorem 6.2, we need to understand the orbifold structure of M, (R) and how this
structure differs from the orbifold structure of the quotient space PTr \ RH? (see Corollary
5.9). To this end, we will first analyze the orbifold structure of M4(R) by listing its stabilizer
groups.

6.1 Automorphism groups of stable real binary quintics

Recall that there is a canonical orbifold isomorphism
M(R) =G(R)\ Xs(R) =PGL2(R) \ (Ps/S5)(R).

Thus, to list those groups that occur as the automorphism groups of a binary quintic is to classify
the stabilizer groups PGLa(R); of points z = (z1,...,25) € (Ps/65)(R).

PROPOSITION 6.3. Consider the stabilizer group PGL2(C), of a point x € Py/Ss5. If PGL2(C),
is non-trivial, then PGL9(C), is isomorphic to one of Z/2,Z/4, D3 or Ds. Moreover, the con-
jugacy class of each such subgroup of PGLy(C) is unique. If H equals any of the subgroups
Z/4, D3 or D5 of PGLy(C), then there is a unique PGLy(C)-orbit in Py/Ss with stabilizer
group H.

Proof. By [Beal0, Theorem 4.2], any finite subgroup of PGL2(C) is isomorphic to Z/n, D, (the
dihedral group of order 2n), 24, &4 or A5, and there is only one conjugacy class for each of these
groups. Let H be any of these groups, considered as a subgroup of PGLy(C). Assume that, with
respect to the action of H on the finite subsets of P'(C), one has

H-{z,...,25}={z1,...,25} CPYC) for z,...,25€P(C) distinct.
This gives a homomorphism p: H — &5 as follows: for an element je€{1,2,3,4,5}, we let
p(h)(j) €1{1,2,3,4,5} be the element with 2,y =h - z;.
Note that p is injective, as h - z; = z; for each ¢ implies h =id. Therefore,
He {2/27 Z/37 Z/47 Z/57 Z/67 D37 D47 D57 §2[47 647 §2[5}

Next, assume that H = Stabpgr,(c)(z) for the five-element subset z={z1,...,25} CP}(C).
Suppose that ¢ € H is an element of order three. Note that there must be three distinct elements
z; € x with ¢(z;) # z;. We may assume that these are 21, zo and z3. Moreover, we may assume
that ¢(21) = 29, ¢(22) = 23 and ¢(z3) = z1. By replacing ¢ by gpg~! for some g € PGLy(C), we
may assume that 21 =1,29=(3 and 23 =(3, and that ¢(z)=(3-2 for z€ P}(C). This gives
T = {1, (3, Cg, 24, 25} CPY(C). As ¢(z4) # 25, we have ¢(z4) = 24 and ¢(z5) = 25, so that

z={1,(3,¢3,0,00} CP(C). (35)
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Let v € PGLy(C) be the element with v(z) =1/z for 2 € P1(C). Then (35) implies that v is
contained in H, and one readily observes that H = D3. We conclude that

H= StaprL2(C) (.’L‘) S {Z/27 Z/él7 Z/57 D3, Dy, D5}

It remains to exclude Z/5 and Dy. Suppose that H contains an element ¢ of order five. As above,
one can readily show that one may assume that

v={1,(:,¢2, ¢, cPYC), ¢(2) =5z for € PH(C).

This implies that the element v € PGL2(C) as defined above is contained in H, and H = Ds.
Finally, assume H contains an element ¢ of order four. We may assume that

x={1,i,-1,—i,0}, ¢(z)=1i-z for z€ P}(C).
As a consequence, we have H =Z /4, and the proof is finished. O
We proceed to prove the real analogue of Proposition 6.3.

PROPOSITION 6.4. Let x € (Ps/S5)(R) such that the stabilizer group PGL2(R), C PGL2(R)
of x is non-trivial. Then its stabilizer group PGL2(R), is isomorphic to Z/2, Ds or Ds. For
each n € {3,5}, there is a unique PGLga(R)-orbit of points x in (Ps/&5)(R) with stabilizer D,,.

