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(3) Formal algebraic geometry.

(4) Deformation theory.
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Introduction

Algebraic geometry concerns the study of zero sets of systems of homogenous polyno-
mials in multiple variables with coefficients in a field k. To do so, one investigates the
geometry of algebraic varieties over k. Among the simplest ways to obtain examples
of an algebraic variety is to consider a positive integer d and a degree d hypersurface

X = Z(F ) = {F = 0} ⊂ Pn+1
k , F ∈ k[x0, . . . , xm]d, d ∈ Z≥1.

Although their definition is simple, hypersurfaces X ⊂ Pn+1
k are in general difficult

objects to study. To facilitate the study of hypersurfaces in Pn+1, one can restrict to
the smooth hypersurfaces, i.e. those for which the equation

F = ∂F/∂x0 = · · · = ∂F/∂xn+1 = 0

has no solution in Pn+1(k̄). If d = 1 then X ∼= Pn+1 is a hyperplane. If d = 2 then X is
a smooth quadric, which implies that F is projectively equivalent to x2

0+· · ·+x2
n+1 = 0.

When d ≥ 3, degree d hypersurfaces in Pn+1 for n ≥ 1 come in positive dimensional
families, and their investigation starts to become more complicated.

When d = 3, one enters the realm of smooth cubic hypersurfaces. For each value
of n = dim(X), the class of cubic hypersurfaces of dimension n is very rich; however,
only for small n, the theory is fairly well understood. When n = dim(X) = 1 and X
is equipped with a rational point e ∈ X(k), then E = (X, e) is called an elliptic curve.
The fundamental theorem in the theory of elliptic curves says that there exists an
algebraic group law E×E → E in this case, turning E into a one-dimensional smooth
projective group variety. If n = dim(X) = 2, then X = S is a cubic surface, and Sk̄
turns out to contain exactly 27 lines over k̄. In higher dimensions, cubic hypersurfaces
provide a rich class of objects to test important conjectures in algebraic geometry on;
think of the Hodge and Tate conjectures. Another example is provided by the Weil
conjectures, that were proven for cubic threefolds before they were proven in general.

In the theory of cubic hypersurfaces, many beautiful areas in mathematics interact
with one another, such as arithmetic geometry, algebraic topology, étale cohomology,
Hodge theory and moduli theory. Open questions concern cycle class conjectures and
rationality questions. The goal of these lectures is to dive into these theories, and use
the developed techniques to study the geometry and arithmetic of cubic hypersurfaces.
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Part I

General theory
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Chapter 1

Topology and differential forms

1.1 Lecture 1: Kähler differentials on hypersurfaces

Let k be a field. Let n ∈ Z≥0. We define

P = Pn+1 = Pn+1
k . (1.1)

Before we start to study algebraic differential forms on hypersurfaces X ⊂ Pn+1
k ,

we study them on the projective space Pn+1 itself. To do so, we shall need some
generalizations to the theory of vector bundles on schemes (or, more generally, ringed
spaces) of classical linear algebra statements.

1.1.1 Linear algebra constructions on ringed spaces
The goal of this section is to prove three basic lemmas on modules on locally ringed
spaces.

Lemma 1.1.1. Let (X,OX) be a ringed space.

(1) If 0→ E → F → L→ 0 is an exact sequence of vector bundles such that L is a
line bundle, then for p ∈ Z≥1, there is a canonical exact sequence

0→
p∧
E →

p∧
F →

p−1∧
E ⊗ L→ 0.

(2) Similarly, if 0 → L → E → F → 0 is an exact sequence of vector bundles such
that L is a line bundle, then for each p ∈ Z≥1, there is a canonical exact sequence

0→
p−1∧

F ⊗ L→
p∧
E →

p∧
F → 0.

(3) Let E be a vector bundle and L a line bundle on X. Let a > 0 be an integer.
There is a canonical isomorphism

a∧
(E ⊗ L) =

(
a∧
E

)
⊗ L⊗a.
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Proof. 1. Let Q be the cokernel of ∧pE → ∧pF . Wedge the original sequence with
∧p−1E, and consider the canonical morphism of exact sequences

0 //
∧p−1E ⊗ E //

��

∧p−1E ⊗ F //

��

∧p−1E ⊗ L //

��

0

0 //
∧pE //

∧p F // Q // 0.

It suffices to show that the so-constructed natural map ∧p−1E ⊗ L→ Q is an isomor-
phism. For this, we may assume that F = E ⊕ L. In this case,

∧pF = ∧p(E ⊕ L) = ⊕i+j=p ∧i E ⊗ ∧jL =
(
∧p−1E ⊗ L

)
⊕ ∧pE,

and hence ∧pF/ ∧p E = ∧p−1E ⊗ L.
2. Dualize the exact sequence 0→ L→ E → F → 0, use item 1, and then dualize

the result.
3. The map

(E ⊗ F )⊗a →

(
a∧
E

)
⊗L⊗a, e1⊗f1⊗· · ·⊗ea⊗fa 7→ (e1 ∧ · · · ∧ ea)⊗(f1 ⊗ · · · ⊗ fa) ,

factors through a map

a∧
(E ⊗ L)→

(
a∧
E

)
⊗ L⊗a,

which is an isomorphism (this can be verified on stalks, where this is clear).

Lemma 1.1.2. Let E and F be vector bundles on a ringed space (X,OX). For each
integer k ≥ 0, we have a canonical isomorphism

k∧
(E ⊕ F ) =

⊕
p+q=k

(
p∧
E

)
⊗

(
q∧
F

)
.

Proof. Let R be a commutative ring. Then ∧(−) is a functor from R-modules to
graded-commutative R-algebras which is left adjoint to the functor which takes the
degree one part. Because it is left adjoint, it preserves colimits, and in particular
coproducts. Therefore, for two R-modulesM and N , we have a canonical isomorphism
of graded R-algebras ∧(M ⊕N) = ∧(M)⊗ ∧(N). Now sheafify to get the result.

Lemma 1.1.3. Let (X,OX) be a ringed space. Let p and m be non-negative integers

with p ≤ m. Then ∧p(O⊕mX ) = O
⊕(m

p)
X .

Proof. Clear.
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1.1.2 Bott vanishing
Let k be a field and define P as in (1.1).

Lemma 1.1.4. Let m ∈ Z≥1 and P = Pn+1. For each p ∈ Z≥1 and k ∈ Z, there is a
canonical exact sequence

0→ Ωp
P(k)→ O

⊕(n+2
p )

P (k − p)→ Ωp−1(k)→ 0. (1.2)

Proof. Consider the Euler sequence, which is the exact sequence

0→ ΩP → OP(−1)⊕(n+2) → OP → 0. (1.3)

It yields
0→ ΩP(1)→ O⊕(n+2)

P → OP(1)→ 0.

By item 1 in Lemma 1.1.1, this yields an exact sequence

0→
p∧

(ΩP(1))→
p∧

(O⊕(n+2)
P )→

p−1∧
(ΩP(1))⊗OP(1)→ 0.

By item 3 in Lemma 1.1.1, we obtain:
p∧

(ΩP(1)) =

(
p∧

ΩP

)
⊗O(p) = Ωp(p).

By Lemma 1.1.3, we have
∧p(O⊕(n+2)

P ) = O
⊕(n+2

p )
P . Hence, we obtain an exact sequence

0→ Ωp
P(p)→ O

⊕(n+2
p )

P → Ωp−1
P (p− 1)⊗OP(1) = Ωp−1

P (p)→ 0.

The lemma follows by tensoring this sequence with OP(k − p).

Lemma 1.1.5. Let X be a projective variety of dimension n over k, and let OX(1) be
an ample line bundle on X. Let E a vector bundle of rank r on X. For p ∈ Z≥0 and
k ∈ Z, there is a canonical isomorphism((

p∧
E

)
(k)

)∗
=

(
r∧
E

)∗
⊗

(
r−p∧

E

)
(−k).

Proof. We have ((
p∧
E

)
⊗OX(k)

)∗
=

(
p∧
E

)∗
⊗OX(−k).

Hence, it suffices to prove the lemma in the case k = 0. Consider the natural map
p∧
E → Hom

(
p−r∧

E,
r∧
E

)
= Hom

(
p−r∧

E,OX

)
⊗

r∧
E =

(
p−r∧

E

)∗
⊗

r∧
E.

We claim that this map is an isomorphism. This may be checked locally, in which case
it is clear. As (∧pE)∗ = ∧pE∗, the lemma follows by duality.
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Theorem 1.1.6 (Serre duality). Let X be a smooth projective variety of dimension n
over a field k, with canonical bundle ωX , and let i ≥ 0 be an integer. Then for any
coherent sheaf F on X, there is a canonical isomorphism

Exti(F , ωX) = Hn−i(X,F)∗.

In particular, if F is locally free, then

H i(X,F∨ ⊗ ω) = Exti(OX ,F∨ ⊗ ωX) = Exti(F , ωX) = Hn−i(X,F)∗.

Proof. See [Kle80] for the first assertion. The second assertion follows readily.

Corollary 1.1.7. Let X be a smooth projective variety of dimension n over k, with
ample line bundle OX(1). For k ∈ Z, there are canonical isomorphisms

(Ωp
X(k))∗ ∼= ω∗X ⊗ Ωr−p

X (−k) and Hq(X,Ωp
X(k)) ∼= Hn−q(X,Ωn−p

X (−k))∨. (1.4)

In particular, hq(X,Ωp(k)) = hn−q(X,Ωn−p
X (−k)) for each k ∈ Z.

Proof. Lemma 1.1.5 shows that

((∧pΩX) (k))∗ = (∧nΩX)∗ ⊗ (∧n−pΩX)(−k) = ω∗X ⊗ Ωn−p
X (−k).

By Serre duality, see Theorem 1.1.6, we obtain:

Hq(X,Ωp
X(k)) = Hn−q(X,ωX ⊗ (Ωp

X(k))∗)∨

= Hq(X,ωX ⊗ ω∗X ⊗ Ωn−p
X (−k))∨ = Hq(X,Ωn−p(−k))∨.

The last statement follows readily from (1.4).

Theorem 1.1.8 (Bott vanishing). Consider the projective space P = Pn+1
k of dimen-

sion m > 0 over k. Then Hq(P,Ωp
P(k)) = 0 in each of the following cases:

(a) p 6= q and 0 < q < m;

(b) p = q > 0 and k 6= 0, and k > 0 if p = q = m;

(c) q = 0 and k ≤ p, and k < 0 if p = 0;

(d) q = m and k ≥ p−m, and k > 0 if p = m.

Proof. We assume that we are in one of the cases (a) – (d); our goal is to prove that
Hq(P,Ωp

P(k)) = 0. By Serre duality, see Corollary 1.1.7, we may assume that q ≥ p.
We proceed by induction on p.

First, assume that p = 0. In this case, either q = 0 in which case k < 0 hence
Hq(P,O(k)) = H0(P,OP(k)) = 0, or m > q > 0 in which case Hq(P,O(k)) = 0, or
m = q in which case k ≥ p − m = −m hence again Hq(P,O(k)) = 0. We conclude
that the assertion holds if p = 0.
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Next, assume that p > 0. Then q ≥ p > 0. Sequence (1.2) gives us a long exact
sequence

· · · → Hq−1(O(k − p)⊕(n+2
p ))→ Hq−1(Ωp−1(k))→ Hq(Ωp(k))→ Hq(O(k − p)⊕(n+2

p ))

→ Hq(Ωp−1(k))→ Hq+1(Ωp(k))→ · · ·
(1.5)

We claim that Hq
(
P,OP(k − p)⊕(n+2

p )
)

= 0. Indeed, this follows from the fact
that q > 0, and k − p ≥ −m if q = m. Therefore, using the exact sequence (1.5), we
conclude that the canonical map

Hq−1(P,Ωp−1
P (k))→ Hq(P,Ωp(k)) (1.6)

is surjective.
We claim that we may assume that q > p. To see this, suppose that q = p. If

q = p ≥ 2, then the induction hypothesis implies that Hq−1(P,Ωp−1
P (k)) = 0 (since

k 6= 0), hence by the surjection (1.6), we have Hq(P,Ωp
P(k)) = 0 in this case. Thus,

suppose that p = q = 1. In this case, we have k 6= 0, and we want to show that
H1(P,Ω1(k)) = Hm−1(P,Ωm−1(−k))∨ = 0.

To prove this, we proceed by induction on m. Suppose first that m = 1 = p = q.
Then k > 0, and hence H1(Ω1(k)) = Hm−1(Ωm−1(−k))∨ = H0(Ω0(−k))∨ = 0. Next,
assume m ≥ 2. Then there are two cases to distinguish: k > 0 and k < 0. If k < 0,
then the surjection (1.6) implies that H1(Ω1(k)) = 0. Thus, assume that k > 0. We
need to show that Hm−1(Ωm−1(−k)) = 0 for k > 0. We obtain a long exact sequence

· · · → Hm−2(Ωm−2(−k))→ Hm−1(Ωm−1(−k))→ Hm−1(O(k −m)(
n+2
m ))→ · · ·

The group Hm−2(Ωm−2(−k)) is zero by induction, and Hm−1(O(k−m)(
n+2
m )) vanishes

as well, as m ≥ 2. Therefore, Hm−1(Ωm−1(−k)) = 0 as desired.
By the above claim, we may assume q > p ≥ 1. We can then apply the in-

duction hypothesis (recall that we are still arguing by induction on p) to see that
Hq−1(P,Ωp−1

P (k)) = 0. Indeed, we have 0 < q− 1 < m. Therefore, the surjection (1.6)
implies that Hq(P,Ωp

P(k)) = 0, and we are done.

Exercise 1.1.9. Show that the non-zero twisted Hodge numbers hq(Ωp(k)) are:

(a) hp(Ωp) = 1,

(b) h0(Ωp(k)) =
(
m+k−p

k

)
·
(
k−1
p

)
if k > p,

(c) hm(Ωp(k)) =
(−k+p
−k

)
·
(−k−1
m−p

)
if k < p−m.

Exercise 1.1.10. Consider the projective space P = Pn+1
C of dimension m over C. By

Theorem 1.1.8, we have H0(P,Ωp
P) = 0 for p > 0. Show directly that there are no

non-zero holomorphic one-forms on P1(C).
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1.1.3 Kähler differentials on hypersurfaces
Lemma 1.1.11. Let X ⊂ P be a smooth hypersurface of degree d > 0. For each k ∈ Z,
there are canonical exact sequences

0→ Ωp
P(k − d)→ Ωp

P(k)→ Ωp
P|X(k)→ 0, (1.7)

0→ OX(k − d)→ ΩP|X(k)→ ΩX(k)→ 0, (1.8)

0→ Ωp−1
X (k − d)→ Ωp

P|X(k)→ Ωp
X(k)→ 0. (1.9)

Proof. It suffices to take k = 0.
To prove (1.7), we may take p = 0. In this case, the result follows from the following

exact sequence, where i denotes the inclusion X ↪→ P:

0→ OP(−d)→ OP → i∗OX → 0. (1.10)

One obtains (1.10) via the identification OP(−d) ∼= OP(−d) ∼= IX , where the latter
denotes the ideal sheaf of X ⊂ P, resulting from the isomorphisms IX ∼= OP(−X) (see
[Har77, II, Proposition 6.18]) and OP(X) ∼= OP(d) (which holds because deg(X) = d).
Note by the way that (1.10) corresponds to the exact sequence

0→ OP
17→F−−−→ OP(d)→ OX(d)→ 0,

where F ∈ OP(d) = k[x0, . . . , xn1 ]d is a polynomial that defines X.
To obtain the exact sequence (1.8), one combines the conormal exact sequence

0→ N ∨Z/Y → ΩY |Z → ΩZ → 0

for any smooth hypersurface i : Z ↪→ Y in a smooth variety Y , where N ∨Z/Y is a sheaf
on Z such that i∗N ∨Z/Y ∼= I/I2 (see [Har77, II, Theorem 8.17]), and the canonical
isomorphism

N ∨X/P = i∗OP(−d) = OX(−d). (1.11)

The second isomorphism in (1.11) being clear, it suffices to prove N ∨X/P = i∗OP(−d).
This is again a general statement: if i : Z → Y is a closed immersion of schemes, then
i∗IZ has the property that i∗i∗IZ = IZ ⊗OY

OY /IZ = IZ/I2
Z (to see this, reduce to

the case where Y affine, where this is clear).
Finally, note that (1.9) follows from (1.8) together with Lemma 1.1.1.

Proposition 1.1.12. Let X ⊂ Pn+1 be a smooth hypersurface of degree d > 0 with
canonical bundle ωX . Then ωX ∼= OX(d− n− 2). In particular,

(1) ωX is ample if d > n+ 2;

(2) ωX ∼= OX if d = n+ 2;

(3) ω∗X is ample if d < n+ 2.
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Proof. Consider sequence (1.9) with p = n+ 1 = m and k = d. This gives

ωX ∼= ωP|X(d) ∼= OP(−m− 1)|X ⊗OX(d) ∼= OX(d−m− 1).

The remaining statement follow directly.

We proceed to prove:

Theorem 1.1.13. Let X ⊂ P = Pn+1 = Pn+1 be a smooth hypersurface of degree
d > 0. Then the following holds.

(1) Let k ∈ Z with k < d. The natural map

Hq(P,Ωp
P(k))→ Hq(X,Ωp(k))

is bijective for p+ q < n and injective for p+ q ≤ n.

(2) We have

Hq(X,Ωp(k − d)) = 0 for p+ q < n and k < d. (1.12)

(3) We have Hq(X,Ωp(k)) = 0 for (p+ q < n, k < 0) and for (p+ q > n, k > 0).

Proof. Throughout the proof, we will use Theorem 1.1.8 without mention. We first
prove 1 and 2 by induction on p. Therefore, assume that k < d.

Suppose first that p = 0. Then (1.7) yields the following exact sequence:

Hq(OP(k − d)) // Hq(OP(k)) // Hq(OX(k)) // Hq+1(OP(k − d))

For q ≤ n < m, we have Hq(OP(k − d)) = 0 because k − d < 0. Thus, Hq(OP(k)) →
Hq(OX(k)) is injective for q ≤ n and k−d < 0. Moreover, if q < n then q+1 ≤ n < m,
hence Hq+1(OP(k − d)) = 0 for q < n and k − d < 0. This implies that Hq(OP(k))→
Hq(OX(k)) is bijective q < n and k − d < 0. In particular,

Hq(P,OP(k − d)) = Hq(X,OX(k − d)) = 0 for (q < n, k − d < 0).

This proves that 1 and 2 hold whenever p = 0.
Next, let p > 0. Notice that in this case, p + q ≤ n implies q < n. Similarly,

p + q < n implies q < n − 1. Notice also that (1.8) and (1.9) yield the following
diagram, in which the rows are exact:

Hq(Ωp
P(k − d)) // Hq(Ωp

P(k))
f(p,q)

// Hq(Ωp
P|X(k)) // Hq+1(Ωp

P(k − d))

Hq(Ωp−1
X (k − d)) // Hq(Ωp

P|X(k))
g(p,q)

// Hq(Ωp
X(k)) // Hq+1(Ωp−1

X (k − d)).

If p+ q ≤ n < m, then q < m hence Hq(Ωp
P(k−d)) = 0 as k−d < 0. This implies that

f(p, q) is injective if p+ q ≤ n. Moreover, if p+ q ≤ n < m then (p− 1) + q < n, hence
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Hq(Ωp−1
X (k − d)) = 0 by the induction hypothesis, as k − d < 0. Therefore, the maps

f(p, q) and g(p, q) in the above diagram are both injective if p > 0 and p+q ≤ n. This
implies that the natural map

Hq(P,Ωp
P(k))→ Hq(X,Ωp

X(k))

is injective for all p, q ≥ 0 such that p+ q ≤ n.
Still assume p > 0. If p+ q < n, then q < n, hence q + 1 < n+ 1 = m. Therefore,

Hq+1(Ωp
P(k − d)) = 0 as k − d < 0. Moreover, if p+ q < n then (p− 1) + (q + 1) < n,

hence Hq+1(X,Ωp−1
X (k − d)) = 0 by induction, as k − d < 0. Therefore, the maps

f(p, q) and g(p, q) in the above diagram are both bijective if p > 0 and p+ q < n. We
conclude that the natural map

Hq(P,Ωp
P(k))→ Hq(X,Ωp

X(k))

is bijective for all p, q ≥ 0 such that p+ q < n.
Continue to assume that k < d. Let p, q ≥ 0 such that p + q < n. By what we

have already proved, we have Hq(X,Ωp
X(k − d)) = Hq(P,Ωp

P(k − d)), and this is zero
because q < m and k − d < 0.

It remains to prove assertion 3. Notice that (1.12) implies Hq(X,Ωp
X(k)) = 0 for

(p+ q < n, k < 0). This also implies, via Corollary 1.1.7, that

Hq(X,Ωp(k)) ∼= Hn−q(X,Ωn−p(−k))∨ = 0 if (p+ q > n, k > 0).

This finishes the proof of the theorem.

Corollary 1.1.14. Let X ⊂ Pn+1
C be a smooth hypersurface of degree d . If n > 2, then

Pic(X) = H2(X,Z). Similarly, for n = 2 and d ≤ 3, one has Pic(X) = H2(X,Z).

Proof. Consider the exponential exact sequence of abelian sheaves on X(C) = Xan:

0→ Z 17→2iπ−−−→ OXan
exp−−→ O∗Xan → 0.

Taking cohomology gives an exact sequence

H1(X,OX)→ H1(X,O∗X)
c1−→ H2(X,Z)→ H2(X,OX). (1.13)

As Pic(X) = H1(X,O∗X), see Exercise 1.1.16 below, it suffices to prove the following:

Claim 1.1.15. If n > 2 or n = 2 and d ≤ 3, then H1(X,OX) = H2(X,OX) = 0.

On the one hand, by Theorem 1.1.8, we haveH1(Pn+1,OPn+1) = H2(Pn+1,OPn+1) =
0 for n > 1. On the other hand, by Theorem 1.1.13, we see that if n > 1, then
H1(P,OP) = H1(X,OX) and if n > 2 then H2(P,OP) = H2(X,OX). Therefore, for
n > 1, we have H1(X,OX) = 0 and for n > 2, we have H2(X,OX) = 0.

By Corollary 1.1.7, we have hi(X,OX) = hn−i(X,ωX)), and by Proposition 1.1.12,
we have hn−i(X,ωX) = hn−i(X,OX(d− (n+ 2)). Thus, for n = 2, this gives

hi(X,OX) = h2−i(X,OX(d− 4)) = 0 for i ∈ {1, 2} and d ≤ 3.

This proves the claim, and thereby the corollary.
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Exercise 1.1.16. Sketch a proof of the fact that, for a locally ringed space (X,OX),
there is a natural isomorphism Pic(X) = H1(X,O∗X). Use this to conclude that if X
is a smooth projective variety over C, then H1(X,O∗X) = H1(Xan,O∗Xan). Give an
example of a sheaf F on a smooth projective variety X over C such that the natural
map H1(X,F)→ H1(Xan,Fan) is not an isomorphism.

Exercise 1.1.17. Let X ⊂ Pn+1
C be a smooth hypersurface of dimension n and degree

d. Provide all (n, d) for which the homomorphism c1 : Pic(X)→ H2(X,Z) is injective.
Analyze the group which measures the possible failure of the injectivity of c1.

Exercise 1.1.18. Consider a smooth hypersurface S ⊂ P3
C. Let C ⊂ S be a curve

contained in S. Prove that

[C] = c1(OS(k)) ∈ H2(S,Z)

if and only if there exists a hypersurface Y ⊂ P3
C of degree k such that C = Y ∩ S.

1.2 Lecture 2: Lefschetz hyperplane theorem

To prove the Lefschetz hyperplane theorem, we will need some Morse theory. Let M
be a smooth manifold of dimension n. Let f : M → R be a C∞ function. Then 0 ∈M
is called a critical point if (df)0 = 0 as maps T0M → Tf(0)R; in this case f(0) is called
a critical value. Consider the bilinear map

Hess(f)0 = (d2f)0 : T0M × T0M → R

defined as follows. Choose coordinates x1, . . . , xn on M centred around 0, and put

Hess(f)0

(
∂

∂xi
,
∂

∂xj

)
=

∂2f

∂xi∂xj
(0).

Lemma 1.2.1. Show that the function Hess(f)0 does not depend on the choice of
coordinates around 0. Show that Hess(f)0 defines a symmetric bilinear form on T0M .

Proof. Exercise.

We say that a critical point 0 ∈M is non-degenerate if Hess(f)0 is non-degenerate.
By Lemma 1.2.1, if 0 ∈ M is a non-degenerate critical point, then Hess(f)0 defines a
non-degenerate quadratic form, which can be diagonalized; define λ0(f) as the number
of negative eigenvalues in this case. The Morse lemma, see [Mil63, Lemma 2.2], states
that in suitable local coordinates x1, . . . , xn around a non-degenerate critical point
0 ∈M of f : M → R, the function f can be written as the quadratic function

f(x) = f(0)−
λ0(f)∑
i=1

x2
i +

n∑
i=λ0(f)+1

x2
i .

In particular, non-degenerate critical points (resp. values) are isolated in M (resp. R).
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We call f a Morse function if f−1(−∞, a] ⊂ M is compact for each a ∈ R, and f
each critical point of f is non-degenerate. If f is a Morse function, then f is proper
and its fibres Ma = f−1(a) are compact. Moreover, each critical value corresponds
to a finite number of critical points, and the set of critical values is discrete in R. In
particular, for each a ∈ R, there exist only finitely many critical values in (−∞, a] ⊂ R.

The basic theorem of Morse theory [Mil63, Theorem 3.5] says that if f : M → R is
a Morse function, then M has the homotopy type of a CW complex with one cell of
dimension λp(f) for each critical point p ∈M .

Assume M ⊂ RN is a closed submanifold of dimension n. By [Mil63, Theorem
6.6], for almost all (all but a set of measure 0) points p ∈ R, the distance function

ϕp : M → R, ϕp(x) = ‖x− p‖2

is a Morse function. We are now ready to prove:

Theorem 1.2.2 (Andreotti–Frankel [AF59]). A closed n-dimensional complex sub-
manifold X ⊂ Cr has the homotopy type of a CW complex of dimension ≤ n.

Proof. Let c ∈ Cr be a point such that the distance function ϕc : X → R has only
non-degenerate critical points.

Claim (∗). Let p ∈ X be a critical point of ϕc : X → R. Then λp(ϕc) ≤ n.
Before we prove Claim (∗), we will show that it implies the theorem. Indeed, by

the basic theorem of Morse theory, X has the homotopy type of a CW complex with
one cell of dimension λp(ϕc) for each critical point p ∈ M of ϕc. By Claim (∗), we
have λp(ϕc) ≤ n for each critical point p ∈ M . Hence X has the homotopy type of a
CW complex with one cell of dimension ≤ n for each critical point p ∈M of ϕc.

It remains to prove Claim (∗). We need:

Claim 1.2.3. There exist local holomorphic coordinates on Cr such that p = 0, c =
(0, 0, . . . , 0, 1, 0, . . . , 0) with 1 in the (n+ 1)-st position, and such that there exist open
neighborhoods 0 ∈ V1 ⊂ Cn and 0 ∈ V2 ⊂ Cr−n and a holomorphic function

Cn ⊃ V1
f−→ V2 ⊂ Cr−n

with M ∩ (V1 × V2) = Graph(f) ⊂ Cn × Cr−n, and such that df0 = 0.

Proof of Claim 1.2.3. Applying a suitable change of coordinates of Cr, we may assume
that p = 0 ∈ M ⊂ Cr. As M ⊂ Cr is a closed submanifold, there exists an open
subset U ⊂ Cr containing p = 0, and holomorphic functions g1, . . . , gm : U → C
such that X ∩ U = {g1 = · · · = gm = 0} ⊂ Cr. This gives a holomorphic function
g = (g1, . . . , gm) : U → Cm such that X ∩ U = g−1(0) = {g = 0} ⊂ U . Thus,
the fibre g−1(0) is smooth, which implies that g has maximal rank at each point of
X = g−1(0). Applying the implicit function theorem, we obtain a holomorphic function
f : V1 → V2 ⊂ Cr−n defined on a open neighborhood V1 ⊂ Cn of 0, such that f(0) = 0,
V1 × V2 ⊂ U and such that

X ∩ V1 × V2 = {(x, f(x)) | x ∈ V1} ⊂ V1 × V2 ⊂ Cn × Cr−n = Cr.
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Now 0 6= c ∈ Cr, hence c defines a basis element of Cr, so that there exists a matrix
α ∈ GLr(C) with α · c = (0, 0, . . . , 0, 1, 0, . . . , 0) with 1 on the (n + 1)-st position. As
α is linear, we have α · 0 = 0. Finally, we claim that df0 = 0. This follows from the
fact that ϕc : X → R is a distance function, with critical point p = 0. In other words,
(dϕc)0 = 0, because ϕc(x, f(x)) = ‖(x, f(x))− (0, 0, . . . , 0, 1, 0, . . . , 0)‖2 .

As |z − 1|2 = |x+ iy − 1|2 = (x−1)2+y2 = (x2+y2)+(1−2x) = |z|2+(1−2·<(z)),
the distance function is now given by the formula

ϕc(z) = 1− 2 · <(f1(z)) +
n∑
i=1

|zi|2 +
k∑
i=2

|fi(z)|2 . (1.14)

As ord0(fi) ≥ 2 for all i, the last sum in (1.14) does not contribute to Hess(ϕc)0. Write

f1(z) = Q(z) + terms of order ≥ 3,

where Q(z) is a homogeneous quadratic polynomial in z1, . . . , zn. We obtain:

Hess(ϕc)0 = −2 · Hess (<(Q(z)))0 + 2 · Id.

We claim that Hess(<(Q(z)))0 has at most n positive and at most n negative eigen-
values. Indeed, after a change of coordinates z 7→ w, we can write

Q(w) = w2
1 + · · ·+ w2

s , s ≤ n;

writing wj = xj + i · yj, we obtain

< (Q(w)) = (x2
1 − y2

1) + · · ·+ (x2
s − y2

s).

This finishes the proof of Claim (∗), and thereby the proof of Theorem 1.2.2.

As a corollary, we obtain:

Theorem 1.2.4. Let X ⊂ PN be a projective variety of dimension n ≥ 1. Let Y =
X ∩H be a hyperplane section such that U := X \ Y is smooth of dimension n and let
j : Y ↪→ X denote the canonical inclusion. The restriction map

j∗ : H i(X,Z)→ H i(Y,Z)

is an isomorphism for i ≤ n− 2 and injective for i = n− 1.

Proof. For the proof, we need the following:

Claim 1.2.5. We have a natural isomorphism H i(X, Y,Z) ∼= H2n−i(U,Z).

Assuming the claim, we obtain a long exact sequence

· · · // H i(X, Y,Z) // H i(X,Z) // H i(Y,Z) // H i+1(X, Y,Z) // · · ·

· · · // H2n−i(U,Z) // H i(X,Z) // H i(Y,Z) // H2n−i−1(U,Z) // · · ·
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Therefore, to prove the theorem, we must show that H2n−i(U,Z) = 0 for i ≤ n− 1. As
i ≤ n−1 if and only if 2n− i ≥ 2n−n+1 = n+1, we need to prove that Hi(U,Z) = 0
for i ≥ n + 1. Note that U = X \ Y ⊂ PN \ H ∼= AN

C defines a closed submanifold
U(C) ⊂ CN of dimension n. By Theorem 1.2.2, U(C) has the homotopy type of a CW
complex of dimension ≤ n. In particular, Hi(U,Z) = 0 for i ≥ n + 1, and Theorem
1.2.4 follows.

It remains to prove Claim 1.2.5; for this, we follow the exposition in [Voi02, page
306]. We admit the fact that Y admits a fundamental system of open neighborhoods
Y ⊂ Yk ⊂ X that admit a deformation retract onto Y . It follows that the natural map

lim−→H i(X, Yk,Z)→ H i(X, Y,Z)

is an isomorphism. By excision, we have

H i(X, Yk,Z) ∼= H i(U,U ∩ Yk,Z).

If K ⊂ U is a compact subset such that K is the deformation retract of an open subset
K ⊂ V ⊂ U , then H i(U,U \K,Z) ∼= H2n−i(K,Z) (this is a refined version of Poincaré
duality, see [Spa81, Section 6.2]). Applying this to

Kk := U \ (Yk ∩ U) = X \ Yk,

which is a closed, hence compact, subset of X which admits a deformation retract of
X \ Y = U ⊃ Kk, we obtain

H i(U, Yk ∩ U,Z) = H i(U,U \Kk,Z) ∼= H2n−i(Kk,Z).

As every singular chain on U is contained in one of the compact subsets Kk ⊂ U , the
natural map lim−→k

H2n−i(Kk,Z)→ H2n−i(U,Z) is an isomorphism, and hence

H i(X, Y,Z) ∼= lim−→H i(U,U ∩ Yk,Z) ∼= lim−→H2n−i(Kk,Z) ∼= H2n−i(U,Z),

proving Claim 1.2.5.

Remark 1.2.6. For a compact oriented n-dimensional manifold M , and a closed
submanifold N ⊂M , cup-product with the fundamental class defines an isomorphism
H i(M,N,Z) ∼= Hn−i(M \N,Z). This is relative Poincaré duality, cf. [Dol95, Section 7].
In particular, ifX ⊂ PNC is a smooth projective variety of dimension n and Y = X∩H a
smooth hyperplane section, then it readily follows that H i(X, Y,Z) ∼= H2n−i(X \Y,Z).

Corollary 1.2.7. Let X ⊂ Pn+1
C be a hypersurface.

(1) The restriction map H i(Pn+1,Z) → H i(X,Z) is an isomorphism for i < n. In
particular, H i(X,Z) = 0 for i odd and i < n, and H2i(X,Z) = Z · hi for 2i < n.

(2) Suppose X is smooth. Then H i(X,Z) = 0 for i > n odd, and for each j > n there
is a unique α2j ∈ H2j(X,Z) such that H2j(X,Z) = Z · α2j and α2j ∪ hn−j = 1.
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Proof. Let d be the degree of X, and consider the d-th Veronese embedding Pn+1
C →

PNC . Then X = Pn+1
C ∩H for a hyperplane H ⊂ PNC . Apply Theorem 1.2.4 to obtain

the first assertion. The second assertion follows from the first via Poincaré duality.

Corollary 1.2.8. Let X ⊂ Pn+1
C be a smooth hypersurface of dimension n ≥ 3. Then

the restriction maps H2(Pn+1,Z) → H2(X,Z) and Pic(Pn+1) → Pic(X) are isomor-
phisms. In particular, Pic(X) = Z · OX(1).

Proof. The fact H2(Pn+1,Z)→ H2(X,Z) is an isomorphism is immediate from Theo-
rem 1.2.4. From this, together with the commutative diagram

Pic(Pn+1) //

��

Pic(X)

��

H2(Pn+1,Z) // H2(X,Z),

we deduce that Pic(Pn+1) → Pic(X) is also an isomorphism, as the restriction map
Pic(X)→ H2(X,Z) is an isomorphism by Corollary 1.1.14.

Corollary 1.2.9. Let X ⊂ Pn+1
C be a smooth hypersurface of dimension n ≥ 3. Then

Hq(X,Ωp
X ⊗ L) = 0 for p+ q > n and L ∈ Pic(X) ample.

Remark 1.2.10. Later we will see that Corollary 1.2.9 remains valid for hypersurfaces
over arbitrary fields k. Namely, if X ⊂ Pn+1

k is a smooth hypersurface of degree d, and
if n > 2, then Pic(X) = Z · OX(1). See Theorem 3.3.14 in Chapter 3.

Exercise 1.2.11. Provide the equation of a smooth hypersurface S ⊂ P3
C of degree

d ≥ 4 such that Pic(S) 6∼= Z. See also Exercise 1.1.18. Define V = H0(P3,O(d)) and
let P(V ) be its projectivization. Let P(V )0 ⊂ P(V ) be the locus of classes [F ] ∈ P(V )
such that SF := {F = 0} is smooth. Show that P(V )0 is Zariski open in the projective
space P(V ). Show that the locus of [F ] ∈ P(V )0 such that Pic(SF ) 6∼= Z is a countable
union H = ∪nZn of closed algebraic subvarieties Zn ⊂ P(V0). Show that H 6= P(V0).

Exercise 1.2.12. Let X ⊂ Pn+1
C be a smooth hypersurface of dimension n. Suppose

that n ≥ 2. Show that X is simply connected.

Exercise 1.2.13. Describe the fundamental group π1(X) of X when X ⊂ P2
C is a

smooth plane curve of degree d = 3. Describe the fundamental group π1(X) of X
when X ⊂ P2

C is a smooth plane curve of arbitrary degree d ≥ 4.

Exercise 1.2.14. Let X ⊂ Pn+1
C be a smooth cubic hypersurface of dimension n ≥ 2.

Let C ⊂ X ⊂ Pn+1 be a smooth curve contained in X, and consider the Gysin map

ϕ : Z = H0(C,Z) ∼= H2(C,Z)→ H2(X,Z) ∼= H2n−2(X,Z).

Define [C] = ϕ(1) ∈ H2n−2(X,Z). Consider the class α2n−2 ∈ H2n−2(X,Z), see
Corollary 1.2.7. Show that [C] = α2n−2 if and only if C intersects a general hyperplane
H ⊂ Pn+1

C in a unique point with multiplicity one. Given equations for a cubic surface
X = {F = 0} ⊂ P3

C and a curve C = {F = G = 0} ⊂ X ⊂ P3
C such that [C] = α2.
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1.3 Lecture 3: Betti numbers of hypersurfaces

Convention 1.3.1. We assume all topological manifolds to be second-countable and
Hausdorff. In particular, they are paracompact and admit partitions of unity subor-
dinate to any open cover.

1.3.1 Chern classes in topology
Let X be a topological manifold. Let E → X be a complex vector bundle of rank r.
We would like to define the Chern classes

ci(E) ∈ H2i(X,Z), 1 ≤ i ≤ r

of X. We put c0(E) = 1 and ci(E) = 0 for i > r = rank(E), and introduce the Chern
polynomial

c(E) =
r∑
i=0

ci(E) · ti ∈ H•(X,Z)[t]

whose coefficients we shall now define. Consider the exponential exact sequence

0→ Z 2iπ−−→ C 0 exp−−→ (C 0)∗ → 0, (1.15)

where C 0 is the sheaf of continuous complex-valued functions on X, and (C 0)∗ the
subsheaf of invertible functions. The sequence (1.15) defines a morphism

c1 : {complex line bundles L on X} /∼= = H1(X, (C 0)∗)→ H2(X,Z). (1.16)

In particular, if E is a vector bundle of rank r = 1 on X, we obtain an element
c1(E) ∈ H2(X,Z) such that c1(E) = c1(E ′) if E ∼= E ′ as vector bundles on X.

Lemma 1.3.2. Let X be a topological space and E → X a vector bundle of rank r
on X. Let ψ : P(E) → X be the associated projective bundle. Let S ⊂ ψ∗E be the
tautological line bundle, and define h = c1(S∗) ∈ H2(P(E),Z). Then H∗(P(E),Z) is
a free module over H∗(X,Z), with basis 1, h, . . . , hr−1.

Proof. This follows from the Leray–Hirsch theorem (see [Hat02, Theorem 4D.1]).

Lemma 1.3.3. Let X be a topological manifold. Let E → X be a complex vector
bundle on X. Then E admits a hermitian metric E × E → C.

Proof. Exercise.

Theorem 1.3.4. Let X be a topological manifold, and let K(X) be the set of isomor-
phism classes of complex vector bundles of finite rank on X. There exists a unique
function

ct : V B(X)→ H•(X,Z)[t], E 7→ ct(E) =
∑
i

ci(E) · ti,

such that ci(E) ∈ H2i(X,Z) for E ∈ V B(X), c0(E) = 1, ci(E) = 0 for i > r =
rank(E), and such that the following conditions are satisfied:
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(1) (Compatibility with (1.16).) If r = rank(E) = 1, then ct(E) = 1 + c1(E) · t.

(2) (Functoriality.) If φ : Y → X is continuous, then ct(φ
∗(E)) = φ∗(ct(E)) for

E ∈ V B(X), where φ∗ : H•(X,Z)→ H•(Y,Z) is the pull-back of φ.

(3) (Turning exact sequences into products.) If 0 → F → E → G → 0 is an exact
sequence, then ct(E) = ct(F ) · ct(G).

Proof of uniqueness. This follows readily from the following:

Claim 1.3.5. Let E → X be a complex vector bundle. There exists a topological
manifold Y and a continuous map φ : Y → X such that φ∗ : H∗(X,Z) → H∗(Y,Z) is
injective for each i, and such that φ∗E is a direct sum of line bundles.

To prove the claim, consider the projective bundle ψ : P(E) → X. The morphism
ψ∗ : H∗(X,Z) → H∗(P(E),Z) turns H∗(P(E),Z) into a free module over H∗(X,Z),
see Lemma 1.3.2. In particular, ψ∗ is injective. Consider the tautological line bundle
S ⊂ ψ∗(E); it has fibre Sx = ∆x ⊂ Ex above the point x = [∆x] ∈ P(Ex) corresponding
to a line ∆x ⊂ Ex. Put a hermitian metric h on ψ∗(E) (cf. Lemma 1.3.3) and define
Q as the orthogonal complement of S with respect to h; then ψ∗(E) ∼= S ⊕ Q. By
induction on the rank of E, the claim follows.

To see why uniqueness follows, let φ : Y → X as in the claim. We obtain an
isomorphism φ∗(E) ∼= L1 ⊕ · · · ⊕ Ln for some line bundles Li on Y . Suppose that

ct(E) = 1 + c1(E) · t+ c2(E) · t2 + · · ·+ cr(E) · tr =
r∑
i=0

ci(E) · ti.

Then
r∑
i=0

φ∗ (ci(E)) · ti = φ∗ (ct(E)) = ct (φ∗(E)) = ct (L1 ⊕ · · · ⊕ Ln) =
n∏
i=1

(1 + c1(Li) · t) .

Thus, if c′t is another map V B(X) → H•(X,Z)[t] with the desired properties, then
φ∗(c′i(E)) = φ∗(ci(E)) for each i; as φ∗ is injective, we get ci(E) = c′i(E) for each i.

Proof of existence. Let ψ : P(E) → X be the projective bundle associated to E, and
let S ⊂ ψ∗(E) be the tautological line bundle. Define h = c1(S∗) ∈ H2(P(E),Z).
By Lemma 1.3.2, H∗(P(E),Z) is free as a module over H∗(X,Z), and the elements
1, h, . . . , hr−1 form a basis for H∗(P(E),Z) over H∗(X,Z). Therefore, there are ele-
ments ai ∈ H2i(X,Z) such that

hr + ψ∗(a1) · hr−1 + · · ·+ ψ∗(ar−1) · h+ φ∗(ar) = 0 in H2r(P(E),Z).

We put c0(E) = 1, ci(E) = ai for 1 ≤ i ≤ r, and ci(E) = 0 for i > r. We leave it to
the reader to verify that conditions (1) – (3) are satisfied.

Exercise 1.3.6. LetX be a topological manifold. Show thatH1(X,C 0) = H2(X,C 0) =
0. Conclude that the morphism c1 : H1(X, (C 0)∗)→ H2(X,Z) is an isomorphism.
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1.3.2 Hirzebruch–Riemann–Roch theorem
Let E be a vector bundle on a topological manifold X. Let a1, . . . , ar be the formal
Chern roots of E. To be precise, we define them as formal symbols via the following
formula:

ct(E) =
r∑
i=0

ci(E) · ti =
r∏
i=1

(1 + ai · t). (1.17)

Thus, this means that the ai are formal variables, subject to the following relations:

c1(E) =
r∑
i=1

ai, c2(E) =
∑

1≤i<j≤r

ai · aj, . . . , cr(E) =
r∏
i=1

ai. (1.18)

Define the exponential Chern character of E as the formal power series

ch(E) =
r∑
i=1

eai , where eai = 1 + ai +
1

2
a2
i + · · · . (1.19)

Similarly, define the total Todd class of E as the following formal power series, where
the Bk are the Bernoulli numbers:

td(E) =
r∏
i=1

ai
1− e−ai

, where
ai

1− e−ai
= 1 +

1

2
ai +

1

12
a2
i −

1

720
a4
i + · · ·

= 1 +
ai
2

+
∞∑
k=1

(−1)k+1 Bk

(2k)!
t2k.

(1.20)

Lemma 1.3.7. Let X be a topological manifold. Then (1.19) and (1.20) can be ex-
pressed as polynomials in the ci(E) with rational coefficients.

Proof. Exercise.