Proof. We have an injection (Ps/S5)(R) < Ps/G&5 which is equivariant for the embedding
PGL2(R) — PGL2(C). In particular, PGL2(R), C PGL2(C), for every z € (Ps/S5)(R). Note
that none of the groups appearing in Proposition 6.3 have subgroups isomorphic to Do =
Z/2xZ/2or Dy="7/2 xZ/4. Consider the involution v = (z+ 1/z) € PGLy(R). We will prove
the proposition by using the following steps.

Step 1: Let 7 € PGLy(R). Consider a subset S = {z,y, 2} C P!(C) stabilized by complex con-
jugation, such that 7(z) =z, 7(y) = z and 7(z) = y. There is a transformation g € PGLy(R) that
maps S to either {—1,0, 00} or {—1,4i, —i}, and that satisfies grg~! =v = (2 + 1/2) € PGL2(R).
In particular, 72 = id.

Proof of Step 1. Indeed, two transformations g, h € PGLy(C) that satisfy g(x;) = h(x;) for three
different points z1, z2, v3 € P}(C) are necessarily equal. O

Step 2: There is no ¢ € PGL2(R) of order four that fixes a point z € (Ps/S5)(R).

Proof of Step 2. By [Beal0, Theorem 4.2], all subgroups G C PGL2(R) that are isomorphic to
Z /4 are conjugate to each other. Since the transformation I: z+— (z — 1)/(z + 1) is of order four,
it gives a representative G = (I) of this conjugacy class. It is easily shown that I cannot fix any
point z € (Ps/S5)(R). O

Step 3: Define pePGL2(R) by p(z)= Z;Jrll Let = (x1,...,25) € (Ps/65)(R). Let ¢€
PGL2(R) be of order three, with ¢(z)=x. There is a transformation g € PGL2(R) mapping
x to (—1,00,0,w,w?) with w a primitive third root of unity. The stabilizer of z is the subgroup

of PGL2(R) generated by p and v. In particular, we have PGLy(R), = Ds.

Proof of Step 3. By Step 1, there are elements x1, x2, 3 which form an orbit under ¢. Since com-
plex conjugation preserves this orbit, one element in it is real; since g is defined over R, they are
all real. Let g € PGL2(R) such that g(z1)=—1, g(x3) =00 and g(z3) =0. Define k= gpg~*.
Then x3=id, and k preserves {—1,00,0} and sends —1 to oo and oo to 0. Consequently,
k(0)=—1, and it follows that x=p. Hence x is equivalent to an element of the form
(—1,00,0,0a,3) with B=a and a® + a +1=0. O
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Recall that A= (5 + (5 € R. Define v € PGLy(R) by v(2) = % for z € P1(C).
Step 4: Let x = (x1,...,25) € (Ps/S5)(R). Suppose z is stabilized by a subgroup of PGL2(R)
of order five. There is a transformation g € PGLy(R) mapping x to z = (0, —1, 00, A+ 1, \) and
identifying the stabilizer of z with the subgroup of PGL2(R) generated by v and v. In particular,

the stabilizer PGL2(R), of x is isomorphic to Ds.

Proof of Step 4. Let ¢ € PGLy(R), be an element of order five. Using Step 1, one shows that
the x; are pairwise distinct, and we may assume that z; = ¢'~!(x1) for i =2,...,5. Since there
is one real x; and ¢ is defined over R, all x; are real.

Let z={0,—1,00, A+ 1, A\}. Note that z is the orbit of 0 under v: z+— ((A+1)z—1)/
(24 1). The reflection v: 2+ 1/z preserves z as well: we have A\ +1=—(Z+(2) = -\ +2,
so that A(A+ 1) =1. We conclude that PGL2(R), = D5. Thus, by Proposition 6.3, there exists
g € PGLy(C) such that g(z1) =0, g(z2) = —1, g(x3) =00, g(x4) =X+ 1 and g(z5) =\, and such
that gPGL2(R),g~! =PGLy(R),. Since all x; and z; € z are real, we have g(z;) = 2; for each i.
Hence, g and g coincide on three points, which implies that g = g, i.e. g € PGL2(R). O

By Steps 1-4 above, together with Proposition 6.3, we are done. [l

6.2 Comparing the orbifold structures

There are two orbifold structures on the space |[M(R)|. On the one hand, one has the natural
orbifold structure on M4(R) by considering it as the real locus of a smooth separated Deligne—
Mumford stack over R (see [GF22, Proposition 2.12]); this is the orbifold structure of the quotient
G(R)\ Xs(R). On the other hand, one has the orbifold structure .#g introduced in Definition
6.1. The goal of Section 6.2 is to calculate the difference between these orbifold structures.

We first show that there are no cone points in the orbifold PGL2(R) \ (Ps/S5)(R). These are
orbifold points whose stabilizer group is Z/n (n > 2) acting on the orbifold chart by rotations.
By Proposition 6.4, the fact that PGL2(R) \ (Ps/S5)(R) has no cone points follows from the
following lemma.

LEMMA 6.5. Let z=(x1,...,x5) € (Ps/65)(R) such that PGL2(R), = (1) has order two. There
is a PGLy(R)g-stable open neighborhood U C (Ps/G5)(R) of x such that PGLa2(R), \ U —
M(R) is injective, and a homeomorphism ¢: (U, z) — (B, 0) for 0 € B C R? an open ball, such
that ¢ identifies PGL2(R), with Z/2 acting on B by reflections in a line through 0.
Proof. Using Step 1 in the proof of Proposition 6.4, one checks that the only possibilities
for the element z=(z1,...,75)¢€ (Ps/65)(R) are (—1,0,00,8,87Y), (~1,4,—1,3,571),
(-1,-1,8,0,00), (-1,-1,8,i,—i), (0,0,00,00,—1) and (—1,4¢,4,—i,—i) for some
BePL(R). O
To analyze the difference between the two orbifolds M(R) and .#gr, we also need the
following general lemma.

LEMMA 6.6. Let X be a set and let I' and G be groups with commuting actions on X. Let x € X
with images T €'\ X and [r] € G\ X. Let I} be the stabilizer of [x] € G\ X in T, and let Gz
be the stabilizer of T in G. Then for each y € I';) there exists an element &(v) € Gz, unique up
to multiplication by an element of G, such that v -x = ¢(7) - x; moreover, the map

U /Te = Gz/Gey 7= 0(7) (36)

is an isomorphism.

21

Downloaded from https://www.cambridge.org/core. IP address: 87.210.25.125, on 02 Dec 2025 at 09:15:09, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/mod.2025.10013


https://doi.org/10.1112/mod.2025.10013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

OLIVIER DE GAAY FORTMAN

Proof. The map (36) is well-defined because if g, ¢’ € G are such that y-z=g¢g-x=¢ - x then
(¢')"'g € G,. Since the construction is symmetric in I' and G, the analogous map Gz/G, —
['(y)/Tz is also well-defined. The latter is a left and right inverse of (36), and we are done. [

Recall (see [Thu80, Proposition 13.3.1]), that the singular locus of a two-dimensional orbifold
has the following types of local models: (i) R2/(Z/2), where Z/2 acts on R? by reflection in the
y-axis (mirror points); (i) R%/(Z/n), with Z/n acting by rotations (cone points of order n);
and (iii) R?/D,,, with D,, the dihedral group of order 2n (corner reflectors of order n).

PROPOSITION 6.7. Consider the orbifold structures M(R) and .#® on the space |Ms(R)|.

(i) For xo € M(R), the isomorphism class of stabilizer groups of M4(R) and .#gr at o differ
if and only if xg € Ms(R) is the moduli point attached to the five-tuple (oo, 4,1, —i, —1).

(ii) The stabilizer group of Ms(R) at the point xq is isomorphic to Z/2, whereas the stabilizer
group of AR at xq is isomorphic to the dihedral group Dy of order 20.

(iii) The orbifold .#r has no cone points and three corner reflectors, whose angles are /3, /5
and 7/10.

Proof. The statements can be deduced from Proposition 6.4, Lemmas 6.5 and 6.6, and [GF24,
Proposition 5.19]. To show how this works, let us introduce some notation. Let F € Fy(R)
with image F € X (R). Let f €Y be the image of [F] € G(R)\ Fs(R) under the isomorphism
G(R)\ Fs(R) =Y of Theorem 5.8. Let PI'y C PI be the stabilizer of f €Y in the group PT.
Let k€40, 1,2} be the number of nodes of F, and write k =2a + b, where a is the number of
pairs of complex conjugate nodes and b the number of real nodes. Then the image x € CH? of
F under (23) lies on exactly k distinct mutually orthogonal hyperplanes H € H, with H the set
defined in (26). Since F € X,(R), we have that '€ F* for some « € PoZ. We get x € RH.