Let X be a topological manifold, and let E be a complex vector bundle on X.
Define, for each i, the i-th Chern character and the i-th Todd class of E via the
formulae

td(E) = td0(E) + td1(E) + · · · , tdi(E) ∈ H2i(X,Q)

ch(E) = ch0(E) + ch1(E) + . . . , chi(E) ∈ H2i(X,Q).

For a complex manifold X of dimension n, with holomorphic tangent bundle TX , define
the following invariants:

ci(X) = ci(TX), chi(X) = chi(TX) and tdi(X) = tdi(TX).

Moreover, if E is a holomorphic vector bundle on X, we put

χ(X,E) =
n∑
i=0

(−1)i dimH i(X,E).

We then have the following fundamental result, whose proof we will omit.
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Theorem 1.3.8 (Hirzebruch–Riemann–Roch). Let E be a holomorphic vector bundle
on a compact complex manifold X of dimension n. Consider the degree 2n-component
of ch(E) · td(X), defined as (ch(E) · td(X))2n =

∑n
i=0 chi(E)tdn−i(X). Then

χ(X,E) =

∫
X

(ch(E) · td(X))2n .

Proof. See [BS58].

Exercise 1.3.9. Let E be a vector bundle Let E and F be vector bundles on a
topological space X. Show that ch(E ⊕ F ) = ch(E) + ch(F ), and that ch(E ⊗ F ) =
ch(E) · ch(F ). Show also that ci(E∨) = (−1)i · ci(E) for each i.

Exercise 1.3.10. Let E be a holomorphic vector bundle on a complex compact man-
ifold X. Deduce from Theorem 1.3.8 that χ(X,E) is independent of the holomorphic
structure of E. In other words, prove that χ(X,E) depends only on the structure of
E as a complex topological vector bundle.

1.3.3 Gauss–Bonnet formula
Let X be a compact complex manifold of dimension n. For integers p, q ≥ 0, define
hp,q(X) = dimHq(X,Ωp

X). The Hirzebruch χy-genus is the polynomial

χy(X) =
n∑

p,q=0

(−1)qhp,q(X) · yp. (1.21)

Define the Euler number of X as follows:

e(X) =
2n∑
i=0

(−1)ibi(X) =
2n∑

i=0,i 6=n

(−1)ibi(X) + (−1)nbn(X). (1.22)

Here, bi(X) is the i-th Betti number bi(X) = dimQH
i(X,Q) of X.

Corollary 1.3.11. Let X be a compact Kähler manifold. Then χy=−1(X) = e(X).

Proof. This will follow from Hodge theory, see Chapter 2. Indeed, Hodge theory shows
that bi(X) =

∑i
p=0 h

p,i−p(X), see Theorem 2.1.4 and Proposition 2.2.20. Therefore,

χy=−1(X) =
n∑

p,q=0

(−1)p+qhp,q(X) =
n∑
i=0

(−1)i
∑
p+q=i

hp,q(X) =
n∑
i=0

(−1)ibi(X),

proving the corollary.

Corollary 1.3.12. Let X be a compact complex manifold. Let γ1, . . . , γn be the formal
Chern roots of the holomorphic tangent bundle TX of X, see (1.17). Then

χy(X) =

∫
X

n∏
i=1

(
1 + y · e−γi

) γi
1− e−γi

.
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Proof. Exercise.

Proposition 1.3.13. Let X be a compact Kähler manifold of dimension n. Then

e(X) =

∫
X

cn(X).

Proof. By Corollary 1.3.11, we have e(X) = χy=−1(X), and by Corollary 1.3.12, we
have χy=−1(X) =

∫
X

∏
i γi, where γ1, . . . , γn are the formal Chern roots of the holo-

morphic tangent bundle TX . The proposition follows, as
∏

i γi = cn(X) by (1.18).

1.3.4 Betti cohomology of smooth hypersurfaces

Let X ⊂ Pn+1
C be a smooth complex hypersurface. Our next goal is to compute the

middle Betti number bn(X) = dimQH
n(X,Q). Consider the Euler number e(X) of X

defined in (1.22).

Lemma 1.3.14. Let X ⊂ Pn+1
C be a smooth complex hypersurface. Then

e(X) = n+ (−1)n · bn(X) +
1

2
· (1− (−1)n) . (1.23)

Proof. By Corollary 1.2.7, we have bi(X) = 0 for i 6= n odd and bi(X) = 1 for i 6= n
even. Hence

e(X) =
n∑

i=0,2i 6=n

(−1)2ib2i(X) +
n∑

i=1,2i−16=n

(−1)2i−1bi(X) + (−1)nbn(X)

=

(
n∑

i=0,2i 6=n

1

)
+ (−1)nbn(X)

=

{
n+ bn(X) if n ≡ 0(2),

n+ 1− bn(X) if n ≡ 1(2).

This proves what we want.

Proposition 1.3.15. Let X ⊂ Pn+1
C be a smooth hypersurface of degree d and dimen-

sion n ≥ 0. Let bn(X) be the n-th Betti number of X. Then

bn(X) =
(−1)n

2d
·
(
2 · (1− d)n+2 + 3 · d+ (−1)n · d− 2

)
. (1.24)

Proof. See Section 1.3.1 above for an introduction to Chern classes. By Proposition
1.3.13, we have

e(X) =

∫
X

cn(X), where cn(X) = cn(TX) ∈ H2n(X,Z) ∼= Z.
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Notice that sequence (1.3) yields an exact sequence

0→ ΩP|X → OX(−1)n+2 → OX → 0,

which, after dualizing, gives an exact sequence

0→ OX → OX(1)n+2 → TP|X → 0.

We also consider the sequence

0→ TX → TP|X → OX(d)→ 0,

that follows by dualizing (1.8). By item (3) in Theorem 1.3.4, we obtain

c(X) =
∑
i

ci(X) =
∑
i

ci(TX) = c(TX) = c(TP|X) · c(OX(d))−1

= c
(
OX(1)⊕(n+2)

)
· c(OX(d))−1 =

(1 + h)n+2

(1 + dh)
, h = c1(OX(1)) ∈ H2(X,Z).

We now have the following:

Claim 1.3.16. Let h be a variable, and consider the ring R = Q[h]/(hn+1). Then
(1 + dh) is invertible in R hence (1 + dh)−1 · (1 + h)n+2 is a well-defined element in
Q[h]/(hn+1). Moreover, its coefficient before hn is (1/d2)·((1− d)n+2 + d · (n+ 2)− 1).

Proof. Exercise.

By combining deg(h) =
∫
X
hn = d, equality (1.23) and Claim 1.3.16, we obtain:

e(X) =
1

d
·
(
(1− d)n+2 + d · (n+ 2)− 1

)
= n+ (−1)n · bn(X) +

1

2
· (1− (−1)n) .

In particular,

(−1)n · bn(X) =
2(1− d)n+2 + 2d · (n+ 2)− 2− 2nd− d+ (−1)n · d

d
,

and equality (1.24) follows.

Corollary 1.3.17. The n-th Betti number bn(X3) of a smooth cubic hypersurface
X3 ⊂ PnC of dimension n ≥ 0 is given by the following formula:

bn(X3) =
1

6
·
(
2n+3 + (−1)n · 7 + 3

)
.

For instance, b0(X3) = 3, b1(X3) = 2, b2(X3) = 7 and b3(X3) = 10.

Exercise 1.3.18. For a smooth projective varietyX over C, define hp,q(X) = hq(X,Ωp
X).

Calculate all the values hp,q(X) with p + q = 3 for a smooth cubic threefold X ⊂ P4
C,

and all the hp,q(X) with p+ q = 4, for a smooth cubic fourfold X ⊂ P5
C.
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1.4 Lecture 4: Intersection form on middle cohomology

Let X be a compact complex manifold of dimension n. Poincaré duality provides
canonical isomorphisms H i(X,Z) ∼= H2n−i(X,Z). Moreover, the universal coeffi-
cient theorem provides a canonical isomorphism H i(X,Z)/(tors) ∼= Hom(Hi(X,Z),Z).
Combining the two assertions, one sees that the cap product pairing

Hi(X,Z)/(tors)⊗H2n−i(X,Z)/(tors)→ H0(X,Z) = Z

is a perfect pairing. Dually, the cup product pairing

H i(X,Z)/(tors)⊗H2n−i(X,Z)/(tors)→ H2n(X,Z) = Z

is a perfect pairing.

Lemma 1.4.1. Let X ⊂ Pn+1
C be a smooth hypersurface of dimension n ≥ 0. Then

Hn(X,Z) is torsion-free.

Proof. For n = 0, the claim is trivial, so we may assume n ≥ 1. The universal
coefficient theorem gives then an exact sequence

0 = Ext1
Z(Hn−1(X,Z),Z)→ Hn(X,Z)→ HomZ(Hn(X,Z),Z)→ 0.

Here, Ext1
Z(Hn−1(X,Z),Z) = 0 because Hn−1(X,Z),Z) is trivial or isomorphic to Z,

see Corollary 1.2.7. As HomZ(Hn(X,Z),Z) is torsion-free, the lemma follows.

In particular, for a smooth hypersurface X ⊂ Pn+1
C , we obtain a perfect pairing

∪ : Hn(X,Z)⊗Hn(X,Z)→ H2n(X,Z) = Z. (1.25)

Recall that, for α, β ∈ Hn(X,Z)/(tors), we have α∪β = (−1)n ·β∪α. This implies that
(1.25) is symmetric if n is even, and alternating if n is odd. The goal of this section is
to study (1.25) in case X ⊂ Pn+1

C is a smooth cubic hypersurface of dimension n.

1.4.1 Odd-dimensional cubic hypersurfaces
It turns out that if X is an odd-dimensional hypersurface, the intersection form on
Hn(X,Z) is quite easily calculated, as follows from the following lemma.

Lemma 1.4.2. Let Λ be a free Z-module of rank n > 0 and let

E : Λ⊗ Λ→ Z (1.26)

be an alternating bilinear form on Z, defining a perfect pairing. Then n = 2g and
there exists a basis {e1, . . . , eg; f1, . . . fg} for Λ such that E(ei, ej) = E(fi, fj) = 0 for
all i, j, and such that E(ei, fi) = 1 for all i and E(ei, fj) = 0 if i 6= j.

24



Proof. Notice that n = rank(Λ) ≥ 2, for if n = 1 then E(x, y) = 0 for each x, y ∈ Λ.
Suppose first that n = 2. Let {x, y} ⊂ Λ be a basis for Λ. Let M = (mij) be the
intersection matrix of E with respect to this basis. We have m11 = E(x, x) = 0,
m12 = E(x, y), m21 = −E(x, y) and m22 = E(y, y) = 0. Thus, the determinant of M
equals E(x, y)2, which must be invertible in Z. Hence E(x, y) = ±1, and the result
follows.

Next, assume n ≥ 3. Let y ∈ Λ and W ⊂ Λ such that

Z · y ⊕W = Λ.

Define a linear map f : Λ → Z by putting f(y) = 1 and f(w) = 0 for each w ∈ W ,
and extending linearly. As the pairing (1.26) is perfect, there exists an element x ∈ Λ
such that E(x,−) = f as linear maps Λ → Z. This implies that E(x, y) = 1 and
E(x,w) = 0 for each w ∈ W . Let P = 〈x, y〉⊥ be the orthogonal complement of 〈x, y〉
in Λ with respect to E. We claim that

Z · x⊕ Z · y ⊕ P = Λ. (1.27)

To prove this, let λ ∈ Λ. We must show that there exist unique a, b ∈ Z such that
λ− a · x− b · y ∈ P . That is, we need to show there exist unique a, b ∈ Z such that

E (x, λ− a · x− b · y) = E(x, λ) + b = 0,

E (y, λ− a · x− b · y) = E(y, λ)− a = 0.

We may simply put b = −E(x, λ) and a = E(y, λ). Decomposition (1.27) follows.
To finish the proof, we would like to show that the restriction of E to P ⊗ P

defines a perfect pairing, i.e. a unimodular alternating bilinear form. To see this,
observe that by choosing a basis {p1, . . . , p− 2} for P , the form E becomes associated
to a (n− 2)× (n− 2)-matrix MP := (E(pi, pj)). Similarly, one attaches a matrix Mx,y

to the pairing that E defines on Z · x⊕Z · y. The basis {x, y, p1, . . . , pn−2} for Λ then
associates a matrix MΛ to E, and we have

det(MP ) · det(Mx,y) = det(M) = ±1,

where the last equality holds because E is unimodular. Therefore, det(MP ) = ±1,
hence the restriction of E to P ⊗ P is unimodular. The lemma follows by induction
on the rank n of Λ.

Corollary 1.4.3. Let X ⊂ Pn+1
C be an odd-dimensional smooth cubic hypersurface.

Then Hn(X,Z) is free of rank bn(X) = 2m over Z, and admits a basis {γ1, . . . , γ2m}
with respect to which the intersection matrix of the pairing Hn(X,Z) ⊗ Hn(X,Z) →
H2n(X,Z) = Z has the following form, where Id ∈ GLm(Z) denotes the identity matrix:(

0 Id
−Id 0

)
.

Proof. Torsion-freeness follows from Lemma 1.4.1. As the dimension of X is odd,
(1.25) is a unimodular, alternating bilinear form, and we can apply Lemma 1.4.2.
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1.4.2 Even-dimensional cubic hypersurfaces
We are going to use the following result, without providing a proof:

Proposition 1.4.4. If a smooth projective variety X over C (or, more generally, a
compact Kähler manifold) has even dimension 2m, and if hp,q(X) = dimHq(X,Ωp

X),
then the intersection pairing on Hn(X,R) has signature

sgn(X) =
2m∑
p,q=0

(−1)php,q(X).

Proof. See [Voi02, Théorème 6.33] or [Huy05, Corollary 3.3.18].

Corollary 1.4.5. Let X be a smooth projective variety of dimension n = 2m over C.
Consider the Hirzebruch χy-genus χy(X), see (1.21). Then χy=1(X) = τ(X).

We shall also need the following result, whose proof we omit:

Theorem 1.4.6 (Hirzebruch). Let Xn ⊂ Pn+1
C be a sequence of smooth hypersurfaces

of degree d. For each n, let χy(Xn) be the Hirzebruch χy-genus of Xn, cf. (1.21). Then
∞∑
n=0

χy(Xn)zn+1 =
1

(1 + yz)(1− z)
· (1 + yz)d − (1− z)d

(1 + yz)d + y(1− z)d
. (1.28)

Proof. See [Hir95, Theorem 22.1.1].

Notice that, by Proposition 1.4.4, for y = 1 and d = 3 we can rewrite (1.28) as
∞∑
n=0

τ(Xn)zn+1 =
1

(1 + z)(1− z)
· (1 + z)3 − (1− z)3

(1 + z)3 + (1− z)3

= (−1) · z3 + 3z

3z4 − 2z2 − 1

= z · 3 + z2

(1 + 3z2) · (1− z2)
.

Lemma 1.4.7. Consider the power series expansion

z · 3 + z2

(1 + 3z2) · (1− z2)
= z ·

∞∑
i=0

ai · zi.

Then a2m = (−1)m · 2 · 3m + 1 for each m ≥ 0.

Proof. Exercise.

Combining the above, we obtain:

Proposition 1.4.8. Let X ⊂ Pn+1
C be a smooth cubic hypersurface of even dimension

n = 2m. Let τ(X) be the signature of the pairing Hn(X,R) ×Hn(X,R) → R. Then
τ(X) = (−1)m · 2 · 3m + 1.
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Let Λ be a lattice, i.e. a free Z-module equipped with a symmetric bilinear form
(· , · ). We say that Λ is unimodular when the pairing is perfect, i.e. when the deter-
minant of any intersection matrix is ±1. We say that a unimodular lattice is even if
(α, α) ≡ 0 mod 2 for all α ∈ Λ; otherwise, we say that Λ is odd. For example, the rank
one lattice Z(a) with (1, 1) = a is odd if and only if a is odd.

If Λ is unimodular, odd, and indefinite, then for some positive integers r, s, we have

Λ ∼= Ir,s := Z(1)⊕r ⊕ Z(−1)⊕s. (1.29)

For this, see for example [Ser73, Chapter V, Theorem 4].

Theorem 1.4.9. Let X ⊂ Pn+1
C be a smooth cubic hypersurface of even dimension

n = 2m. The intersection form on Hn(X,Z) turns Hn(X,Z) into a unimodular lattice,
and there exists an isomorphism of lattices

Hn(X,Z) ∼= Z(1)⊕b
+
n ⊕ Z(−1)⊕b

−
n = Ib+n ,b−n . (1.30)

Here, b+
n := b+

n (X) is defined as the number of positive eigenvalues of an intersection
matrix of the associated form on Hn(X,R), and b−n = b−n (X) = bn(X) − b+

n (X). The
two integers b+

n and b−n can be calculated from the two equalities b+
n + b−n = bn(X) =

(1/6) · (2n+3 + (−1)n · 7 + 3) and b+
n − b−n = τ(X) = (−1)m · 2 · 3m + 1.

Proof. We prove that Hn(X,Z) is odd. This is easy: the class hm = c1(OX(1))
in Hn(X,Z) satisfies (hm, hm) =

∫
X
hn = d. Moreover, it was shown in Corollary

1.3.17 that we have bn(X) = (1/6) · (2n+3 + (−1)n · 7 + 3), and the fact that τ(X) =
(−1)m · 2 · 3m + 1 follows from Proposition 1.4.8. In particular, bn(X) 6= ±τ(X), hence
Hn(X,Z) is indefinite. The isomorphism (1.30) follows then by the above-mentioned
classification of odd indefinite unimodular lattices.

1.4.3 Cubic surfaces
Proposition 1.4.10. Let X be a compact complex manifold of dimension two. Let L
be a line bundle on X. Then

χ(X,OX) =

∫
X

c1(X)2 + c2(X)

12
and

χ(X,L) =

∫
X

c1(L)2 + c1(L) · c1(X)

2
+ χ(X,OX).

Proof. One calculates the value of td(X), which is

td(X) = 1 + c1(X)/2 + c1(X)2/12 + c2(X)/12.

Moreover, ch(L) = ec1(L), and the result follows from Theorem 1.3.8.

Lemma 1.4.11. Let X ⊂ P3
C be a smooth cubic surface, and let L be a line bundle on

X. Let h = c1(OX(1)) ∈ H2(X,Z). Then

χ(X,L) =
(L,L) + (L, h)

2
+ 1. (1.31)
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Proof. Let X be a smooth cubic hypersurface. Then

c(X) =
(1 + h)n+2

1 + 3h
=
(
1− 3h+ (3h)2 ± · · ·

)
·

n∑
i=0

(
n+ 2

i

)
hi.

Hence, c(X) = (1− 3h+ (3h)2 ± · · · ) ·
(
1 + (n+ 2) · h+

(
n+2

2

)
· h2 + · · ·

)
, which gives

c1(X) = (n+ 2) · h− 3h = (n− 1) · h

c2(X) =

(
9− 3 · (n+ 2) +

(
n+ 2

2

))
· h2.

For n = 2, this becomes c1(X) = h ∈ H2(X,Z) and c2(X) = 3 · h2. Together with
Proposition 1.4.10, this implies that χ(X,L) = (1/2) · ((L,L) + (L, h)) + χ(X,OX).

It remains to show that

χ(X,OX) = h0(X,OX)− h1(X,OX) + h2(X,OX) = 1. (1.32)

This follows immediately from the fact that H1(X,OX) = H2(X,OX) = 0 by Claim
1.1.15. Alternatively, we can use the fact that c1(X)2 + c2(X) = h2 + 3h2 = 4h2;
applying Proposition 1.4.10 yields

χ(X,OX) =

∫
X

c1(X)2 + c2(X)

12
=

∫
X

4h2

12
= 1.

This proves (1.32), and hence the lemma.

We can now study the intersection form on H2(X,Z) for a smooth cubic surface.

Lemma 1.4.12. Let X ⊂ P3
C be a smooth cubic surface. Then H2(X,Z) ∼= I1,6.

Proof. We have H2(X,Z) ∼= Ir,s for some r, s ∈ Z≥1 by Theorem 1.4.9. We need to
prove r = 1 and s = 6. This follows, as τ(X) = −5, see Theorem 1.4.9.

Let Λ be an odd unimodular lattice. A primitive vector α ∈ Λ is called character-
istic if (α, β) ≡ (β, β) mod 2 for all β ∈ Λ.

Consider the lattice I1,6, see (1.29). Let α = (3, 1, 1, 1, 1, 1, 1) and define e1 =
(0, 1,−1, 0, 0, 0, 0). Similarly, define e2 = (0, 0, 1,−1, 0, 0, 0), e3 = (0, 0, 0, 1,−1, 0, 0),
e4 = (1, 0, 0, 0, 1, 1, 1), e5 = (0, 0, 0, 0, 1,−1, 0) and (e7 = (0, 0, 0, 0, 1,−1).

Lemma 1.4.13. The element α ∈ I1,6 is characteristic. Moreover, the elements ei with
i ∈ {1, 2, 3, 4, 5, 7} span the lattice α⊥, and their intersection matrix is an intersection
matrix for the lattice E6(−1). In particular, α⊥ ∼= E6(−1).

Proof. Exercise.

Theorem 1.4.14. Let X ⊂ P3
C be a smooth cubic surface. Let h = c1(OX(1)) ∈

H2(X,Z), and consider the sublattice

H2(X,Z)prim := 〈h〉⊥

of H2(X,Z). The lattice H2(X,Z)prim is isomorphic to E6(−1).
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Proof. We claim that h ∈ H2(X,Z) is characteristic. Indeed, as Pic(X) = H2(X,Z) by
Corollary 1.1.14, it suffices to show that (L,L) ≡ (L, h) mod 2 for every L ∈ Pic(X),
which follows from Lemma 1.4.11. We then apply a general result for unimodular
lattices: two primitive vectors x, y ∈ Λ are in the same O(Λ) orbit if and only if (x, x) =
(y, y) and either both are characteristic or both are not. As α = (3, 1, 1, 1, 1, 1, 1) ∈ I1,6

is characteristic by Lemma 1.4.13, and as h ∈ H2(X,Z) is characteristic by the above,
it follows that α and the image of h in I1,6 are in the same O(I1,6)-orbit. In particular,
H2(X,Z)prim = 〈h〉⊥ ∼= 〈α〉⊥, which is isomorphic to E6(−1), see Lemma 1.4.13.
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Chapter 2

Hodge theory: general theory

2.1 Lecture 5: Hodge decomposition theorem (statement)

2.1.1 Abstract Hodge structures
Definition 2.1.1. Let k ∈ Z≥0. An integral Hodge structure of weight k consists of
a finitely generated abelian group VZ and a decomposition of VC into complex vector
subspaces

VC = VZ ⊗ C =
⊕
p+q=k

V p,q, (2.1)

such that V p,q = V q,p. Here, x 7→ x̄ is the anti-linear Gal(C/R)-action on VC.

Let VZ be a Hodge structure of weight k. Define the Hodge filtration F •VC as the
filtration

F pVC =
⊕
r≥p

V r,k−r. (2.2)

This is a decreasing filtration on VC and satisfies the property that

F pVC ⊕ F k−p+1VC = VC.

One retrieves the Hodge decomposition (2.1) as follows:

V p,q = F pVC ∩ F qVC.

Definition 2.1.2. Let VZ be an integral Hodge structure of weight k. The Weil
operator is the automorphism C : VC

∼−→ VC defined by C · v = ip−qv for v ∈ V p,q. A
polarization of VZ is a bilinear form Q : V ⊗ V → Z which is (−1)k-symmetric and
such that, for the C-bilinear extension QC of Q to VC, one has:

(1) The orthogonal complement of F p is F k−p+1;

(2) The hermitian form (u, v) 7→ QC(C · u, v̄) is positive definite.

30



Remark that as the Weil operator is Gal(C/R)-equivariant, it descends to an au-
tomorphism C : VR

∼−→ VR, where VR = V ⊗R. Moreover, the above definitions readily
extend to subrings R ⊂ R other than Z. In particular, one defines (polarized) rational
and real Hodge structures in a similar way, replacing Z by Q or R respectively, in the
definitions above. A Hodge structure is polarizable if it admits a polarization. The
category of polarizable rational Hodge structures is abelian and semi-simple.

Example 2.1.3. Let C be a compact Riemann surface of genus g ≥ 1. The exponential
exact sequence

0→ Z→ OC → O∗C → 0

gives rise to a surjection

H1(C,C) = H1(C,Z)⊗ Z→ H1(C,OC)

whose kernel is the subspace H0(C,ΩC) of holomorphic one-forms on C. Indeed, the
exact sequence

0→ C→ OC → ΩC → 0

induces a long exact sequence

C = H0(C,OC)
0−→ H0(C,ΩC) ↪→ H1(C,C)� H1(C,OC)

0−→ H1(C,ΩC)
∼−→ H2(C,C).

Consider the complex conjugate subspace H0(C,ΩC) of H0(C,ΩC) in H1(C,C). As
H0(C,ΩC) ∩H0(C,ΩC) = 0 and dimH1(C,C) = 2g = 2 · dimH0(C,ΩC), we have

H1(C,C) = H0(C,ΩC)⊕H0(C,ΩC).

Therefore, the projection H1(C,C)→ H1(C,OC) induces a canonical isomorphism

H0(C,ΩC) = H1(C,OC).

Finally, consider the pairing

H : H1(C,C)×H1(C,C)→ C, H(α, β) = i ·Q(α, β̄) = i ·
∫
C

α ∧ β.

Then H(α, α) > 0 for α ∈ H0(C,ΩC) ⊂ H1(C,C) non-zero.

The goal of Lectures 5 and 6 is to generalize the above example by proving the
following:

Theorem 2.1.4 (Hodge). Let X be a smooth projective variety over C. Then for
each integer k ≥ 0, the singular cohomology group Hk(X,Z) admits an integral Hodge
structure of weight k in a canonical way, and Hk(X,Z)prim admits a sub-Hodge struc-
ture of Hk(X,Z) which has a canonical polarization. Moreover, associating a weight k
integral Hodge structure to a smooth projective variety X is contravariantly functorial
in X, as well as compatible with cup-products and Gysin homomorphisms.
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2.1.2 Algebraic De Rham complex
We remark that although the above theorem only makes sense for varieties over C,
the Hodge filtration has a meaning in much larger generality. Namely, for a smooth
projective variety X over a field k, one can consider the algebraic De Rham complex

Ω•X :=
(
0→ OX → ΩX → Ω2

X → · · · → ΩdimX
X → 0

)
, (2.3)

as well as, for each integer p ≥ 0, the sub-complex

Ω•X ⊃ F pΩ•X =
(
0→ · · · → 0→ Ωp

X → Ωp+1
X → · · · → ΩdimX

X → 0
)
.

We may then define

Hk
dR(X/k) = Hk (RΓ(X,Ω•X)) and

F pHk
dR(X/k) = Im

(
Hk (RΓ(X,F pΩ•X))→ Hk

dR(X/k)
)
.

(2.4)

If k = C, then Hk
dR(X/C) = Hk(X,C). Indeed, one has (Ω•X)an = Ω•Xan by Serre’s

GAGA theorem, and this complexification Ω•Xan of (2.3) provides a resolution of the
constant sheaf C on X. The filtration F • on Hk(X,C) induced by (2.4) is exactly
the Hodge filtration (2.2) associated to the Hodge structure on Hk(X,Z) provided by
Theorem 2.1.4.

There are two crucial differences between the complex case and the general case.
First of all, even though for any smooth projective variety X over a field k, there is a
canonical spectral sequence, de Hodge to De Rham spectral sequence

Ep,q
1 = Hq(X,Ωp

X) =⇒ Hp+q
dR (X/k) (2.5)

with corresponding filtration on Hk
dR(X/k) given by (2.4), this spectral sequence does

(in contrast to the case k = C) not always degenerate. Secondly, even if (2.5) degen-
erates for a certain smooth projective variety X over k, there is on the one hand no
natural analogue of complex conjugation on Hk

dR(X/k) if k 6= C, and on the other in
general no natural inclusion of Hq(X,Ωp) into Hp+q

dR (X/k).

2.1.3 Hodge star operator
Let X be a differentiable manifold, provided with a (smooth) Riemannian metric g.
Suppose that X is oriented and compact, and let Vol be the volume form of X relative
to g. This means that Vol ∈ An(X) is a smooth n-form, where n = dim(X), which
is everywhere non-zero and such that for each x ∈ X, Vol(x) ∈ Ωn

X,x is the unique
n-form which is positive on each oriented basis of TX,x and of norm one with respect
to the induced metric on Ωn

X,x.
Observe that g induces a metric ( , )x on each vector space Ωk

X,x. For α, β ∈ Ak(X),
one obtains a smooth function (α, β) : X → R sending x to (α, β)(x) = (αx, βx)x.
Define the L2-metric on the space of real differentiable k-forms as follows:

( , )L2 : Ak(X)× Ak(X)→ R, (α, β)L2 =

∫
X

(α, β)Vol.
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For x ∈ X, consider the canonical isomorphism Vol(x) : ∧n ΩX,x → R provided by the
volume form. We have a natural composition of isomorphisms

∧n−k ΩX,x ∼
p
// Hom

(∧k ΩX,x,
∧n ΩX,x

)
Vol(x)

∼
// Hom

(∧k ΩX,x,R
)
.

Moreover, the metric ( , )x provides an isomorphism

m :
k∧

ΩX,x
∼−→ Hom

(
k∧

ΩX,x,R

)
.

Definition 2.1.5. Let X be an oriented compact Riemannian manifold. Define

?x :
k∧

ΩX,x
∼−→

n−k∧
ΩX,x as the isomorphism p−1 ◦m.

Similarly, denote by ? the induced isomorphism of vector bundles, respectively spaces
of global sections:

? : Ωk
X
∼−→ Ωn−k

X , respectively ? : Ak(X)
∼−→ An−k(X).

We call ? : Ak(X)
∼−→ An−k(X) the Hodge star operator. We extend ? by C-linearity to

an isomorphism ? : AkC(X)
∼−→ An−kC (X) of spaces of complex differential forms on X.

Lemma 2.1.6. Let X be an oriented compact Riemannian manifold. We have

(α, β)L2 =

∫
X

α ∧ ?β ∀ α, β ∈ Ak(X).

Proof. It suffices to show that for each x ∈ X, we have (αx, βx)xVolx = αx ∧ ?βx. By
construction, the following diagram commutes:∧k ΩX,x

m //

?
��

Hom(
∧k ΩX,x,R)

∧n−k ΩX,x
p
// Hom(

∧k ΩX,x,
∧n ΩX,x).

Vol(x)

OO

The equality (αx, βx)xVolx = αx ∧ ?βx follows from this.

Lemma 2.1.7. Let X be an oriented compact Riemannian manifold. Consider the
composition ?2 = ? ◦ ?. Then ?2 = (−1)k(n−k) as maps Ak(X)→ Ak(X).

Proof. Indeed, for every α, β ∈ Ak(X), we have

αx ∧ ?βx = (αx, βx)Volx = (?αx, ?βx)Volx = ?βx ∧ ? ? αx = (−1)k(n−k) ? ?αx ∧ ?βx.

As this holds for every βx ∈ Ak(X), we have (−1)k(n−k) ? ?αx = αx as desired.
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Define an operator d∗ as

d∗ : Ak(X)→ Ak−1(X), d∗ = (−1)k ?−1 d ? .

Lemma 2.1.8. Let X be an oriented compact Riemannian manifold. Let k ∈ Z≥1 and
α ∈ Ak−1(X) and β ∈ Ak(X). Then

(dα, β)L2 = (α, d∗β)L2 .

Proof. On the one hand, we have

(dα, β)L2 =

∫
X

dα∧ ?β =

∫
X

d(α∧ ?β)−
∫
X

(−1)k−1α∧ d ? β = −
∫
X

(−1)k−1α∧ d ? β.

On the other hand, we have

(α, d∗β)L2 = (−1)k
∫
X

α ∧ d ? β.

We are done.

Corollary 2.1.9. Let X be an oriented compact Riemannian manifold. Let k ∈ Z≥1

and α ∈ Ak(X) and β ∈ Ak−1(X). Then

(d∗α, β)L2 = (α, dβ)L2 .

Proof. Let n = dim(X). Using Lemma 2.1.8 and the fact that ? preserves the L2-
metric, we get

(d∗α, β)L2 =
(
(−1)k ?−1 d ? α, β

)
L2

= (−1)k ·
(
? ?−1 d ? α, ?β

)
L2

= (−1)k · (d ? α, ?β)L2

= (−1)k · (?α, d∗ ? β)L2

= (−1)k ·
(
?α, (−1)n−k+1 ?−1 d ? ?β

)
L2

= (−1)k · (−1)n−k+1 · (−1)(k−1)(n−k+1)
(
?α, ?−1dβ

)
L2

= (−1)k · (−1)(n−k+1)k (? ? α, dβ)L2

= (−1)k · (−1)(n−k+1)k · (−1)k(n−k) · (α, dβ)L2

= (−1)k · (−1)k(n−k+n−k+1) · (α, dβ)L2

= (α, dβ)L2 .

This proves the corollary.

Let X be an oriented and compact Riemannian manifold. Let x ∈ X and consider
the metric ( , )x : Ωk

X,x × Ωk
X,x → R. We can extend it C-bilinearly to obtain a

C-bilinear form
( , )x : Ωk

X,x,C × Ωk
X,x,C → C
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and hence an R-bilinear form

〈 , 〉x : Ωk
X,x,C × Ωk

X,x,C → C, 〈αx, βx〉x =
(
αx, βx

)
x
. (2.6)

Let αx =
∑

i λiui ∈ Ωk
X,x,C with λi ∈ C and ui ∈ Ωk

X,x. Similarly, let βx =
∑

j µjvj ∈
Ωk
X,x,C with µj ∈ C and vj ∈ Ωk

X,x. Then

〈αx, βx〉x =
∑
i,j

λi · µj · (ui, vj)x =
∑
j,i

µj · λi · (vj, ui)x = 〈βx, αx〉x.

Next, let {e1, . . . , er} ⊂ Ωk
X,x be an orthonormal basis for ( , )x. Let λ1, . . . , λr ∈ C,

and define α =
∑r

i=1 λiei. Then

〈αx, αx〉x =
∑
i,j

λi · λj · (ei, ej)x =
r∑
i=1

|λi|2 .

We conclude that (2.6) is a positive definite hermitian form, i.e. a hermitian metric.
Notice that, for x ∈ X, the hermitian metric 〈 , 〉x satisfies the property that

〈αx, βx〉xVolx = αx ∧ ?βx, αx, βx ∈ Ωk
X,x,C.

For α, β ∈ AkC(X), the function 〈α, β〉 : X → C defined as 〈α, β〉(x) = 〈αx, βx〉x is
smooth, and we obtain a metric, the Hermitian L2-metric, on the space of complex
differentiable forms:

〈 , 〉L2 : AkC(X)× AkC(X)→ C, 〈α, β〉L2 =

∫
X

〈α, β〉Vol =

∫
X

α ∧ ?β =
(
α, β

)
L2 .

2.2 Lecture 6: Hodge decomposition theorem (proof)

2.2.1 Complex differentiable forms

Let X be an n-dimensional complex manifold. For k ≥ 0, let AkC(X) be the space of
complex differentiable forms on X, and consider the differential

d : AkC(X)→ AkC(X).

It decomposes as d = ∂ + ∂̄. To explain this, define Ωp,q
X = ∧pΩ1,0

X ⊗ ∧qΩ
0,1
X . Then, by

Lemma 1.1.2, we have:

Ωk
X,C =

k∧
ΩX,C =

k∧(
Ω1,0
X ⊕ Ω0,1

X

)
=
⊕
p+q=k

p∧
Ω1,0
X ⊗

q∧
Ω0,1
X =

⊕
p+q=k

Ωp,q
X .

Let f : X → C be a complex differentiable function on X. In local coordinates
z1, . . . , zn, z̄1, . . . , z̄n, we can write

df =
n∑
i=1

∂f

∂zi
dzi +

n∑
i=1

∂f

∂z̄i
dz̄i =: ∂f + ∂̄f. (2.7)
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We conclude that, for our f ∈ A0
C(X), we have

df = ∂f + ∂̄f (2.8)

for unique ∂f ∈ A1,0(X) and ∂̄f ∈ A0,1(X), where Ap,q(X) is the space of global
sections of the bundle Ωp,q

X .
More generally, let α ∈ Ap,q(X) be a global section of Ωp,q

X . Then locally, α is of
the form

∑
I,J αI,JdzI ∧ dz̄J with αI,J of type (0, 0). Consequently, dα can locally be

written as

d

(∑
I,J

αI,JdzI ∧ dz̄J

)
=
∑
I,J

dαI,J ∧ dzI ∧ dz̄J .

Now by (2.7), we have dαI,J = ∂αI,J + ∂̄αI,J . Remark that
∑

I,J ∂αI,J ∧ dzI ∧ dz̄J is
a form of type (p+ 1, q). Similarly,

∑
I,J ∂̄αI,J ∧ dzI ∧ dz̄J is a form of type (p, q + 1).

We conclude:

Lemma 2.2.1. Let X be a complex manifold of dimension n. There are unique opera-
tors ∂ and ∂̄ on AkC(X) such that ∂(Ap,q(X)) ⊂ Ap+1,q(X) and ∂̄Ap,q(X) ⊂ Ap,q+1(X)
and such that the differential d : AkC(X)→ AkC(X) decomposes as d = ∂ + ∂̄.

2.2.2 Hermitian manifolds
Let X be an n-dimensional compact hermitian manifold. Thus, X is a complex man-
ifold of dimension n equipped with a Riemannian metric g that preserves the almost
complex structure I : TX,R → TX,R on the real tangent bundle TX,R of X.

Lemma 2.2.2. The operators ∂∗ := − ? ∂̄? and ∂̄∗ = − ? ∂? are adjoints of ∂ and ∂̄
respectively, for the hermitian metric 〈 , 〉L2 on the space of complex differential forms.

Proof. We prove the result only for ∂̄; the other case is similar. Let k ≥ 1. For
u, v ∈ AkC(X), we have 〈u, v〉L2 =

∫
X
u ∧ ?v. In particular, for α ∈ Ak−1

C (X) and
β ∈ AkC(X), we have

〈∂̄α, β〉L2 =

∫
X

∂̄α ∧ ?β.

As
∫
X
∂̄φ = 0 for every φ ∈ A2n−1

C (X), we get (via the Leibniz formula) that

〈∂̄α, β〉L2 =

∫
X

∂̄α ∧ ?β = −
∫
X

(−1)k−1α ∧ ∂̄?β = −
∫
X

(−1)k−1α ∧ ? ?−1 ∂ ? β.

Moreover, ?−1∂ ? β = (−1)k−1 ? ∂ ? β because deg(∂ ? β) = 2n− k + 1 = 2n− deg(α).
Therefore,

−
∫
X

(−1)k−1α ∧ ? ?−1 ∂ ? β = −
∫
X

α ∧ ? ? ∂ ? β = (α, ∂̄∗β)L2

and the result follows.
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Definition 2.2.3. Let (X, g) be an oriented compact Riemannian manifold. Define
∆d = dd∗ + d∗d. If X has a complex structure compatible with g, let ∆∂ = ∂∂∗ + ∂∗∂
and ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄. We say that a form α ∈ AkC(X) is ∆d-harmonic if ∆d(α) = 0.
Lemma 2.2.4. Let (X, g) be an oriented compact Riemannian manifold, and consider
a complex differentiable k-form α ∈ AkC(X). We have

(α,∆dα)L2 = (dα, dα)L2 + (d∗α, d∗α)L2 .

Proof. Indeed, by Lemma 2.1.8 and Corollary 2.1.9, we have

(α,∆dα)L2 = (α, dd∗α+d∗dα)L2 = (α, dd∗α)L2+(α, d∗dα)L2 = (d∗α, d∗α)L2+(dα, dα)L2 .

This proves the lemma.
Corollary 2.2.5. Let X be an oriented compact Riemannian manifold. For each
integer k ∈ Z≥1, we have Ker(∆d) = Ker(d) ∩Ker(d∗) ⊂ Ak(X).
Proof. The inclusion Ker(∆d) ⊃ Ker(d) ∩ Ker(d∗) being clear, we claim that any
α ∈ Ker(∆d) is killed by d and by d∗. By Lemma 2.2.4,

0 = (α,∆dα)L2 = (dα, dα)L2 + (d∗α, d∗α)L2 .

As ( , )L2 is positive definite, this implies that dα and d∗α must be zero.
Theorem 2.2.6. Let (X, g) be an oriented compact Riemannian manifold. For k ≥ 0,
consider the Laplacian ∆d : Ak(X)→ Ak(X) and its kernel H k = Ker(∆d). We have

Ak(X) = H k ⊕∆d

(
Ak(X)

)
.

Proof. This follows from [Voi02, Corollaire 5.20] and [Voi02, Théorème 5.22].
Theorem 2.2.7. Let (X, g) be an oriented compact Riemannian manifold. Any k-
form α ∈ Ker(∆d) ⊂ Ak(X) is closed. Moreover, the linear map

Ker(∆d) = {∆d-harmonic k-forms on X} = H k → Hk
dR(X,R) = Hk(X,R),

α 7→ [α],
(2.9)

that sends a harmonic form to its De Rham cohomology class, is an isomorphism.
Proof. The injectivity of (2.9) can be seen as follows. Let β ∈ H k and suppose that
[β] = 0. Then β = dα for some k − 1-form α on X. Moreover, as ∆d(β) = 0, we have
d∗(β) = 0 by Corollary 2.2.5. Hence d∗d(α) = 0. But then, by Lemma 2.1.8, we obtain

0 = (α, d∗d(α))L2 = (dα, dα)L2

which implies that dα = β = 0. Thus, (2.9) is injective.
As for the surjectivity of (2.9), let β ∈ Ak(X) be a closed form. By Theorem 2.2.7,

we can write β = α + ∆dγ for a harmonic form α. Thus,

β = α + dd∗γ + d∗dγ.

As β is closed by assumption, and as α is closed by Corollary 2.2.5, we have dd∗(dγ) =
0. Hence, by Corollary 2.1.9, we have

0 = (dγ, dd∗(dγ))L2 = (d∗dγ, d∗dγ)L2

which implies that d∗dγ = 0. Therefore, we have β = α + dd∗γ, and we deduce that
[β] = [α] ∈ Hk(X,R). The k-form α is harmonic, and we are done.
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2.2.3 Kähler manifolds
Lemma 2.2.8. Let V be a complex vector space of finite dimension. Consider the sets
S1, S2 and S3 defined as follows:

S1 = The set of hermitian forms h : V × V → C.

S2 = The set of symmetric R-bilinear forms g : V × V → R such that g(i · u, i · v) =
g(u, v) for each u, v ∈ V .

S3 = The set of anti-symmetric R-bilinear forms ω : V × V → R such that the C-
bilinear extension ωC : VC × VC → C is zero on V 1,0 × V 1,0 and on V 0,1 × V 0,1.

Let h ∈ S1. The function −=h : (u, v) 7→ −=(h(u, v)) defines an element ω ∈ S3.
Moreover, for ω ∈ S3, the function g(u, v) = ω(u, i ·v) defines an element g ∈ S2. This
construction defines bijections S1

∼= S2
∼= S3.

Proof. Exercise.

Lemma 2.2.9. Let V be a finite dimensional complex vector space and h : V ×V → C
and g : V ×V → R be a hermitian (resp. symmetric R-bilinear) form such that g and h
correspond to each other via the bijection in Lemma 2.2.8. Then h is positive definite
as a hermitian form if and only if g is positive definite as a symmetric bilinear form.

Proof. Exercise.

Definition 2.2.10. We call an anti-symmetric bilinear form ω : V × V → R of type
(1, 1) if it satisfies property (3) above. We say that ω is positive if the hermitian form
h : V × V → C is positive definite.

Let X be a hermitian manifold. Let g be the Riemannian metric of X. As g is
compatible with the almost complex structure of X, it yields a hermitian metric on
the tangent bundle TX,R, see Lemmas 2.2.8 and 2.2.9. In other words, for every x ∈ X,
the real tangent bundle TX,x,R with its natural complex structure I : TX,x,R → TX,x,R
has a hermitian metric hx, and these metrics vary differentiably with x.

Definition 2.2.11. We say that the hermitian metric h on TX,R is Kähler if the real
differentiable two-form

ω = −=(h) ∈ A1,1(X) ∩ A2
R(X)

is closed. If this is the case, we call (X,ω) a Kähler manifold.

Theorem 2.2.12. Let (X,ω) be a Kähler manifold. Let ∆d,∆∂,∆∂̄ the Laplacians
associated to the respective operators d, ∂, ∂̄. Then ∆d = 2∆∂ = 2∆∂̄.

Proof. See [Voi02, Théorème 6.7].