Let H(z) C H be the set of hyperplanes H € H such that x € H. Then a equals the number
of pairs of hyperplanes Hy, Hy € H(x) with a(H7) = Hs, and b equals the number of hyperplanes
H € H(z) with a(H) = H. Define By C PT'; as the group generated by reflections in all H € H(x)
such that a(H) = H. Consider the quotient map p: UycpyRH2 =Y, let oy, ..., ap € P/ be the
elements such that (z, ;) ~ (x, ), and define Yy = Ulep(RHi) C Y. The subgroup PI'y C PT
preserves the subset Yy CY by [GF24, Lemma 5.9]. Moreover, by [GF24, Proposition 5.19.4],
there is an isometry between By \ Yy and the union of 10% copies of B?(R). Let B be any one
of these copies of B?(R), and define

Sf = Stabppf/Bf(B>,

the stabilizer of B in the group PI'y/Bf. By construction of the orbifold .Zgr (see [GF24,
Propositions 5.1 and 5.19]), the group Sy is a representative of the isomorphism class of stabi-
lizer groups of the orbifold .#g at the moduli point [F] € M(R) induced by F. Clearly, the
stabilizer G(R)r C G(R) of F € Xs(R) yields the isomorphism class of stabilizer groups of the
orbifold Ms(R) at the moduli point [F] € M4(R). In particular, we need to compare the iso-
morphism classes of the groups Sy and G(R)r. To do so, we claim that there is a canonical
isomorphism

G(R)p = PT}/G(x). (37)

Indeed, the actions of the groups PI' and G(R) on F5(R) commute, so we can apply Lemma 6.6.
Recall that F € F4(R) has images F € Xs(R) and f €Y, and that the map Fs(R) — Y factors
through an isomorphism G(R)\ Fs(R) = Y. Moreover, if PI'; C PI' denotes the stabilizer of
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Fin PT, then PT'; = G(x) by Lemma 4.4. As the group G(C) acts freely on F, by Lemma 3.12,
the group G(R) acts freely on Fs(R). Thus, (37) follows from Lemma 6.6.

If F' has no nodes (k=0), then G(x) is trivial by [GF24, Proposition 5.19.1], and PT'y = Sy.
Thus, G(R)r =S in view of (37).

If F has only real nodes, then By = G(x) and PI'y/G(x) = Sy. Thus, G(R)r = Sy by (37).

Finally, suppose that F' has a pair of complex nodes (a =1 and b=0). The zero set of F
defines a five-tuple z = (z1,. .., z5) € P1(C)5, well defined up to the PGLy(R) x &5 action on
P1(C), where z; € PL{(R) and z3 =2 = 25 = 24 € P1(C) \ P}{(R). Write z = (w, z, %, z, 2) with
w€PYR) and z€ PY(C)\ P}(R). There is a unique 7 € PGLy(R) such that T'(w) = oo and
T(z)=1. This gives T'(z) = (00, 4, —4, i, —i). In particular, F' is unique up to isomorphism.

We have G(z)2(Z/10)?, and as there are no real nodes, By is trivial. With respect
to the isometry CH?(C) = B?(C) of [GF24, Lemma 5.16], the anti-holomorphic involutions
aj: B%(C) — B?(C) induced by the o € Po are (t1,t2) — (£2¢7,#1¢7), for j € Z/10. The fixed
point sets are given by B*(R)a, = {t2 =¢:1¢?} C B?(C). The subgroup E; C G(z) that stabi-
lizes BQ(R)% is the group Ef = Z/10 generated by the transformations (t1,t2) — ((t1, (" 2).
There is only one non-trivial T'€ PGLy(R) fixing oo and preserving {i, —i} C P}(C), and T
has order two, so G(R)p =Z/2. Therefore, by (37), we have an exact sequence of groups 0 —
G(x) = (Z/10)? — PT'; — Z/2 — 0 inducing an exact sequence 0 — Ey 2 Z/10 — Sy — Z/2 — 0.
By Proposition 6.4 and Lemma 6.5, the proposition follows. U

6.3 The real moduli space as a hyperbolic triangle

The goal of Section 6.3 is to prove Theorem 6.2.