Corollary 2.2.13. Let (X,ω) be a Kähler manifold. Then ∆d(A
p,q(X)) ⊂ Ap,q(X).
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Proof. Let α ∈ Ap,q(X). Then ∆∂(α) = ∂∗∂(α)+∂∂∗(α) ∈ Ap,q(X). The result follows
because of Theorem 2.2.12.

Corollary 2.2.14. Let (X,ω) be a Kähler manifold. Let α ∈ AkC(X). Define

HC = Ker
(
∆d : AkC(X)→ AkC(X)

)
, H p,q = H k

C ∩ Ap,q(X) ⊂H k
C .

Thus, H p,q ⊂H k
C is the space of ∆d-harmonic forms of type (p, q).

(1) If α is harmonic, then each of its components αp,q ∈ Ap,q(X) is harmonic.

(2) There is a canonical decomposition

H k
C =

⊕
p+q=k

H p,q. (2.10)

Proof. 1. Indeed, the relation 0 = ∆d(α) =
∑

p+q=k ∆d(α
p,q) implies that ∆d(α

p,q) = 0
by Corollary 2.2.13. 2. This is immediate from item 1.

Lemma 2.2.15. Let (X,ω) be a Kähler manifold. Let H p,q = H k
C ∩ Ap,q(X) be the

space of ∆d-harmonic forms of type (p, q), p + q = k. Let Kp,q ⊂ Hk(X,C) be the
space of degree k cohomology classes [α] that admit a closed representative α′ ∈ [α]
such that α′ ∈ Ap,q(X). The image of the natural map

H p,q → Hk(X,C) (2.11)

equals exactly Kp,q.

Proof. Let Hp,q(X) be the image of (2.11). As the elements of H p,q ⊂ AkC(X) are
closed of type (p, q), we have Hp,q(X) ⊂ Kp,q. Conversely, let [ω] ∈ Kp,q ⊂ Hk(X,C)
with ω ∈ Ap,q(X) such that dω = 0. By Theorem 2.2.7, we can uniquely write

ω = α + ∆dβ,

with ∆dα = 0 and β ∈ AkC(X). By looking at the components of type (p, q) with
respect to (2.10), it follows from Corollary 2.2.13 that we can write

ω = ωp,q = αp,q + (∆dβ)p,q = αp,q + ∆dβ
p,q, αp,q ∈ Ap,q(X), βp,q ∈ Ap,q(X),

where αp,q is harmonic. As ω and αp,q are closed, we have that

∆dβ
p,q = dd∗βp,q + d∗dβp,q

is closed, hence dd∗(dβp,q) = 0, which implies (via Corollary 2.1.9) that dβp,q = 0.
Therefore, ∆dβ

p,q = dd∗βp,q is exact, hence

[ω] = [αp,q] ∈ Hk(X,C).

It follows that [ω] can be represented by a harmonic form of type (p, q), that is, we
have [ω] ∈ Hp,q(X). Thus, Kp,q ⊂ Hp,q(X) and we win.
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We proceed to show that any smooth projective variety is naturally a Kähler man-
ifold. To do so, we need to show how to associate a closed real two-form of type (1, 1)
to any pair (L, h), where L is a hermitian line bundle on a complex manifold X and
h a hermitian metric on L. Let {Ui}i∈I be an open cover of X that trivializes L. For
each i, we get a nowhere vanishing holomorphic section σi : Ui → L. Let i, j ∈ J with
Uij = Ui ∩ Uj 6= ∅. There exists a holomorphic function gij : Uij → C∗ such that

σi = gij · σj.

Having fixed the above trivialization of L, for each x ∈ X, the hermitian metric hx on
Lx is determined by a non-zero element in C. Consider the function

hi : Ui → R, z 7→ h(σi(z), σi(z)).

Then hi(z) > 0 for z ∈ Ui, and on Uij = Ui ∩ Uj, we have

hi(z) = h(σi(z), σi(z)) = h (gij(z) · σj(z), gij(z) · σj(z)) = |gij(z)|2 · hj(z).

We obtain differentiable two-forms

ωi =
1

2iπ
∂∂̄ log hi ∈ A2(Ui), i ∈ I.

Notice that, on Uij, we have

ωi|Uij
=

1

2iπ
∂∂̄ log hi =

1

2iπ
∂∂̄ log

(
|gij|2 · hj

)
=

1

2iπ
∂∂̄ log |gij|2 + ωj|Uij

.

As
1

2iπ
∂∂̄ log |gij|2 = 0

we have that ωi and ωj coincide on Uij. Therefore, there exists a unique two-form

ω ∈ A2(X)

such that ω|Ui
= ωi for each i ∈ I. Notice that:

(1) The two-form ω ∈ A2(X) is closed. Indeed, ωi ∈ A2(Ui) is exact.

(2) The two-form ω lies in A1,1(X) ⊂ A2
C(X), i.e. ω is of type (1, 1).

We have proved:

Lemma 2.2.16. Let X be a complex manifold. The above construction allows one to
associate a closed two-form ω ∈ A2(X) of type (1, 1) to any pair (L, h) where L is a
line bundle on X and h a hermitian metric on L.

Exercise 2.2.17. Show that the construction (L, h) 7→ ω, where L is a line bundle
and h a hermitian metric on L, does not depend on the trivialization {Ui}i∈I for L.
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Lemma 2.2.18. Let X be a smooth projective variety. Then X defines a Kähler
manifold (X,ω) in a natural way.

Proof. As X admits a closed embedding into projective space, it suffices to prove this
for the projective space Pn(C). Consider the tautological line bundle

S = OPn(C)(−1) ⊂ Pn(C)× Cn+1.

Let h be the standard hermitian metric on Cn+1. It induces a hermitian metric on the
holomorphic vector bundle

Pn(C)× Cn+1 → Pn(C)

and hence, by restriction, one on S. Let h∗ be the induced hermitian metric on
S∗ = OPn(C)(1). By Lemma 2.2.16, we obtain a closed two-form

ω ∈ A2(Pn(C)) ∩ A1,1(Pn(C)). (2.12)

It remains to prove that ω is positive, in the sense of Definition 2.2.10. We leave this
as an exercise for the reader.

Exercise 2.2.19. Prove that the two-form (2.12) is positive.

Proof of Theorem 2.1.4. Let X be a smooth projective variety. By Lemma 2.2.18, the
variety X defines a Kähler manifold (X,ω) in a natural way. Moreover, by Theorem
2.2.7 and Corollary 2.2.14, we have canonical isomorphisms⊕

p+q=k

H p,q = H k
C = Hk(X,C).

Define Hp,q(X) as the image of H p,q in Hk(X,C) under H k
C
∼−→ Hk(X,C). It remains

to show that Hp,q(X) = Hq,p(X). This follows from Lemma 2.2.15, which shows that
Hp,q(X) = Kp,q, where Kp,q ⊂ Hk(X,C) is the space of De Rham cohomology classes
[α] that admit a closed representative α′ ∈ [α] of type (p, q).

Proposition 2.2.20. Let X be a smooth projective variety over C. For each p, q ≥ 0,
there is a canonical isomorphism Hp,q(X) = Hq(X,Ωp

X).

Proof. Let n = dim(X). The operator ∂̄ induces a complex of sheaves

0→ Ωp
X → Ωp,0

X → Ωp,1
X → · · · → Ωp,q

X → · · · → Ωp,n
X → 0,

and this complex is exact, see [Voi02, Proposition 4.19]. In other words, the natural
map of complexes

Ωp
X → (Ωp,•

X )

defines a resolution of Ωp
X , and this resolution is in fact acyclic. As Γ(X,Ωp,q

X ) =
Ap,q(X) by definition, we obtain a canonical isomorphism

Hq(X,Ωp
X) =

Ker
(
Ap,q(X)

∂̄−→ Ap,q+1(X)
)

Im
(
Ap,q−1(X)

∂̄−→ Ap,q(X)
) .
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Moreover, if we put a Kähler metric on X, there is a canonical isomorphism

Hp,q(X) = Ker (∆d) ∩ Ap,q(X) = Ker(∆∂̄) ∩ Ap,q(X),

and the natural map

Ker(∆∂̄) ∩ Ap,q(X)→
Ker

(
Ap,q(X)

∂̄−→ Ap,q+1(X)
)

Im
(
Ap,q−1(X)

∂̄−→ Ap,q(X)
) (2.13)

is an isomorphism. Indeed, if α = ∂β is of type (p, q) and ∂̄α = ∂̄∗α = 0, then
∂̄∗∂β = 0, which by the adjoint property of ∂̄∗ with respect to ∂̄ (see Lemma 2.2.2)
implies that ∂β = α = 0. This proves the injectivity of (2.13). For the surjectivity of
(2.13), see [Voi02, Théorème 5.24].

It remains to verify that the so-constructed isomorphism Hq(X,Ωp
X) ∼= Hp,q(X) is

truly canonical, i.e. does not depend on the Kähler metric that we chose to define it.
Recall the Hodge to De Rham spectral sequence, see Section 2.1.2:

Ep,q
1 = Hq(X,Ωp

X) =⇒ Hp+q(X,C). (2.14)

As we have dimHk(X,C) =
∑

p+q=kH
q(X,Ωp

X) by Theorem 2.1.4, the spectral se-
quence (2.14) degenerates. Therefore, there are canonical isomorphisms

F pHk(X,C)/F p+q(X,C) = Ep,q
∞ = Ep,q

1 = Hq(X,Ωp
X).

Finally, the filtration F p on Hk(X,C) induced by (2.14) is exactly the Hodge filtration
(2.2) attached to the Hodge structure on Hk(X,Z) that Theorem 2.1.4 provides, as
follows from [Voi02, Proposition 7.5]. In particular, we have

F pHk(X,C)/F p+1Hk(X,C) = Hp,q(X).

This finishes the proof of the proposition.

2.2.4 Example: complex elliptic curves

Definition 2.2.21. (1) A complex elliptic curve is a smooth cubic E ⊂ P2
C equipped

with a point O ∈ E(C). If (E1,O1) and (E2,O2) are complex elliptic curves,
then a morphism of elliptic curves (E1,O1)→ (E2,O2) is a morphism of varieties
φ : E1 → E2 such that φ(O1) = O2. In this way, elliptic curves form a category.

(2) A complex torus is the quotient of a finite dimensional complex vector space
V ∼= Cn by a discrete subgroup Λ ⊂ V with Λ⊗R = V . A morphism of complex
tori is a holomorphic group homomorphism. Thus, complex tori form a category.

Proposition 2.2.22. There are three compatible functors as in the following diagram:(
Elliptic curves E/C

)
zz &&

(One-dimensional complex tori)
(
Weight one Hodge structures on Z2

)
oo

These three functors are equivalences of categories.
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Remark 2.2.23. It follows from Proposition 2.2.22 that complex elliptic curves are
algebraic groups in a natural way, where an algebraic group is an algebraic variety X
of finite type over a field k which is a group object in the category of schemes over k.
The fact that complex elliptic curves E are algebraic groups can be proven directly, by
constructing an algebraic group law E×E → E explicitly using the defining equation
for E in P2

C. This can be done for smooth cubics E ⊂ P2
k over any field k, as long as

E(k) 6= ∅, leading to the notion of elliptic curve over k. For more on this, see [Sil09].

Proof of Proposition 2.2.22. Let E be a complex elliptic curve. By Theorem 2.1.4 (or
by Example 2.1.3), there is a natural Hodge structure of weight one on H1(E,Z) ∼= Z2,
which defines the functor on the right. Next, let VZ be any weight one Hodge structure
on Z2. The composition

VR → VC → V 0,1

is an isomorphism, hence the composition VZ → VC → V 0,1 is an embedding, and

X = V 0,1/VZ

is a complex torus of dimension one. These two constructions are functorial, and com-
patible with the functor that associates the complex torus X = H1(E,OE)/H1(E,Z)
to an elliptic curve E over C. It remains to show that:

(?) Any one-dimensional complex torus V/Λ is isomorphic to H1(E,OE)/H1(E,Z)
for a smooth complex elliptic curve E ⊂ P2

C.

(??) If E1 and E2 are complex elliptic curves, and X1 and X2 the associated complex
tori, then any holomorphic group homomorphism X1 → X2 is induced by a
unique morphism of algebraic groups E1 → E2.

In fact, we claim that (??) follows from (?). Indeed, if (?) holds, then any one-
dimensional complex torus is projective, hence any holomorphic map between two
one-dimensional complex tori is uniquely algebraizable by the GAGA principle.

To prove (?), we may assume that V = C, so that Λ is a lattice in C. Then

Λ = Z⊕ Z · ω for some ω ∈ C with =(ω) > 0.

Consider the meromorphic function

℘ : C→ C, ℘(z) =
1

z2
+

∑
(m,n)6=(0,0)

(
1

(z − n−m · ω)2
− 1

(n+m · ω)2

)
.

Notice that ℘ is periodic with respect to Λ, and that the poles of ℘ are given by
z = n+m · ω for (n,m) ∈ Z2. The function

C→ P2(C), z 7→ [℘(z) : ℘′(z) : 1]

defines a holomorphic and Λ-periodic function, hence induces a morphism

X = C/Λ→ P2(C). (2.15)
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In fact, (2.15) is a closed embedding. To determine its image, define, for k ∈ Z≥2,

G2k(Λ) =
∑

x∈Λ−{(0,0)}

x−2k.

Let g2(Λ) = 60 ·G4(Λ) and g3(Λ) = 140 ·G6(Λ). Then one has:

℘′(z)2 = 4 · ℘(z)3 − g2(Λ) · ρ(z)− g3(Λ), z ∈ C \ Λ. (2.16)

Therefore, the closed embedding (2.15) identifies X = C/Λ with the plane cubic curve
E ⊂ P2(C) of affine equation y2 = 4x3 − g2(Λ) · x− g3(Λ).

Exercise 2.2.24. Prove that (2.16) holds.

Exercise 2.2.25. Let VR be a finite dimensional real vector space, and let k ∈ Z≥0.
Define VC = VR ⊗R C. Prove that to give a Hodge structure of weight k on VR is to
give a continuous homomorphism

ρ : C∗ → GL(VC)

such that
ρ(t) = tk · Id and ρ(z) = ρ(z) ∀t ∈ R∗, z ∈ C∗.

Exercise 2.2.26. Let X be a smooth projective variety of dimension n ≥ 1. Let k be
an integer with 0 ≤ k ≤ n, and define

Hdg2k(X,Z) =
{
α ∈ H2k(X,Z) : the image αC of α in H2k(X,C) lies in Hk,k(X)

}
.

Let Z ⊂ X be a smooth closed subvariety of codimension k. Define ϕ as the compo-
sition

Z = H0(Z,Z) = H2n−2k(Z,Z)→ H2n−2k(X,Z) = H2k(X,Z),

and put [Z] = ϕ(1) ∈ H2k(X,Z). Prove that [Z] ∈ Hdg2k(X,Z).

2.3 Lecture 7: Period maps and period domains

The goal of this lecture will be to explain the basic concepts and theorems in the theory
of variations of Hodge structure. We will restrict ourselves to providing definitions and
statements, and refer to [Voi02] for the proofs of the big theorems. Almost all of these
fundamental theorems are due to Griffiths.

2.3.1 Family of deformations
Let X and B be complex manifolds. Let φ : X → B be a holomorphic map. We let
Xt = φ−1(t) be the fibre of φ over t ∈ B.

Definition 2.3.1. If B is connected with reference point 0 ∈ B, and if φ is a proper
submersion, then each fibre Xt is naturally a compact complex manifold, and we call
X a family of deformations of the fibre X0.

Proposition 2.3.2 (Ehresmann). Let φ : X → B be a proper submersion of dif-
ferentiable manifolds. Let 0 ∈ B and assume that B is contractible. There is an
isomorphism T : X ∼= X0 ×B of differentiable manifolds over B.
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2.3.2 Gauss–Manin connection
Definition 2.3.3. Let B be a topological space and G a group. A local system on B is
a sheaf of abelian groups F on B such that each x ∈ B admits an open neighbourhood
U such that F |U is isomorphic to a constant sheaf on U . A local system with fibres
isomorphic to G on B is a sheaf of abelian groups F on B such that F is locally
isomorphic to the constant sheaf attached to G.

Let B be a differentiable manifold, and let H be a local system of R-vector spaces
on B. We can then consider the sheaf of free C∞-modules

H = H ⊗R C∞.

Definition 2.3.4. Let B be a differentiable manifold and H a local system of R-vector
spaces on B. The associated connection ∇ : H → H ⊗C∞ ΩB is defined as follows.
For σ ∈ H , we can locally write σ =

∑
i σi ⊗ αi for σi ∈ H and αi ∈ C∞. Then, we

put
∇σ =

∑
i

σi ⊗ dαi ∈H ⊗C∞ ΩB.

Notice that, if σ ∈H and t ∈ C∞, then

∇(t · σ) = ∇ (σi ⊗ tαi) =
∑
i

σi ⊗ d(tαi) =
∑
i

σi ⊗ (tdαi + αidt)

= t∇(σ) + σ ⊗ dt.

In other words, ∇ : H →H ⊗C∞ ΩB is a connection.
Now let ∇ : H →H ⊗C∞ ΩB be any connection. Then ∇ induces a map

∇ : H ⊗C∞ ΩB →H ⊗
2∧

ΩB, ∇(σ ⊗ α) = ∇σ ∧ α + σ ⊗ dα.

Definition 2.3.5. The curvature

Θ: H →H ⊗C∞

2∧
ΩB

of ∇ is defined as Θ = ∇ ◦∇. The connection ∇ : H →H ⊗C∞ ΩB is flat if Θ = 0.

Lemma 2.3.6. Let H be a local system of R-vector spaces on a differentiable manifold
B. Let H = H ⊗ C∞ and let ∇ : H → H ⊗C∞ ΩB be the connection constructed
above. Then the curvature of ∇ is zero.

Proof. Let σ be a local section of H and α a local section of C∞. Then

∇(σ ⊗ α) = σ ⊗ dα and ∇(σ) = 0.

Hence,
Θ(σ ⊗ α) = ∇(σ ⊗ dα) = ∇σ ∧ dα + σ ⊗ d2α = 0.

This proves the lemma.
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Proposition 2.3.7. Let B be a differentiable manifold. Then H 7→ (H ⊗R C∞,∇)
defines a bijection between the set of isomorphism classes of local systems of R-vector
spaces and the set of isomorphism classes of differentiable bundles with flat connection.

Proof. See [Voi02].

Let π : X → B be a proper submersion of differentiable manifolds. Let A be a
subring of C. By Ehresmann’s lemma (see Proposition 2.3.2), the sheaves

Rkπ∗A

are local systems of A-modules on B. Defining H k = Rkπ∗R, the flat connection

∇ : H k →H k ⊗C∞ ΩB

associated to the local system Rkπ∗R is called the Gauss–Manin connection.

2.3.3 Semi-continuity of Hodge numbers
Let φ : X → B be a proper holomorphic submersion of complex manifolds.

Theorem 2.3.8. Let F be a holomorphic vector bundle on X . The function B → Z
defined as b 7→ dimHq(Xb,F|Xb

) is upper semi-continuous.

Proof. See [Voi02, Théorème 9.15].

Corollary 2.3.9. The function b 7→ hp,q(Xb) is upper semi-continuous.

Proposition 2.3.10. Let φ : X → B be a proper holomorphic submersion of complex
manifolds. Assume that the fibre X0 above 0 ∈ B is a Kähler manifold. Then, in a
neighbourhood of 0, we have hp,q(Xb) = hp,q(X0).

Proof. Consider the spectral sequence

Ep,q
1 = Hq(Xb,Ω

p
Xb

) =⇒ Hp+q(Xb,C).

We have hp,q(Xb) ≤ hp,q(X0) by Corollary 2.3.9. Moreover, dimEp,q
∞ ≤ dimEp,q

1 , where

Ep,q
∞ = F pHp+q(Xb)/F

p+1Hp+q(Xb).

We get

bk =
∑
p+q=k

dimEp,q
∞ (Xb) ≤

∑
p+q=k

dimEp,q
1 (Xb) =

∑
p,q

hp,q(Xb) ≤
∑
p,q

hp,q(X0) = bk.

The proposition follows.
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2.3.4 Period map and period domain
Let X be a Kähler manifold and φ : X → B a proper holomorphic submersion, with B
a connected complex manifold, 0 ∈ B a base point, and Xb Kähler for b ∈ B. Suppose
that the Hodge numbers hp,q(Xb) are constant for b ∈ B (which we can always obtain
up to shrinking B around 0 ∈ B). Define

bp,k = dimF pHk(X0,C).

Then dimF pHk(Xb,C) = bp,k for each b ∈ B. Suppose also that B is contractible
(which we can achieve by shrinking B further around 0). Then, there is a canonical
isomorphism Hk(Xb,C) ∼= Hk(X0,C) for b ∈ B, given by the composition

Hk(Xb,C)
∼←− Hk(X ,C)

∼−→ Hk(X0,C).

We can then define the period map as follows:

Pp,k : B → Grass(bp,k, Hk(X0,C)), b 7→ F pHk(Xb,C) ⊂ Hk(Xb,C) ∼= Hk(X0,C).

Theorem 2.3.11 (Griffiths). The period map Pp,k is holomorphic for p, k with p ≤ k.

Proof. See [Voi02, Théorème 10.9].

Define V = Hk(X0,C) and G = Grass(bp,k, V ) = Grass(bp,k, Hk(X0,C)) and let
W ⊂ Hk(X0,C) be a bp,k-dimensional subspace. Let [W ] ∈ G be the corresponding
point. Recall that there is a canonical isomorphism

T[W ]G = Hom(W,V/W ).

In particular,

T[F pHk(Xb)]G = Hom(F pHk(Xb), H
k(Xb)/F

pHk(Xb)).

Theorem 2.3.12 (Griffiths). Let b ∈ B. Consider the differential

dPp,k : TB,b → TG,[F pHk(Xb)] = Hom(F pHk(Xb), H
k(Xb)/F

pHk(Xb))

of the period map Pp,k : B → G at the point b ∈ B. Then the image of dPp,k is
contained in

Hom(F pHk(Xb), F
p−1Hk(Xb)/F

pHk(Xb)).

Proof. See [Voi02, Proposition 10.12].

Let b ∈ B. Then we have the Hodge filtration

0 = F k+1Hk(Xb) ⊂ F kHk(Xb) ⊂ · · · ⊂ F pHk(Xb) ⊂ · · · ⊂ F 0Hk(Xb) = Hk(X0,C).

Hence, if we let

Fb•,k(Hk(X0,C)) = Flag(bk,k, bk−1,k, · · · b1,k, Hk(X0,C))
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be the flag variety attached to the numbers bk,k ≤ bk−1,k ≤ · · · ≤ b1,k, then we get a
period map

B → Fb•,k(Hk(X0,C)),

b 7→
(
F kHk(Xb) ⊂ F k−1Hk(Xb) ⊂ · · · ⊂ F 1Hk(Xb) ⊂ Hk(Xb,C) ∼= Hk(X0,C)

)
.

By Theorem 2.3.11, this map is holomorphic. Moreover, note that for b ∈ B, we have

F pHk(Xb)⊕ F k−p+1Hk(Xb) = Hk(Xb,C).

This condition defines an open subset

D ⊂ Fb•,k(Hk(X0,C)),

called a (unpolarized) period domain.
Now suppose that there exists a class ω ∈ H2(X ,Z) such that ωb := ω|Xb

is Kähler
for every b ∈ B. Define the primitive cohomology group Hk(Xb,C)prim ⊂ Hk(Xb,C)
as follows. First, define operators

L : H i(Xb,Z)→ H i+2(Xb,Z), L(α) = ωb ∪ α,

and then put

Hk(Xb,Z)prim := Ker(Ln−k+1)

=
{
α ∈ Hk(Xb,Z) | ωn−k+1 ∪ α = 0 ∈ H2n−k+2(Xb,Z)

}
,

Hk(Xb,C)prim := Hk(Xb,Z)prim ⊗ C
=
{
α ∈ Hk(Xb,C) | ωn−k+1 ∪ α = 0 ∈ H2n−k+2(Xb,C)

}
.

The subspace Hk(Xb,C)prim is compatible with the Hodge filtration, hence the Hodge
decomposition of Hk(Xb,C) restricts to a decomposition on Hk(Xb,C)prim. In particu-
lar,Hk(Xb,Z)prim carries a natural Hodge structure of weight k. Moreover,Hk(Xb,Z)prim
is endowed with a non-degenerate bilinear form

Q : Hk(Xb,Z)prim ×Hk(Xb,Z)→ Z, Q(α, β) = 〈Ln−kα, β〉 =

∫
Xb

ωn−kb ∧ α ∧ β,

and one has:

(1) F pHk(Xb,C)prim = F k−p+1Hk(Xb,C)⊥prim.

(2) F pHk(Xb)prim ⊕ F k−p+1Hk(Xb,C)prim = Hk(Xb,C)prim.

(3) The hermitian form (u, v) 7→ Q(Cu, v̄) is positive definite on Hk(Xb,C)prim.

Condition (3) says that (Hk(Xb,Z)prim, Q) is a polarized Hodge structure of weight k,
see Definition 2.1.2. This leads us to define

D ⊂ Fb•,k(Hk(X0,C)prim) (2.17)
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as the subset of flags F k ⊂ · · · ⊂ F 1 ⊂ Hk(X0,C)prim satisfying (1), (2) and (3). We
call D the polarized period domain. The first condition is closed (in fact already in
the Zariski topology). The second and third conditions are open conditions (in the
euclidean topology) on the set of filtrations satisfying the first condition. All in all,
we obtain a holomorphic period map

P : B → D . (2.18)

Remark 2.3.13. Let us consider Condition (1). It is clear that this defines a closed
condition on the flag manifold Fb•,kpr

(Hk(X0,C)prim). One would like to know if the
closed subvariety defined by this condition is smooth. It turns out that, in fact, it is
again a flag variety. To see this, note that if k = 2m− 1 is odd, the filtrations

F k ⊂ F k−1 ⊂ · · · ⊂ F k ⊂ Hk(X0,C)prim

with dimF p = bp,kpr = dimF pHk(X0,C)prim satisfying (1) are of the form

F 2m−1 ⊂ F 2m−2 ⊂ · · ·Fm = (Fm)⊥ ⊂ · · · ⊂ (F 2m−1)⊥ ⊂ Hk(X0,C)prim.

Similarly, if k = 2m is even, a filtration with dimF p = bp,kpr satisfying (1) is of the form

F 2m ⊂ · · · ⊂ F n+2 ⊂ (F n+2)⊥ ⊂ · · · ⊂ (F 2m)⊥ ⊂ Hk(X0,C)prim.

Exercise 2.3.14. Consider Definition 2.3.3. We prove some results on local systems.

(1) Let X be a connected topological space and let G be an abelian group. Let F
be a local system on X × [0, 1] with stalks isomorphic to G. Let σ be a global
section of the restriction F |X×0 to X × 0 ⊂ X × [0, 1]. Show that σ extends
uniquely to a section of F over X.

(2) Let X be a topological space. Let G be an abelian group and let φ : F → G be
a morphism of local systems on X with fibres isomorphic to G. Show that the
set of points where φ is an isomorphism is open and closed in X.

(3) Let G be an abelian group. Let X be a connected topological space. Let F be a
local system on X × [0, 1], with fibres isomorphic to G. Let π1 : X × [0, 1]→ X
be the natural projection. Show that F ∼= π−1

1

(
F |[0,1]

)
.

Exercise 2.3.15. Let X be a connected and path connected topological space. As-
sume X is simply connected. Let F be a local system on X. Let x ∈ X. Use Exercise
2.3.14 to provide a unique isomorphism F

∼−→ Fx that induces the identity on stalks
at x. Here, we think of Fx as the constant sheaf attached to the abelian group Fx.

Exercise 2.3.16. Let X be a connected, path connected topological space, with ref-
erence point x ∈ X. Let G be an abelian group.

(1) Let F be a local system with stalks isomorphic to G on X. Show that F induces
a representation ρ(F ) : π1(X, x)→ Aut(G) in a natural way.
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(2) Let F → G be a morphism of local systems with stalks isomorphic to G on X.
Show that ρ(F ) and ρ(G ) are equivalent under the conjugation Aut(G)-action
on the set of representations π1(X, x)→ Aut(G) if F and G are isomorphic.

(3) Let π : X̃ → X be the universal cover of X. Let ρ : π1(X, x) → Aut(G) be a
representation. Let G be the constant sheaf on X̃ attached to G. Show that
π1(X, x) acts on the sheaf π∗F via ρ. Let Fρ = (π∗G )ρ be the sheaf of fixed
points. Show that Fρ is a local system. Show that if ρ and ρ′ are representations
which are conjugate under the Aut(G)-action, then Fρ and Fρ′ are isomorphic.

(4) Prove that the above construction establishes a natural bijection

{Local systems with stalk G on X}/∼= = {Homomorphisms π1(X,x)→ Aut(G)}/∼ .

2.3.5 Kodaira–Spencer map
Let φ : X → B be a proper holomorphic submersion of complex manifolds. Let b ∈ B
and consider the following exact sequence of holomorphic vector bundles on Xb:

0→ TXb
→ TX |Xb

→ φ∗(TB)|Xb
→ 0.

Notice that φ∗(TB)|Xb
= TB,b×Xb as holomorphic vector bundles on Xb, hence we get

an exact sequence
0→ TXb

→ TX |Xb
→ TB,b ×Xb → 0.

In particular, taking cohomology yields a morphism

ρ : TB,b → H1(Xb, TXb
)

called the Kodaira–Spencer map.

2.3.6 Variations of Hodge structure
Let φ : X → B be a proper holomorphic submersion of complex manifolds whose
fibres are Kähler. For k ≥ 0, let H k = Rkφ∗C⊗COB, equipped with its Gauss–Manin
connection

∇ : H k →H k ⊗OB
ΩB.

We assume that B is contractible and that the Hodge numbers are constant on B. We
know that the period map

Pp,q : B → G = Grass(bp,k, Hk(X0,C))

is holomorphic (see Theorem 2.3.11). In particular, there exists a holomorphic sub-
bundle

F pH k ⊂H k
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such that F pH k
b = F pHk(Xb,C) for b ∈ B. The bundles F pH k are called the Hodge

subbundles of H k. We define

H p,q = F pH k/F p+1H k,

so that H p,q
b = Hq(Xb,Ω

p
Xb

) for p+ q = k.

Theorem 2.3.17 (Griffiths). We have

∇F pH k ⊂ F p−1H k ⊗ ΩB.

Proof. See [Voi02, Proposition 10.18].

As a corollary, we get, for b ∈ B, an induced map

∇p
: H p,q →H p−1,q+1 ⊗ ΩB.

Proposition 2.3.18. The differential

dPp,k
b : TB,b → TG,F pHk(Xb) = Hom(F pHk(Xb), H

k(Xb)/F
pHk(XXb))

is the map induced by adjunction from the map

∇p

b : F pHk(Xb)→ Hk(Xb)/F
pHk(Xb)⊗ ΩB,b,

which is the map induced by the composition

F pH k ∇−→H k ⊗ ΩB → (H k/F pH k)⊗ ΩB.

Proof. See [Voi02, Lemme 10.19].

Corollary 2.3.19. The differential of the period map at b gives a map

dPp,k
b : TB,b → Hom(F pHk(Xb)/F

p+1Hk(Xb), F
p−1Hk(Xb)/F

pHk(Xb)),

which is the map induced via adjunction by the map ∇p

b in the following diagram:

F pHk(Xb)/F
p+1Hk(Xb)

∇p
b // F p−1Hk(Xb)/F

pHk(Xb)⊗ ΩB,b

Hp,k−p(Xb)
∇p

b // Hom(TB,b, H
p−1,k−p+1(Xb)).

(2.19)

This yields an element

dPp,k
b (u) ∈ Hom(Hq(Xb,Ω

p
Xb

), Hq+1(Xb,Ω
p−1
Xb

)), for all u ∈ TB,b.
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Theorem 2.3.20 (Griffiths). Let b ∈ B and u ∈ TB,b. Then, the linear map

dPp,k(u) : Hq(Xb,Ω
p
Xb

)→ Hq+1(Xb,Ω
p−1
Xb

)

is the cup-product with the Kodaira–Spencer class ρ(u) ∈ H1(Xb, TXb
) composed with

the contraction induced by the natural map Ωp
Xb
⊗ TXb

→ Ωp−1
Xb

. In other words, the
following diagram commutes for all u ∈ TB,b:

Hq(Xb,Ω
p
Xb

)

∪ρ(u)

��

dPp,k(u)

  

Hq+1(Xb,Ω
p
Xb
⊗ TXb

) // Hq+1(Xb,Ω
p−1
Xb

).

Proof. See [Voi02, Théorème 10.21].

Remark 2.3.21. Another way to formulate the theorem is to say that the following
diagram commutes for all b ∈ B:

TB,b

ρ

��

dPp,k

&&

H1(Xb, TXb
) // Hom(Hq(Xb,Ω

p
Xb

), Hq+1(Xb,Ω
p−1
Xb

)).

Finally, consider the flag variety

F = Fb•,k(Hk(X0,C)) =
{
F k ⊂ F k−1 ⊂ · · · ⊂ F 1 ⊂ Hk(X0,C) | dimF p = bp,k

}
,

and the period map

Pk : B → F,

b 7→ [F •Hk(Xb) ⊂ Hk(X0)] =
[
F kHk(Xb) ⊂ · · · ⊂ F 1Hk(Xb) ⊂ Hk(Xb) = Hk(X0)

]
.

If we define
Gbp,k = Grass(bp,k, Hk(X0,C)),

then there is a natural map

ι : F → Gbk,k ×Gbk−1,k × · · · ×Gb1,k ,

and this map is a closed immersion. In particular, for b ∈ B, and P we have

TF,Pk(b) ⊂

(
tangent space of

∏
p

Gbp,k at ι(Pk(b))

)
=
⊕
p

Hom
(
F pHk(Xb), H

k(Xb)/F
pHk(Xb)

)
.
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Furthermore, by Theorem 2.3.12, the map

dPk
b : TB,b →

⊕
p

Hom
(
F pHk(Xb), H

k(Xb)/F
pHk(Xb)

)
factors through a map which we still denote by dPk

b :

dPk
b : TB,b →

⊕
p

Hom
(
F pHk(Xb)/F

p+1Hk(Xb), F
p−1Hk(Xb)/F

pHk(Xb)
)
.

As F pHk(Xb)/F
p+1Hk(Xb) = Hp,k−p(Xb), we can, for b ∈ B, view dPk

b as a map

dPk
b : TB,b →

⊕
p

Hom
(
Hp,k−p(Xb), H

p−1,k−p+1(Xb)
)
. (2.20)
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Chapter 3

Formal algebraic geometry

The goal of this chapter is to prove the theorem, due to Grothendieck [SGAII], which
says the following. Let k be a field and let X ⊂ Pn+1

k be a hypersurface of dimension
n ≥ 3. Let OX(1) be the pull-back of OPn

k
(1). Then Pic(X) = Z ·OX(1). See Theorem

3.3.14 at the end of this chapter. To prove this, we need some tools that lie outside
the scope of scheme theory. For as is sometimes the case in algebraic geometry, the
category of schemes is not big enough to carry out certain constructions. Think of
the proof this theorem in the case k = C (see Corollary 1.2.8): one needed complex
analytic functions; algebraic functions were not enough. Similarly, over arbitrary fields,
one needs formal functions as we shall see.

3.1 Lecture 8: Adic rings and locally topologically ringed spaces

We start by studying the adic completion of a local ring. For the sake of later use,
we also record here the following lemma, see Lemma 3.1.2 below. It is known as
Nakayama’s lemma; see e.g. [Stacks, Tag 07RC] for a reference. We first recall:

Lemma 3.1.1. Let R be a ring and let A be an n × n matrix with coefficients in R.
Then there exists an n×n matrix B with coefficients in R, such that BA = det(A)1n×n.

Proof. Let B be the adjugate matrix of A.

Lemma 3.1.2 (Nakayama lemma). Let R be a ring with Jacobson radical rad(R) =
∩m, the intersection of all maximal ideals m ⊂ R. Let M be a finite R-module and let
I ⊂ R be an ideal.

(1) If IM = M , then there exists f ∈ 1 + I such that fM = 0.

(2) If IM = M and I ⊂ rad(R), then M = 0.

(3) If N →M is a module map, N/IN →M/IM is surjective, then there exists an
f ∈ 1 + I such that Nf →Mf is surjective.

(4) If N → M is a module map, N/IN → M/IM is surjective, and I ⊂ Rad(R),
then N →M is surjective.
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Proof. To prove part (1), choose generators y1, . . . , ym of M over R. As IM = M , for
each i, we can write yi =

∑
zijyj for some zij ∈ I. This gives, for each i:

0 = yi −
∑

zijyj =
∑
j

δijyj −
∑
j

zijyj =
∑
j

(δij − zij)yj. (3.1)

Let f be the determinant of the m×m matrix A = (δij−zij). Then f ∈ 1+I, because
A ≡ 1m×m mod I. Moreover, by Lemma 3.1.1, there exists an m ×m matrix B such
that BA = f1m×m. Write A = (aij) and B = (bij). By (3.1), we have∑

j

aijyj = 0 for all i. (3.2)

then this gives
∑

i bhiaij = fδhj for each i and h. Hence

0 =
∑
i

bhi

(∑
j

aijyj

)
=
∑
j

∑
i

bhiaijyj =
∑
j

fδhjyj = fyh for every h.

This proves that fyh = 0 for each h ∈ {1, . . . ,m}. In particular, fM = 0 as desired.
To prove part (2), note that it follows from part (1) because for any ideal J ⊂ R,

we have J ⊂ rad(R) if and only if (1 + J) ⊂ R∗ = (units of R). To prove part (3), let
K be the cokernel of N → M . Then K = IK hence there exists f ∈ 1 + I such that
fK = 0 (see part (1). Therefore, Kf = 0, so that Nf → Mf is surjective. To prove
part (4), let K be the cokernel of N → M . The hypotheses imply K = IK. Hence
K = 0 by part (2) because K is a finite R-module.

3.1.1 Adic completion of a local ring
Let R be a local ring with maximal ideal m. The powers of m define a topology on R,
called the m-adic topology. By definition, the ideals mn, n ≥ 1 define a fundamental
system of open neighbourhoods around 0 ∈ R. This topology is induced by the
pseudometric d on R that is determined by its property that, for each x ∈ R, one has
d(x, 0) = 2−n if n = max(k | x ∈ mk) exists, and d(x, 0) = 0 otherwise. One defines
d(x, y) = d(x − y, 0). We claim that d is a pseudometric. Let x, y, z ∈ R. Suppose
that x− y ∈ mk1 and y − z ∈ mk2 , and that k1 ≥ k2. Then

x− z = x− y + y − z ∈ mk1 + mk2 = mk1
(
1 + mk1−k2

)
= mk1 .

It follows that, indeed, d defines a pseudometric on R. The completion R̂ of R is the
completion of R with respect to its m-adic metric. Alternatively, one can define R̂ as
the inverse limit

R̂ = lim←−R/m
n.

The basic properties of completion are:

Theorem 3.1.3. Let R be a noetherian local ring with maximal ideal m. Let R̂ be its
completion.
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(1) The ring R̂ is a local ring with maximal ideal m̂ = mR̂.

(2) If R is a domain, the natural homomorphism R→ R̂ is injective.

(3) If M is a finitely generated R module, then its completion M̂ with respect to its
m-adic topology is isomorphic to M ⊗A Â = lim←−nM/mnM .

(4) The dimension of R equals the dimension of R̂.

(5) The local ring R is regular if and only if the local ring R̂ is regular.

Proof. See [AM69, Chapters 10 & 11].

3.1.2 Adic completion of an arbitrary ring
Let A be a ring and let I ⊂ A be an ideal. For n ≤ m, there is a natural surjective
homomorphism

A/Im → A/In,

and the collection of these maps turns (A/In) into an inverse system of topological
rings, where each A/In is equipped with the discrete topology. The inverse limit

Â := lim←−A/I
n

exists in the category of topological rings, and we call it the completion of A with
respect to I or the I-adic completion of A. Similarly, if M is an A-module, we define
a topological Â-module

M̂ = lim←−M/InM

and call it the I-adic completion ofM . The limit is taken in the category of topological
abelian groups, where each M/InM is equipped with the discrete topology. Notice
that M̂ has indeed a natural Â-module structure. The most important properties of
this construction are summarized as follows.

Theorem 3.1.4. Let A be a noetherian ring and let I be an ideal of A. Then:

(1) The Â-module Î = lim←− I/I
n defines an ideal of Ân. Moreover, În = InÂ and

Â/În ∼= A/In for all n.

(2) If M is a finitely generated A module, then M̂ ∼= M ⊗A Â.

(3) The functor
M 7→ M̂

is an exact functor on the category of finitely generated A-modules.

(4) The topological ring Â is noetherian, and flat over A.
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(5) Let (Mn) be an inverse system, where each Mn is a finitely generated A/In mod-
ule. Suppose that each transition map

ϕm,n : Mm →Mn, n ≤ m,

is surjective, with kernel Ker(ϕm,n) = InMm. Then M = lim←−Mn is a finitely
generated Â-module, and for each n, one has Mn

∼= M/InM .

Proof. For proofs, see [AM69, p. 108-113] and [Bou61].

3.1.3 Adic noetherian rings
Definition 3.1.5. (1) An adic noetherian ring is a noetherian ring A equipped with

a topology having the following property: there exists a fundamental system of
neighbourhoods of zero in A consisting of the powers In (n > 0) of an ideal I
and A is separated and complete for this topology. In other words, A is the
projective limit of the discrete rings An = A/In+1 (n ≥ 0).

(2) An ideal of definition of A is an ideal I which has the above property. Equiva-
lently, I is an ideal of A which is open and whose powers tend to zero.

(3) If I is an ideal of definition, one says that A is I-adic, the topology is called the
I-adic topology, and the filtration of A by the powers of I is called the I-adic
filtration.

Remarks 3.1.6. Let I ⊂ A be an ideal of definition in an adic ring A. Let J ⊂ A be
any ideal.

(1) J is an ideal of definition if and only if there exist integers p, q > 0 such that
Jq ⊂ Ip ⊂ J .

(2) If I and J are ideals of a ring A such that A = lim←−A/I
n = lim←−A/J

n, then the
topologies that I and J define on A are the same.

(3) The ideal In (n ≥ 1) is an ideal of definition for each n ≥ 1.

Let A be an adic noetherian ring, with ideal of definition I ⊂ A. Let

un : A→ A/In =: An

be the canonical morphism, and for m ≥ n, let um,n : Am → An be the canonical
morphism. Let S ⊂ A be a multiplicative subset of A, and define Sn = un(S). The
maps um,n define natural maps

S−1
m Am → S−1

n An,

for which these rings form an inverse system (S−1
n An). Define A {S−1} as the projective

limit of this system.
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Proposition 3.1.7. The topological ring A {S−1} is topologically isomorphic to the
projective limit lim←−n S

−1A/S−1In.

Proof. Let vn : S−1A → S−1
n An be the canonical morphism. Then the kernel of vn is

S−1In and vn is surjective. In other words, we have an exact sequence

0→ S−1In → S−1A→ S−1
n An → 0.

Let B = lim←−n S
−1A/S−1In. Then, we have surjective morphisms

B → B/
(
S−1InB

)
= S−1A/S−1In = S−1

n An,

and hence a continuous morphism

ϕ : B → lim←−
n

(
B/
(
S−1InB

))
= lim←−

n

S−1
n An = A

{
S−1

}
.

As B is separated and complete, ϕ is an isomorphism.

Let A be an I-adic noetherian ring, and S ⊂ A be a multiplicative subset. Consider
the natural map

A→ S−1A, (3.3)

and observe that the inverse image of the ideal S−1In ⊂ S−1A in A contains In. Hence
(3.3) is continuous. As S−1A→ A {S−1} is continuous as well, we obtain a continuous
morphism

A→ A
{
S−1

}
.

Remark 3.1.8. Let A be an I-adic noetherian ring and S ⊂ A a multiplicative
subset. Then up to isomorphism, A {S−1} does not depend on the ideal of definition
I. Moreover, The pair (A {S−1} , A → A {S−1}) is characterized by the following
universal property: let B be an adic noetherian ring and let u : A→ B be a continuous
morphism such that u(S) is contained in the set of invertible elements of B. Then u
factors uniquely as

A→ A
{
S−1

} u′−→ B,

where u′ is continuous.