The results in the above Sections 6.1 and 6.2 give the orbifold singularities of .#g together
with their stabilizer groups. In order to determine the hyperbolic orbifold structure of .Zg,
we also need to know the underlying topological space |M(R)| of .#gr. The first observation is
that Ms(R) is compact. Indeed, it is classical that the topological space M(C) = G(C) \ Xs(C),
parametrizing complex stable binary quintics, is compact. This follows from the proper surjective
map M 5(C)/S5 — M(C) and the properness of the stack of stable five-pointed curves My 5
[Knu83], or from the fact that M (C) is homeomorphic to a compact ball quotient [Shi64].
Moreover, the map M (R) — M, (C) is proper, which proves the compactness of Mg(R). The
second observation is that M (R) is connected, since X(R) is obtained from the euclidean space
X(R)={F €RJz,y]: F homogeneous and deg(F') =5} by removing a subspace of codimension
two. In the following lemma we generalize both of these observations.

LEMMA 6.8. The moduli space M(R) is homeomorphic to a closed disc D C R?.
Proof. The idea is to show that the following holds.

(i) For each j € {0, 1,2}, the embedding .#; — .#; C Ms(R) of the connected component ./,
of My(R) into its closure in M (R) is homeomorphic to the embedding D < D of the open
unit disc into the closed unit disc in R2.

(i) We have M (R) = .4y U 1 U zlg, and this gluing corresponds, up to homeomorphism, to
the gluing of three closed discs D; C R? as in Figure 1.

To prove this, one considers the moduli spaces of real smooth (respectively stable) genus
zero curves with five real marked points, as well as twists of this space. Define two anti-
holomorphic involutions o;: P(C)® — PY(C)® by o1(x1, 2, 3, 24, x5) = (Z1, T2, T3, T5, T4), and
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o(x1,x2, w3, x4, x5) = (T1, T3, T2, T5, T4). Then define

Py(R)=F;', P/(R)=Pi(C)", Fj(R)=F;*, P}(R)=PFi(C)™.

S S

It is clear that .#y =PGL2(R) \ Po(R)/Ss5. Similarly, we have

M =PGLy(R)\ Pg(R)/G3 x &y and .4 =PGCLy(R)\ PZ(R)/G3 x Gs.
Moreover, we have .#y=PGLy(R) \ Ps(R)/&5. We define

7 =PGLy(R)\ PL(R)/G3 x &y, and .# =PGLy(R)\ P2(R)/S5 x &s.

Each 7/] is homeomorphic to a closed disc in R%. Moreover, the natural maps 74 — M(R)
are closed embeddings of topological spaces, and one can check that the images glue to form
M (R) in the prescribed way. We leave the details to the reader. O

Proof of Theorem 6.2. To any closed two-dimensional orbifold O one can associate a set of natural
numbers Sp ={n1,...,ng;my,...,my} by letting k be the number of cone points of Xp, [ the
number of corner reflectors, n; the order of the ith cone point and m; the order of the jth corner
reflector (see [Thu80, Proposition 13.3.1]). A closed two-dimensional orbifold O is determined,
up to orbifold-structure preserving homeomorphism, by its underlying space Xo and the set
So [Thu80]. By Lemma 6.8, .#gr is homeomorphic to a closed disc in R?. By Proposition 6.7,
Mg has no cone points and three corner reflectors whose angles are 7/3,7/5 and m/10. This
implies that .#Zgr and A3 510 are isomorphic as topological orbifolds. Consequently, the orbifold
fundamental group of .#R is abstractly isomorphic to the group I's 5,10 defined in (3).