Let A be an adic noetherian ring with ideal of definition I ⊂ A, and let a be an
open ideal of A. Then In ⊂ a for almost all n ≥ 1. In particular, up to replacing I
by J = In for n� 0, we may assume that I is an ideal of definition such that In ⊂ a
for each n ≥ 1 (see Remarks 3.1.6). In particular, S−1In ⊂ S−1a in the ring S−1A for
all n > 0, hence S−1a is an open ideal of S−1A. We denote by a {S−1} its S−1I-adic
completion. Then a {S−1} is an open ideal of A {S−1}. Moreover, there is a canonical
isomorphism

A
{
S−1

}
/a
{
S−1

}
= S−1A/S−1a = S−1(A/a). (3.4)
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Remark 3.1.9. Let A be an adic noetherian ring. Let f ∈ A and let Sf be the
multiplicative subset of the fn (n ≥ 0) in A. Define A{f} = A

{
S−1
f

}
. For an open

ideal a ⊂ A, we write a{f} = a{S−1
f }. If g ∈ A, then we obtain a canonical continuous

morphism A{f} → A{fg}. Let S ⊂ A be a multiplicative system. We obtain an
inductive system A{f}, and define

A{S} = lim−→
f∈S

A{f}.

For every f ∈ S, there is a canonical morphism A{f} → A {S−1}, and these morphisms
form an inductive system. In particular, they define a canonical morphism

A{S} → A
{
S−1

}
.

One can show that, with respect to this morphism, A {S−1} is a flat module over A{S}.

3.1.4 Sheaves of topological rings and modules
We need a definition.

Definition 3.1.10. Let X be a topological space. Let C be a category with arbitrary
products. A presheaf F on X with values in C is a contravariant functor from the
category of open subsets of X to C. A presheaf F on X with values in C is a sheaf if
for every open covering {Ui} of an open U ⊂ X, the diagram

F(U) //
∏

i∈I F(Ui) //
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

is an equalizer diagram in the category C.

We start with a basic lemma.

Lemma 3.1.11. Let X be a topological space and let C be the category of sheaves of
topological abelian groups on X. Then inverse limits exist in C. Furthermore, for each
open U ⊂ X, consider the functor

F 7→ F(U)

from topological abelian sheaves on X to topological abelian groups. This functor com-
mutes with projective limits.

Proof. Let (Fn) be an inverse system of topological abelian sheaves. Let F be the
presheaf defined by F(U) = lim←−Fn(U) for U ⊂ X open. Then F is a sheaf of
topological abelian groups. Moreover, F is the inductive limit of the system (Fn).

Assume now that the topological space X has a basis consisting of quasi-compact
opens. Given a sheaf F of sets, groups, rings, modules over a ring, one can endow
F with the structure of a sheaf of topological spaces, topological groups, topological
rings, topological modules. Namely, if U ⊂ X is quasi-compact open, we endow F(U)
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with the discrete topology. If U ⊂ X is arbitrary, then we choose an open covering
U = ∪iUi by quasi-compact opens Ui. As F is a sheaf, there is an equalizer diagram

F(U)→
∏
i∈I

F(Ui)⇒
∏

(i0,i1)∈I×I

F(Ui0 ∩ Ui1),

which is an equalizer diagram in the category of topological spaces, topological groups,
topological rings, topological modules. In particular, the first map identifies F(U) with
a subspace of

∏
i∈I F(Ui), which is endowed with the product topology. A sheaf of

topological spaces, topological groups, topological rings, topological modules is pseudo-
discrete if the topology on F(U) is discrete for every quasi-compact open U ⊂ X.
Then the construction given above is an adjoint to the forgetful functor and induces
an equivalence between the category of sheaves of sets and the category of pseudo-
discrete sheaves of topological spaces (similarly for groups, rings, modules).

Remark 3.1.12. Naively, one could think that if F is a sheaf of sets, then we can
try to define a sheaf of topological spaces G by declaring that G(U) = F(U) with the
discrete topology. However, in general, G will not be a sheaf of topological spaces.

For an explicit example where G is not a topological sheaf, let X = R, the real
numbers equipped with the euclidean topology. Let S be some set with at least two
elements, and let F be the sheaf of sets on X such that (V ) = S for each connected
open V ⊂ X. In other words, F is the constant sheaf attached to the set S. Let G
be the presheaf of topological spaces on X such that, for each open V ⊂ X, we have
G(V ) = F(V ) equipped with the discrete topology. Then G is not a sheaf. Namely,
for n ∈ Z, let Un be the open interval (n, n+ 1). Let U = ∪nUn be the union of all the
(Un)′s. Then the diagram

G(U)→
∏
n∈Z

G(Un)⇒
∏

(n,m)∈Z×Z

G(Un ∩ Um)

is not an equalizer diagram in the category of topological spaces. Indeed, the first map
G(U)→

∏
n∈Z G(Un) is a bijection, and if the diagram were an equalizer diagram, then

this map should be a homeomorphism, which is not the case.

3.1.5 Noetherian formal schemes as locally topologically ringed spaces
To an I-adic noetherian ring A, one can define a topologically ringed space

Spf(A) (3.5)

as follows. For n ∈ Z≥0, let Xn = Spec (An) (An = A/In+1), and put Y = X0 =
Spec (A/I). These schemes form an increasing sequence of closed subschemes of
Spec (A),

Y = Spec (A0)→ X1 → · · · → Xn → · · · .

The schemes Xn all have the same underlying space |Spf(A)|, called the formal spec-
trum of A.
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Proposition 3.1.13. Let I be an ideal of definition of an adic noetherian ring A.
Then I is contained the radical rad(A) = ∩m maximal m ⊂ A of A.

Proof. See [EGAI, §0, 7.1.10].

Let m ⊂ A be a maximal ideal, corresponding to a point x ∈ Spec (A). It follows
from Proposition 3.1.13 that I ⊂ m, i.e., that x ∈ Spec (A/I). We conclude that
Spf(A), considered as a closed subset of Spec (A), contains all the closed points of A.

Lemma 3.1.14. Let A be an I-adic noetherian ring. Every open subset of Spec (A)
containing Spf(A) is equal to Spec (A).

Proof. Let U ⊂ Spec (A) be an open subset containing Spf(A). Then the complement
Z of U in Spec (A) is of the form Spec (A/a) for some ideal a ⊂ A. In particular, if
a 6= A, then Z contains a closed point. As this is impossible, we conclude that a = A
hence U = Spec (A).

Let us now define the sheaf of rings OSpf(A) of Spf(A) as the inverse limit

OSpf(A) = lim←−
n

O′Xn

of the pseudo-discrete sheaves O′Xn
on Spf(A), equipped with the natural topology

such that on any open subset U of Spf(A), we have

OSpf(A)(U) = lim←−
n

O′Xn
(U)

in the category of topological rings. Here, O′Xn
is the pseudo-discrete sheaf of topolog-

ical rings associated to OXn , see Section 3.1.4 (in particular, OXn(U) has the discrete
topology for each n and each quasi-compact open U). Thus,

OSpf(A)(Spf(A)) = lim←−
n

OXn(Xn) = lim←−
n

An = Â. (3.6)

For f ∈ A, let D(f) = Spec (Af ) ⊂ Spec (A), and define

D(f) = Spec (Af ) ∩ Spf(A) =
{
p ∈ Spf(A) | f̄(p) 6= 0

}
,

where f̄ ∈ A/I is the image of f in A0 = A/I.

Lemma 3.1.15. Let A be an adic noetherian ring. Let f ∈ A and write D(f) =
D(f) ∩ Spf(A). Then the topologically ringed space (D(f),OSpf(A)|D(f)) is isomorphic
to the formal spectrum

Spf(Âf ) = Spf(A{f}).

Proof. Let I be an ideal of definition, and defineAn = A/In+1 andXn = Spec (An). As
topological spaces Spf(A)∩D(f) is identified with Spec (A/I)∩D(f) = Spec (Af/If ).
By (3.4), we have A{f}/I{f} = Af/If . Hence, as topological spaces, Spf(A{f}) is
identified with Spec (Af/If ), and thus with Spec (A) ∩D(f) = D(f).
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As for global sections of the structure sheaf, we indeed have

OSpf(A)(D(f)) = lim←−
n

OXn(Spec (Af ) ∩ Spf(A)) = lim←−
n

OXn (Spec (Af ) ∩ Spec (A/In))

= lim←−
n

OXn

(
Spec (Af/I

n
f )
)

= lim←−
n

Af/I
n
f = Âf .

More generally, let U ′ be a quasi-compact open of Spec (A) contained in D(f) and
define U = U ′ ∩ Spf(A) ⊂ D(f). Then Γ(U,OXn) is canonically identified with the
module of sections of the structure sheaf of Spec (Af/I

n
f ), hence, if we define Y =

Spf(Af ), then

Γ(U,OY) = lim←−
n

OSpec (Af/I
n
f )(U) = lim←−

n

Γ(U,OXn) = OSpf(A)(U).

Thus, the topologically ringed spaces D(f) and Y = Spf(Af ) are isomorphic.

Let A be an adic noetherian ring. Let x = {p} ∈ Spf(A), where p ⊂ A/I is a prime
ideal. Then

OSpf(A),x = lim−→
f∈A|f̄(p)6=0

OSpf(A)(D(f)) = lim−→
f∈A|f̄(p)6=0

A{f}.

This is a noetherian, local, topological ring, but not complete in general. We have:

Lemma 3.1.16. Let A be an adic noetherian ring.

(1) The topologically ringed space Spf(A) is depends only on A as a topological ring:
it does not depend on an ideal of definition.

(2) The space Spf(A) is the subspace of Spec (A) consisting of open prime ideals.

(3) Moreover, OSpf(A) is the inverse limit of the sheaves (A/J)∼, where J runs
through the ideals of definition of A.

Proof. The statements follow directly from the above discussion. Let us be more
elaborate about the argument that Spf(A) is the subspace of Spec (A) consisting of
open prime ideals. Indeed, a prime ideal p is open if and only if In ⊂ p for some
integer n ≥ 1, which, as p is prime, is equivalent to the condition that I ⊂ p.

Let X and Y be locally topologically ringed spaces. A morphism of locally topo-
logically ringed spaces f : X → Y is a morphism as locally ringed spaces such that for
each open U ⊂ Y , the induced morphism OY (U)→ OX(f−1(U)) is continuous.

Definition 3.1.17. An affine noetherian formal scheme is a topologically ringed space
isomorphic to one of the form (3.5). A locally noetherian formal scheme is a topolog-
ically ringed space such that any point has an open neighbourhood which is an affine
noetherian formal scheme. It is called noetherian if the underlying space is noetherian.
A morphism f : X → Y between locally noetherian formal schemes is a morphism as
locally topologically ringed spaces.
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Let A and B be adic rings, and define X = Spf(A) and Y = Spf(B). Let ϕ : A→ B
be a continuous homomorphism of rings. As the inverse image in A of every open prime
ideal of B is an open prime ideal of A, the continuous map Spec (B) → Spec (A)
restricts to a continuous map aϕ : Spf(B) → Spf(A). Moreover, for every f ∈ A, we
have a canonical morphism

Γ(D(f),OSpf(A)) = A{f} → B{ϕ(f)} = Γ(D(ϕ(f)),OSpf(B)).

As the right compatibility conditions are satisfied, these maps define a continuous
morphism of sheaves of topological rings

ϕ̃ : OY → aϕ∗OX.

This yields a morphism of topologically ringed spaces

Φ = (aϕ, ϕ̃) : X = Spf(A)→ Spf(B) = Y.

Proposition 3.1.18. Let X and Y be locally noetherian formal schemes such that
Y = Spf(A) is a noetherian affine formal scheme. Then, there is a canonical bijection

Hom(X ,Y) = Homcont(A,OX (X )).

Here, Hom(X ,Y) denotes the set of morphisms of locally noetherian formal schemes
X → Y, see Definition 3.1.17.

Proof. We first treat the case where X = Spf(B) is formally affine. Let ϕ : A → B
be a continuous morphism of rings. We need to show that the induced morphism of
topologically ringed spaces

Φ = (aϕ, ϕ̃) : X→ Y (3.7)

is a morphism of locally topologically ringed spaces. Let x = p ∈ Spf(B) and y = q =
ϕ−1(p) ∈ Spf(A). Let f ∈ A such that f 6∈ q. Then ϕ(f) 6∈ p, hence we obtain a
morphism

A{f} → B{ϕ(f)},

that maps q{f} into p{ϕ(f)}. Hence, the induced map

OY,y = lim−→
f 6∈q

A{f} → lim−→
g 6∈p

B{g} = OX,x

is a morphism of local rings. We conclude that (3.7) is a morphism of locally topolog-
ically ringed spaces.

Consider a morphism of locally topologically ringed spaces (ψ, θ) : Spf(B)→ Spf(A),
where ψ is a continuous map of topological spaces and θ : OSpf(A) → ψ∗OSpf(B) a contin-
uous map of sheaves of topological rings. By (3.6), we obtain a continuous morphism

ϕ : A = Γ(Spf(A),OSpf(A))→ Γ(Spf(B),OSpf(B)) = B.

It is readily checked that aϕ = ψ, and that ϕ̃ = θ. This finished the proof of the
proposition in the case where X is formally affine.

The proof general case is similar to the proof of the analogous statement for affine
schemes, see [EGAI, (2.2.4)].
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Remark 3.1.19. To conclude the section, we make the trivial but important remark
that every noetherian affine scheme X = Spec (A) can be viewed in one and only
one way as an affine formal scheme, by considering A as a discrete topological ring.
Equivalently, (0) is an ideal of definition for A. As such, the topological rings Γ(U,OX)
are discrete for quasi-compact opens U ⊂ X (but not in general for arbitrary open
subsets of X). In exactly the same way, we can start with any locally noetherian
scheme (X,OX), and associate to it (X,O′X), where O′X is the pseudo-discrete sheaf
of topological rings whose underlying sheaf of rings is OX (see Section 3.1.4). This
construction is compatible with morphisms and defines a functor

(Locally noetherian schemes)→ (Locally noetherian formal schemes) .

It is straightforward to show that this functor is fully faithful.

3.2 Lecture 9: Algebraizing coherent sheaves on formal schemes

3.2.1 Coherent sheaves of affine noetherian formal schemes
Let X = Spf(A) be an affine noetherian formal scheme, and let I ⊂ A be an ideal
of definition for A. Let M be an A-module of finite type. With M is associated a
coherent module M̃ on X = Spec (A). In an analogous way, one associates with M a
module M∆ on Spf(A), defined as follows. For n ∈ Z≥0, let Xn = Spec (A/In+1), and
put

M∆ = lim←−
n

M̃n, Mn = M/In+1M.

Then M∆ does not depend on the choice of I, and the functor M 7→M∆ is exact (on
the category of finite A-modules). Moreover,

Γ(X ,M∆) = M,

and the formation of M∆ commutes with tensor products and internal Hom. Let
X = Spec (A) and let

i : X → X

be the natural morphism of locally ringed spaces; it is defined by the inclusion on the
underlying topological spaces and the canonical map OX → OX of sheaves of rings.
Then, since M is of finite type, Theorem 3.1.4 implies that

M∆ = i∗M̃.

Since, for any f ∈ A, A{f} is adic noetherian, it follows that OSpf(A) is a coherent sheaf
of rings, that M∆ is coherent, and that the coherent modules on X are exactly those
of the form M∆ for M of finite type over A.
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3.2.2 Formal schemes as inductive limits of nilpotent thickenings
A thickening is a closed immersion of schemes X → X ′ whose ideal I is a nilideal;
the schemes X and X ′ then have the same underlying topological space. If X ′ is
noetherian, the same holds for X and I is nilpotent; conversely, if X is noetherian and
I/I2 is a coherent OX-module, then X ′ is noetherian [EGAI, Ch. 0, §7.2.6, §10.6.4].
If X ′ is noetherian, X ′ is affine if and only if X is [EGAI, §6.1.7]. We say that a
thickening is of order n if In+1 = 0.

Let X be a locally noetherian formal scheme. Then OX is a coherent sheaf of
rings (see Section 3.2.1 above). Moreover, the coherent modules on X are exactly the
modules which are of finite presentation, or equivalently, which on any affine open
U = Spf(A) are of the form M∆ for an A-module M of finite type.

Definition 3.2.1. Let X be a locally noetherian scheme. An ideal of definition of X is
a coherent ideal I of OX such that, for any x ∈ X , there exists an affine neighourhood
U = Spf(A) of x such that I|U is of the form I∆ for an ideal of definition I of A.

Let X be a locally noetherian formal scheme.

Lemma 3.2.2. A coherent ideal I is an ideal of definition if and only if the ringed
space (X ,OX/I) is a scheme having X as an underlying space.

Ideals of definition of X exist, and there is a largest one, T = TX , which is the
unique ideal of definition I such that (X ,OX/I) is reduced. If U = Spf(A) is an affine
open subset, then T |U = T∆, where T is the ideal of elements a ∈ A whose image in
A/I are nilpotent. If I is an ideal of definition of X , then so is any power In+1, n ≥ 0.
If X is noetherian, and I is an ideal of definition of X and J is any coherent ideal,
then J is an ideal of definition if and only if there exist positive integers p, q such that
Jq ⊂ Ip ⊂ J .

Fix an ideal of definition I of X . For n ∈ Z≥1, put

Xn = (X ,OX/In+1),

which is a locally noetherian scheme. We have an increasing chain of thickenings

X• = (X0 → X1 → · · · → Xn → · · · → · · · )→ X . (3.8)

Moreover,
X = lim−→

n

Xn,

where the colimit is taken in the category of locally noetherian formal schemes (cf.
Remark 3.1.19). Indeed, the underlying topological spaces of the Xn are all equal to
the underlying space of X , and

OX = lim←−
n

O′Xn

as topological rings, where O′Xn
is the pseudo-discrete sheaf of topological rings at-

tached to the sheaf of rings OXn as in Section 3.1.4.
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Proposition 3.2.3. Let X• = (X0 → X1 → · · · ) be a sequence of ringed spaces such
that

(1) X0 is a locally noetherian scheme,

(2) the underlying maps of topological spaces are homeomorphisms, and with respect
to them, the maps OXn+1 → OXn are surjective,

(3) if Jn = Ker(OXn → OX0), then for m ≤ n, one has Ker(OXn → OXm) = Jn+2
n ,

(4) J1 is a coherent OX0-module.

Then, the topologically ringed space

X = lim−→Xi = (X0, lim←−OXn)

is a locally noetherian formal scheme. Moreover, if I = Ker(OX → OX0) = lim←− Jn,
then I is an ideal of definition of X and In+1 = Ker(OX → OXn).

Proof. See [EGAI, §10.6.3 - 10.6.5].

3.2.3 Coherent sheaves on formal schemes and adic morphisms
Let X be a locally noetherian formal scheme. Let I be an ideal of definition of X , and
consider the corresponding chain of thickenings X• (see (3.8)). For m ≤ n, denote by

um,n : Xm → Xn, un : Xn → X

the canonical morphisms.

Lemma 3.2.4. Let (Fn) be an inverse system of sheaves of abelian groups on X0,
such that Fn is an OXn-module for each n and the transition maps fn,m : Fn → Fm are
OXn-linear (with respect to OXn → OXm). Call (Fn) coherent if each Fn is coherent
and the transition maps fn,m induce isomorphisms u∗m,nFn ∼= Fm. Then the functor

Coh(X )→ Coh(X•), E 7→ (u∗nE), (3.9)

from the category of coherent OX -modules to the category of coherent inverse systems
on X•, is an equivalence of categories.

Proof. Exercise.

Proposition 3.2.5. Consider the notation in Lemma 3.2.4. Let r ∈ Z≥1 and let E be
a coherent OX -module. Then E is locally free of rank r over OX if and only if u∗n(E)
is locally free of rank r over OXn for each n ≥ 0.

Proof. See the flatness criterion of [Bourbaki61, III, §5, Theorem 1].

66



Let f : X → Y be a morphism of locally noetherian formal schemes, and let J
be an ideal of definition of Y . Since J ⊂ TY , the ideal f ∗(J )OX is contained in TX .
Fix an ideal of definition I such that f ∗(J )OX ⊂ I. Let X• and Y• be the chains of
thickenings induced by I and J respectively. Then f induces a morphism of inductive
systems

f• : X• → Y•.

Moreover, one retrieves f : X → Y as the colimit f = lim−→ fn.

Lemma 3.2.6. Let X and Y be locally noetherian formal schemes. The above con-
struction yields a bijection between the set of morphisms from f : X → Y such that
f ∗(J )OX ⊂ I and the set of morphisms of inductive systems f• : X• → Y•.

Proof. See [EGAI, §10.6.8].

Definition 3.2.7. Let f : X → Y be a morphism of locally noetherian formal schemes.

(1) If, for some ideal of definition J of Y , the ideal I = f ∗(J )OX is an ideal of
definition of X , then we say that f is an adic morphism.

(2) If f is adic, then f is flat if for every x ∈ X , the stalk OX ,x is flat over OY,f(x).

The flatness of an adic morphism f : X → Y is equivalent to the condition that
OXn is flat over OYn for every n (this is a consequence of [Bourbaki61, III, §5, th. 2,
prop. 2]. Here, OXn = OX/In+1 and OYn = OY/J n+1 for ideals of definition I and
J of X and Y such that f ∗(J )OX = I. In other words, f : X → Y is flat if and only
if it is adic and fn : Xn → Yn is flat for each n.

Lemma 3.2.8. Let X and Y be locally noetherian formal schemes, and let J be an
ideal of definition of Y. Let I be an ideal of definition of X such that f ∗(J )OX ⊂ I.
Consider the inductive systems X• and Y• defined by I and J . Under the correspon-
dence f 7→ f• of Lemma 3.2.6, a morphism f : X → Y is adic if and only if the
commutative diagram

Xm
//

fm
��

Xn

fn
��

Ym // Yn,

is cartesian for every n,m.

Proof. Exercise.

3.2.4 Formal completions along closed subschemes
Let X be a locally noetherian scheme, and let X ′ be a closed subset of the underlying
space |X| of X. Choose a coherent ideal I of OX such that the closed subscheme of
X defined by I has X ′ as underlying space. Consider the inductive system of locally
noetherian schemes, all having X ′ as underlying space,

X0 → X1 → · · · → Xn → · · · ,
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where Xn is the closed subscheme of X defined by In+1. By Proposition 3.2.3, the
topologically ringed space

lim−→
n

Xn

is a locally noetherian formal scheme, having X ′ as underlying space.

Definition 3.2.9. Let X be a locally noetherian scheme, and X ′ ⊂ |X| a closed
subspace. Define

X/X′ = lim−→Xn = (X ′, lim←−OX/I
n+1).

This locally noetherian formal scheme is called the formal completion of X along X ′.
When no confusion can arise, we write X̂ = X/X′ .