Let ¢: I's 5,10 — PSL2(R) be any embedding such that X :=¢ (I's 5,10) \ RH? is a hyperbolic
orbifold; we claim that there is a fundamental domain A for X isometric to Az 19. To see
this, consider the generator a € I's 5 19. Since (;S(a)2 =1, there exists a geodesic L; C RH? such
that ¢(a) € PSLa(R) = Isom(RH?) is the reflection across L;. Next, consider the generator b €
I'3 5,10. There exists a geodesic Lo C RH 2 such that ¢(b) is the reflection across Lo, and we have
LoN Ly #0. Let © € L1 N La. Then ¢(a)$(b) is an element of order three that fixes x, and hence
is a rotation around z. Therefore, one of the angles between L; and Ls must be 7/3. Finally,
we know that ¢(c) is an element of order two in PSLy(R), and hence a reflection across a line
Ls. As L3N Ly # (0 and Ly N Ly # 0, the three geodesics L; C RH? enclose a hyperbolic triangle.
As the orders of the three elements ¢(a)d(b), ¢(a)p(c) and ¢(b)p(c) are respectively three, five
and ten, the three interior angles of the triangle are 7/3, 7/5 and 7 /10. Thus, X is isometric to

As5,10-
Consequently, PT'g \ RH 2 is isometric to T’ 3510 \ RH 2. It follows that the lattices PI'g and
I'3 510 are conjugate in PO(2,1) (see e.g. [Rat99, Lemma 1]). O

7. The monodromy groups

In this section, we describe the monodromy group PI' attached to the moduli space Xy(C), as
well as the groups PI', appearing in Proposition 5.4. As for the lattice (A, b) (see (8)), we have
the following.

THEOREM 7.1 (Shimura). There is an isomorphism of hermitian O -lattices

V-1

(A7h)g(0§(7dlag(_)\7171))7 )\:C5+C5_1: 9
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Proof. See [Shi64, Section 6] as well as item (5) in the table on page 1 of that paper. O

Write A=0% and h=diag(—\,1,1). Consider the Fs-vector space W =A/(1—(5)A
equipped with the quadratic form ¢=§ mod 8. Define three anti-isometric involutions as

follows: _ _
ap: (:Uo,af1,$2) — (3507 x1, 532)7

aq: (zo, 21, x2) — (To, —Z1, T2),
az: (zo, 21, x2) — (To, —T1, —T2). (38)

LEMMA 7.2. An anti-unitary involution of A is I'-conjugate to exactly one of the +a;. In
particular, |PT"\ P« | =3 and the «; defined in (38) form a set of representatives for PI'\ P.

Proof. For isometries a.: W — W, the dimension and determinant of the fixed space (W, g|w)
are conjugacy-invariant. Using this, one can show that the elements +a; are pairwise non
I'-conjugate. Moreover, |PI'\ P/ | = |mo(Mo(R))| =3 by Proposition 5.4 and Theorem 7.1. [J

Define
0=C— ¢l e Ok.
Note that [0]? = @ The fixed lattices of the anti-unitary involutions «; defined in (38) are

A% =Z\ @ Z]\ @ Z[)\],
A =Z\ @ 0Z]N @ Z]N,

A =Z[N @ 0Z\ @ 0Z[)N], (39)
where
4 VB-1
A=GrGT =T (40)
Restricting h to the A% yields quadratic forms qo, g1 and g2 on Z[\]? defined as follows:
qo(zo, T1, T2) = =g + =] + 23,
545
q1(l‘0,$1,$2):—)\x%+ (f2 > l’%‘i‘ﬂf%,

x/52+5> .$%+<\/52+5> 2 (1)

We consider Z[\] (with A as in (40)) as a subring of R via the embedding that sends A to a
positive element.

g2(z0, 71, T2) = —Awd + (

THEOREM 7.3. Consider the quadratic forms q; defined in (41), with X as in (40). There is
a union of geodesic subspaces #; C RH? (j€{0,1,2}) and an isomorphism of hyperbolic
orbifolds

2
Mo(R) = [ PO(g;, Z[\) \ (RH® - 75). (42)
§=0
Proof. By Proposition 5.4 and Lemma 7.2, we obtain an isomorphism

2
Mo(R) =[] PTo, \ (RHZ —52).

J=0
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Note that PT'y, = Npr(c;) for the normalizer Npr (o) of oj in PT'. If h; denotes the restriction
of h to A%, there is a natural embedding

Lj: Npr(ozj) — PO(A%, hj, Z[)]).
We claim that ¢; is an isomorphism. This holds because the natural homomorphism
mj: Nr(aj) = O(AY, hj) is surjective, where Np(a;) ={g€T': goa; =a;jo g} is the normalizer
of a; in I'. The surjectivity of 7; follows in turn from the equality

A=0k A% + O -0 (A*)" C K3, (43)
and (43) follows from (39). Since PO(AY, hj, Z[\]) =PO(q;, Z[\]), we are done. O
Proof of Theorem 1.2. This follows from Corollary 5.9, Theorem 6.2 and Theorem 7.3. O

Proof of Theorem 1.3. In [AY98], Apéry and Yoshida proved that ./ is the hyperbolic triangle
with angles 7/2, /4 and 7 /5. As the two hyperplanes in Figure 1 intersect orthogonally, this
implies that the bottom angle of the triangle .# in Figure 1 (i.e. its angle at (0, —1, 00, 00, 1))
equals 7/2, and that the angle of .4 at (0, —1, —1, 00, 00) equals 7/4. One deduces that the left
angle of ., is 7/2, and that the angle of .#5 at (0, —1, —1, 00, 00) equals 7 /4.

For a hyperbolic triangle with angles «, 8,y and sides a, b, ¢ such that a is the side opposite
to a, b the side opposite to 8 and  the side opposite to ¢, one has the hyperbolic law of
cosines
cos(a) cos(B) + cos(v)

sin(a) sin(B) '
Applying (44) to the triangles .#y and .#R, one can calculate the length of the side of .#5
that connects (0, —1, —1, 00, 00) and (oo, 1,4, —i, —i). Applying (44) again, it follows that the
angle of .5 at the point (0, —i, 00,00,4) is 7/2. Thus, the angle of .#; at (0, —i, o0, 00, i) is
also /2. O

cosh(c) =

(44)

8. Non-arithmetic lattices in the projective orthogonal group

In a previous paper we proved a result, see [GF24, Theorem 1.8], that has the following
consequence. For n > 2, define

2= (QG)ZIGRY),  A=G+G = (VE-1)/2

Here, Z[C{,]S\L’l is the free Z[(5]-module of rank n + 1 equipped with the hermitian form h defined
as h(z,y) =—XA-xo¥o + - + TpYpn. Then L7, (N) is a hermitian lattice of rank n + 1 in the sense
of [GF24, Definition 2.2] (indeed, this follows from [GF24, Example 2.12]). For each n >2,
perform the gluing construction of [GF24, Definition 1.1] to associate to the hermitian lattice
Z¢.(A) a topological space M (£ (A)). By [GF24, Theorem 1.2], there exists a canonical real
hyperbolic orbifold structure on M (£ (A)) such that each connected component of M (£, (X))
is isomorphic to the quotient of real hyperbolic n-space RH™ by a lattice in PO(n, 1). Define an

anti-unitary involution ag: Z[¢s]%" — Z[¢s]" by ao(z) =7, let

M (9%25()\),040) cM (D%g()\))
be the connected component that contains the image of the natural map RH}, — M (¢ (N)),
and let

T2 (A) € PO(n, 1)
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5

By combining [GF24, Theorem 1.8] with the main results of this paper, one can prove the
following result.

be a lattice such that M (Z¢, (A), ao) =T (A) \RH" (compare [GF24, p. 7]).

THEOREM 8.1. For each n>2, the lattice I'? (\) C PO(n, 1) is non-arithmetic.

Proof. Write Z[C5]§’1 = A; this abuse of notation is harmless in view of Theorem 7.1. Let
I'=Aut(A). By Lemma 7.2, an anti-unitary involution of A is I'-conjugate to exactly one
of the involutions +«; defined in (38). We can therefore apply [GF24, Theorem 1.8], which
implies that I'? (\) C PO(n, 1) is non-arithmetic for each n > 2 provided that I‘gs()\) cPO(2,1)
is non-arithmetic. In other words, we are reduced to the case n=2. By Theorem 7.1, the
lattice ng (A) cPO(2,1) is conjugate to the lattice PI'r C PO(2,1) defined in Corollary 5.9.
Moreover, by Theorem 6.2, the lattice PI'r is conjugate to the lattice I's 5 190 C PO(2, 1) defined
in (3). Finally, by Takeuchi’s classification of arithmetic triangle groups (see [Tak77]), the sub-
group I's 510 C PO(2,1) is non-arithmetic. Thus, FgS (M) is non-arithmetic, and the theorem
follows. O
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