Lemma 3.2.10. Let X be a locally noetherian scheme and X ′ ⊂ |X| a closed subset.
Choose a coherent ideal I of OX such that the closed subscheme defined by I has X ′
as underlying space.

(1) The locally noetherian formal scheme X/X′ does not depend on the choice of I.

(2) If X = Spec (A) is affine and I = J̃ , then X̂ = Spf(Â), where Â is the completion
of A with respect to the J-adic topology (see Section 3.1.2).

Proof. Exercise.

Let X be a locally noetherian scheme and X ′ ⊂ |X| a closed subset. The closed
immersions in : Xn → X define a morphism of ringed spaces

i = iX : X̂ → X. (3.10)

Definition 3.2.11. Let X be a locally noetherian scheme and X ′ ⊂ |X| a closed
subset. For a coherent sheaf F on X, define F/X′ = lim←−n i

∗
n(F ). Sometimes, if no

confusion can arise, we shall write F̂ = F/X′ .

Lemma 3.2.12. Let X be a locally noetherian scheme and X ′ ⊂ |X| a closed subset.

(1) The morphism i : X̂ → X defined in (3.10) is flat.

(2) For any coherent sheaf F on X, the natural map

i∗F → F/X′ = lim←−
n

i∗n(F )

is an isomorphism.

(3) Let X = Spec (A), and let I be an ideal that defines the closed subset X ′ ⊂ X.
Let F = M̃ , with M an A-module of finite type. Then F/X′ = M̂∆. Here,
M̂ = lim←−Mn with Mn = M/In+1M , see Section 3.1.2.

Proof. The assertions follow from Theorem 3.1.4.
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Finally, let f : X → Y be a morphism of locally noetherian schemes. Let X ′ (resp.
Y ′) be a closed subset of X (resp. Y ) such that f(X ′) ⊂ Y ′. Choose coherent ideals
J ⊂ OX and K ⊂ OY defining closed subschemes with underlying spaces X ′ and Y ′
respectively, and such that f ∗(K)OX ⊂ J . Then, f induces a morphism of inductive
systems

f• : X• → Y•,

where Xn (resp. Yn) is the closed subset of X (resp. Y ) defined by Jn+1 (resp. Kn+1).
By Lemma 3.2.6, we obtain a morphism of locally noetherian formal schemes

f̂ = f/X′ : X̂ = X/X′ → Y/Y ′ = Ŷ , (3.11)

which does not depend on the choices of J and K.

Definition 3.2.13. Let f : X → Y be a morphism of locally noetherian formal
schemes. Let X ′ and Y ′ be closed subsets of X and Y such that f(X ′) ⊂ Y ′. The
morphism f̂ : X̂ → Ŷ defined in (3.11) is called the extension of f to the completions.

The reason for the terminology is that the extension f̂ : X̂ → Ŷ makes the following
diagram commute:

X̂
f̂
//

iX
��

Ŷ

iY
��

X
f
// Y.

We conclude the section with the following:

Lemma 3.2.14. Let f : X → Y be a morphism of locally noetherian formal schemes.
Let Y ′ be a closed subset of Y , and define X ′ = f−1(Y ′). The extension f̂ : X̂ → Ŷ of
f is an adic morphism of locally noetherian formal schemes.

Proof. All the squares

Xn
//

fn
��

X

f
��

Yn // Y

(3.12)

are cartesian. Let m ≤ n and consider the square

Xm
//

fm
��

Xn

fn
��

Ym // Yn.

This square is cartesian because (3.12) is cartesian for each n ≥ 0. The result follows
from this, because of Lemma 3.2.8.
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Remark 3.2.15. Let X be a locally noetherian scheme and let X ′ ⊂ X be a closed
subscheme. Choose an ideal I ⊂ OX that cuts out the closed subset X ′ inside X, and
let Xn = (X ′,OX/In+1). Then we have:

(1) closed immersions Xn ↪→ X; and

(2) a morphism of ringed spaces X̂ → X.

These fit together in the following commutative diagram:

X X̂oo

· · · � � // Xn

55

� � //
, �

::

Xn+1

88

1�

CC

� � // · · · .

3.2.5 Grothendieck’s existence theorem: Algebraizing coherent sheaves
Grothendieck’s existence theorem is the following powerful result.

Theorem 3.2.16 (Grothendieck). Let A be an adic noetherian ring with ideal of
definition I, and define Y = Spec (A), Yn = Spec (An), An = A/In+1. Let Ŷ =
Spf(A). Let X be a noetherian scheme, separated and of finite type over Y = Spec (A).
Then the functor

CohY (X)→ CohŶ (X̂)

from the category of coherent sheaves with proper support over Y to the category of
coherent sheaves on X̂ with proper support over Ŷ , is an equivalence.

Two important ingredients in the proof of Theorem 3.2.16 are the following results,
that we state without proof.

Theorem 3.2.17. Let f : X → Y be a finite type morphism of noetherian schemes,
Y ′ a closed subset of Y , X ′ = f−1(Y ′). Let f̂ : X̂ → Ŷ be the extension of f to the
formal completions. Let F be a coherent sheaf on X whose support is proper over Y .
Then, for all q, the canonical maps

(Rqf∗F )∧ → Rqf̂∗F̂ and Rqf̂∗F̂ → lim←−R
q(fn)∗Fn

are topological isomorphism.

Proof. See [Fan+05, Theorem 8.2.2].

Theorem 3.2.18. Let A be a noetherian ring and I an ideal. Let f : X → Y =
Spec (A) be a morphism of finite type and f̂ : X̂ → Ŷ be its completion along V (I) ⊂ Y
and f−1(V (I)) ⊂ X. Let F and G be coherent sheaves on X whose supports have an
intersection which is proper over Y . Then, for all r ∈ Z, we have that Extr(F,G) is
an A-module of finite type, and the natural map Extr(F,G)→ Extr(F̂ , Ĝ) induces an
isomorphism

Extr(F,G)∧
∼−→ Extr(F̂ , Ĝ).
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Proof. See [Fan+05, Corollary 8.2.9] or [EGAIII 1, 4.5.1].

Before we start with the proof of Theorem 3.2.16, we introduce:

Definition 3.2.19. Let X be a locally noetherian formal scheme, let X ′ ⊂ |X|
be a closed subset and let X̂ be the completion of X along X ′. A coherent sheaf
F ∈ Coh(X̂) is called algebraizable if it lies in the essential image of the functor
Coh(X) → Coh(X̂) (see Definition 3.2.11). In other words, a coherent sheaf F on X̂
is algebraizable if there exists a coherent sheaf F on X such that F ∼= F̂ .

Proof of Theorem 3.2.16. We prove the theorem in four steps:

Step 1. Fully faithfulness. Let F and G be coherent sheaves on X with proper
supports over Y . By Theorem 3.2.18, Hom(F,G) is an A-module of finite type. Hence,
it is separated and complete for the I-adic topology. Therefore, by Theorem 3.2.18
again, the canonical map

Hom(F,G)→ Hom(F̂ , Ĝ)

is an isomorphism. This proves that (−)∧ is fully faithful.

Step 2. Reduction to the case where X → Y is quasi-projective. This follows
from:

Lemma 3.2.20. Assume that the theorem holds for quasi-projective morphisms. As-
sume moreover that for every closed subscheme T of X whose underlying space is
strictly contained in that of X, all coherent sheaves on T̂ whose support is proper over
Ŷ are algebraizable. Let E be a coherent sheaf on X̂ whose support is proper over Ŷ .
Then E is algebraizable.

Proof of Lemma 3.2.20. We proceed in steps. By Chow’s lemma, there are morphisms

Z
g−→ X

f−→ Y

such that g is projective and surjective, fg is quasi-projective, and there exists an open
immersion j : U → X with U nonempty, such that g induces an isomorphism over U .

Let T = X−U with the reduced scheme structure. As we assume that the theorem
holds for quasi-projective morphisms, we may assume that T 6= X. Let J be the ideal
of T in X. Let E be a coherent sheaf on X̂ whose support is proper over Ŷ . Consider
the exact sequence

0 // K // E // ĝ∗ĝ
∗E // C // 0. (3.13)

We claim that ĝ∗ĝ∗E is algebraizable. Indeed, as we assume that the theorem holds for
quasi-projective morphisms, ĝ∗E is algebraizable. Then ĝ∗ĝ

∗E is also algebraizable,
see Theorem 3.2.17.

Next, observe that K and C are killed by a positive power ĴN of Ĵ . Therefore,
these sheaves can be viewed as coherent sheaves on T̂ ′, where T ′ is the thickening of
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T defined by JN . In particular, by the induction hypothesis, K and C, as coherent
sheaves on T̂ ′, are algebraizable.

Let C be the category of algebraizable coherent sheaves on X̂ whose support is
proper over Y . We claim that C is closed under kernels, cokernels and extensions. As
for kernels and cokernels, this follows from the exactness of (−)∧ on coherent sheaves:
if f : F → G is a morphism of coherent sheaves on X with proper support over Y ,
with kernel A and cokernel B, then Â = Ker(f̂) and B̂ = Coker(f̂).

We are in the situation that K, ĝ∗ĝ∗E, and C in (3.13) are algebraizable coherent
sheaves on X̂. As C is closed under kernels, cokernels and extensions, it follows that
E is algebraizable.

Step 2 follows by noetherian induction and Lemma 3.2.20.

Step 3. Reduction to the case where X → Y is projective. By Step 2, we
may assume that f : X → Y is quasi-projective. Thus, we have a factorization of
f : X → Y into an open immersion j : X → Z and a projective morphism g : Z → Y .
Let E be a coherent sheaf on X̂ whose support T ′ is proper over Ŷ . Suppose that
the theorem holds for projective morphisms. We claim that E is algebraizable. To see
this, let F = ĵ!E be the extension by zero of E on Ẑ. Then F is coherent and has
proper support over Ŷ . Thus, by the assumption that the theorem holds for projective
morphisms, we get that F = F̂ for a coherent sheaf F on Z.

Lemma 3.2.21. Let R be a noetherian ring and I ⊂ R an ideal. Let M be a finite
R-module. Let M̂ = lim←−M/In+1M and R̂ = lim←−R/I

n+1. Let p be a prime ideal R̂;
abusing notation, let p be its inverse image in R. Then (M̂)p = 0 if and only ifMp = 0.

Proof. By Nakayama’s lemma (see Lemma 3.1.2), we have

(M̂)p = 0 if and only if (M̂)p ⊗(R̂)p
(R̂)p/p(R̂)p = 0.

Moreover,
(M̂)p ⊗(R̂)p

(R̂)p/p(R̂)p = (M̂)p/p(M̂)p =
(
M̂/pM̂

)
p
.

Now note that I ⊂ p, hence Î ⊂ p̂. This yields

M̂/pM̂ = (M̂/ÎM̂)/(p̂M̂/ÎM̂) = (M/IM)/(pM/IM) = M/pM.

Hence,
(M̂)p ⊗(R̂)p

(R̂)p/p(R̂)p = (M/pM)p = Mp ⊗Rp Rp/pRp.

This is zero if and only if Mp = 0.

Let T be the support of F . We claim that T ⊂ X. To see this, notice that
T ′ = Supp(E) ⊂ |X̂| ⊂ |X| and that

T ′ = Supp(E) = Supp(F) = T̂ , (3.14)
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where the last equality follows from Lemma 3.2.21. This gives

T̂ = T ′ ⊂ |X̂| ∩ |T̂ | ⊂ |X| ∩ |T |.

Moreover, X ∩ T is open in T (because X is open in Z). As it contains T̂ , we must
have X ∩ T = T (see Lemma 3.1.14). This gives T ⊂ X, proving the claim.

Consequently, F = j!j
∗F , and hence

ĵ!E = F = F̂ = ĵ!ĵ
∗F̂ .

This implies that E = ĵ∗F̂ = (j∗F )∧ is algebraizable.

Step 4. Projective case.

Lemma 3.2.22. Let X be a Ŷ -adic formal scheme such that X0 = X ×Y Y0 is proper,
and let L be an invertible OX -module such that L0 = L ⊗ OX0 is ample. Let E be a
coherent sheaf on X .

(1) Then, there exist non-negative integers m, r and a surjective morphism

(L⊗−m)⊕r → E.

(2) There exists an integer n0 ≥ 1 such that Γ(X , E(n))→ Γ(X0, E0(n)) is surjective
for all n ≥ n0, where E(n) = E ⊗ L⊗n for n ≥ 0.

We will now use the lemma. Assume f : X → Y is projective. Let L be an ample
line bundle on X. If M is an OX-module, and r ∈ Z, write M(n) = M ⊗ L⊗n, and
similarly for OX̂-modules. Let E be a coherent sheaf on X̂. By the lemma, we can
find an exact sequence

O(−m1)r1 → O(−m0)r0 → E → 0.

By the theorem, there exists a unique morphism O(−m1)r1 → O(−m0)r0 that com-
pletes to the above one. Define F to be the cokernel. By the fact that (−)∧ is exact
on coherent modules, we get E = F̂ , and we are done.

The proof of Lemma 3.2.22 is left as an exercise for the reader.

3.3 Lecture 10: Line bundles on hypersurfaces over arbitrary
fields

The goal of this section is to study line bundles on hypersurfaces X ⊂ Pn+1
k of di-

mension n ≥ 3 over arbitrary fields k. Before doing so, we provide applications of the
existence theorem.
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3.3.1 First applications of Grothendieck’s existence theorem
Let X be a locally noetherian formal scheme, and let A ⊂ OX be a coherent ideal
sheaf. Let Y be the topologically ringed space with underlying space the support of
OX/A and sheaf of rings OY = i−1OX/A (with i the inclusion Y → X ). Then Y
is a locally noetherian formal scheme, adic over X , and is called the closed formal
subscheme of X defined by A. If X = Spf(A) is affine, for some adic ring A, then
there is an ideal a ⊂ A such that Y = Spf(A/a).

Corollary 3.3.1. Let Y = Spec (A) for some adic ring A with ideal of definition I;
put Yn := Spec (A/In+1). Let X be a noetherian scheme, separated of finite type over
Y . Then Z 7→ Ẑ defines a bijection from the set of closed subschemes of X which are
proper over Y to the set of closed formal subschemes of X̂, proper over Ŷ .

Proof. Let I and J be coherent ideal sheaves in OX , and suppose that Î = Ĵ ⊂ OX̂
and that the quotients OX/I and OX/J have proper support over Y . We get a
canonical isomorphism OX̂/Î

∼−→ OX̂/Ĵ compatible with the projections. Thus, by
Theorem 3.2.16, we get a canonical isomorphism OX/I

∼−→ OX/J compatible with the
projections OX → OX/I and OX → OX/J . This gives I = J ⊂ OX .

To prove surjectivity, let Z be a closed formal subscheme of X̂ which is proper over
Ŷ . By Theorem 3.2.16, there exists an OX-module F , unique up to isomorphism, such
that F̂ ∼= OZ . We need to algebraize the quotient map u : OX → OZ . Notice that
the support of F is proper over Y . In particular, OX and F are two coherent sheaves
on X whose supports have intersection which is proper over Y . Thus, we can apply
Theorem 3.2.18. We find that Hom(OX , F ) = Hom(OX̂ , F̂ ). This gives a unique map
v : OX → F such that v̂ = u. Since v0 = u0 is surjective, so is v (Nakayama’s lemma,
see Lemma 3.1.2), hence F = OZ for a closed subscheme Z ⊂ X which is proper over
Y , and Ẑ = Z.

Let X = lim−→Xn be a locally noetherian formal scheme, where Xn is a locally
noetherian scheme for each n ≥ 0. A morphism of locally noetherian formal schemes
f : Z → X is called finite if f is adic and f0 : X0 → Z0 is finite. If f is finite, then
f∗OZ is a finite OX -algebra. Conversely, every finite OX -algebra arises in this way.

Corollary 3.3.2. Let Y = Spec (A) for some adic ring A with ideal of definition I;
define Yn = Spec (A/In+1). Let X be a noetherian scheme, separated of finite type
over Y . Then Z 7→ Ẑ is an equivalence of the category of finite X-schemes which are
proper over Y to the category of finite X̂-formal schemes which are proper over Ŷ .

Proof. Let A and B be finite OX-algebras with proper supports over Y , and u : A→ B
a map of OX-modules such that û : Â→ B̂ is a map of OX̂-algebras, then u preserves
the OX-algebra structures by the fully faithfulness part of Theorem 3.2.16. Hence
Z 7→ Ẑ is fully faithful. Let A be a finite OX̂-algebra with proper support over Ŷ , and
let A be a finite OX-module with Â = A. By Theorem 3.2.16, the maps A⊗A → A
and OX̂ → A that give A the structure of an OX̂-algebra, uniquely algebraize to give
maps that turn A into an OX-algebra, such that Â = A as OX̂-algebras.

74



Corollary 3.3.3. Let Y = Spec (A) for some adic ring A with ideal of definition I;
define Yn = Spec (A/In+1). Let X be a noetherian scheme which is proper over Y .
Let Z be a noetherian scheme, separated and of finite type over Y . Then, the map

HomY (X,Z)→ HomŶ (X̂, Ẑ)

is bijective.

Proof. We have a canonical isomorphism

(X ×Y Z)∧ = X̂ ×Ŷ Ẑ,

see [EGAI, Proposition 10.9.7]. Under this isomorphism, the completion (Γf )
∧ of the

graph Γf of a Y -morphism f : X → Z identifies with the graph Γf̂ of the completion
f̂ : X̂ → Ẑ of f , see [EGAI, Corollaire 10.9.8]. Let f and g be morphisms X → Z

over Y such that f̂ = ĝ. Then the completions of Γf and Γg are the same formal
subschemes of (X ×Y Z)∧, hence, as Γf and Γg are proper over Y , Γf and Γg agree as
subschemes of X ×Y Z (see Corollary 3.3.1). Similarly, by algebraizing the graph of a
given morphism f : X̂ → Ẑ over Ŷ , one algebraizes the morphism f .

Remark 3.3.4. Let Y = Spec (A) for some adic ring A with ideal of definition I;
define Yn = Spec (A/In+1). Let X be a noetherian scheme which is not necessarily
proper over Y . Then the conclusion of Corollary 3.3.3 is no longer valid in general.
Namely, if X = Z = Spec A[t], then X̂ = Ẑ = Spf(A {t}) and

HomŶ (X̂, Ẑ) = HomA-cont(A {t} , A {t}) = A {t} ,

see Proposition 3.1.18, whereas HomY (X,Z) = A[t]. Here, A {t} is the ring of re-
stricted formal power series

∑
n t

n, which are those power series such that an tends to
zero for the I-adic topology as n tends to infinity.

3.3.2 Algebraizing projective formal schemes
Before we come to the main theorem of this section, we provide two lemmas.

Lemma 3.3.5. Let X be a locally noetherian formal scheme and let f : X → Ŷ be an
adic morphism of locally noetherian formal schemes. Then for each n ≥ 0, the fibre
product Xn = X ×Y Yn is a locally noetherian scheme. Moreover, X = lim−→Xn.

Proof. Consider the ideal of definition I = I∆ of Ŷ = Spf(A). Since f is adic, we
know that J = f ∗(I)OX is an ideal of definition for X , hence the same holds for J n

(n ≥ 0). In particular, the ringed space (X ,OX/J n) is a scheme, see Lemma 3.2.2.
The other assertion is clear.

Lemma 3.3.6. Let f : Z → X = lim−→Xn be a morphism of locally noetherian formal
schemes. The following are equivalent.

75



(1) f is finite, in other words, f is adic and f0 : Z ×X X0 → X0 is finite.

(2) f is locally of the form Spf(B) → Spf(A) for A an adic noetherian ring with
ideal of definition A and B a finite IB-adic A-algebra.

(3) f is adic and each fn : Z ×X Xn → Xn is finite.

Proof. See [EGAI, Ch. 0, 7.2.9].

We proceed to give a profound application of Theorem 3.2.16. Let A be an adic
noetherian ring, I an ideal of definition of A, Y = Spec (A), Yn = Spec (A/In+1) and

Ŷ = lim−→Yn = Spf(A).

Let X be a locally noetherian scheme over Y , and define Xn = X ×Y Yn. Then the
I-adic completion of X,

X̂ = lim−→Xn,

is a locally noetherian formal scheme over Ŷ . One can ask: which locally noetherian
formal schemes X over Ŷ arise in this way? This leads to the following definition.

Definition 3.3.7. Let X be a locally noetherian formal scheme and f : X → Ŷ an
adic morphism of locally noetherian formal schemes.

(1) Let X be a locally noetherian adic formal scheme over Ŷ . Define Xn = X ×Y Yn
(n ≥ 0); this is a scheme by Lemma 3.3.5. The morphism

F : X → Ŷ

is called proper if the induced morphism F0 : X0 → Y0 is proper.

(2) The Ŷ -adic formal scheme X is algebraizable if one of the following equivalent
conditions is satisfied.

(a) There exists a locally noetherian scheme X over Y and a Ŷ -isomorphism
X ∼= X/X′ , where X ′ denotes the inverse image of V (I) = Spec (A/I) in X.

(b) There exists a locally noetherian Y -scheme X → Y such that, if Xn =

X ×Y Yn and X̂ = lim−→Xn, then there is an isomorphism X̂ ∼= X over Ŷ .

The answer to the above question is then as follows.

Theorem 3.3.8. Let A be an adic noetherian ring with ideal of definition I ⊂ A and
define Y = Spec (A) and Yn = Spec (A/In+1). Let X be a proper, adic formal scheme
over Ŷ , and define Xn = X ×Y Yn, so that Xn is a scheme (cf. Lemma 3.3.5) and
X = lim−→Xn. Let L be an invertible OX -module such that

L0 = L ⊗OX0 = L/IL

is ample on X0, and so X0 is projective over Y0. The following assertions are true.
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(1) The noetherian Ŷ -adic formal scheme X is algebraizable.

(2) Let X be a Y -scheme with X̂ = X over Ŷ . There is a line bundle M on X,
unique up to isomorphism, with L = M̂ . The line bundle M is ample, so that
the morphism X → Y is projective.

Proof. By Lemma 3.2.22, there exists an integer n� 0 such that

(1) There exists a closed immersion i0 : X0 → P0 = PrY0
such that L⊗n0 = i∗0OP0(1).

(2) The map Γ(X ,L⊗n)→ Γ(X0, L
⊗n
0 ) is surjective.

The map i0 : X0 → P0 corresponds to an epimorphism u0 : Or+1
X0
→ L⊗n0 which we can

lift to an OX -linear map
u : Or+1

X → L⊗n.

By Nakayama’s lemma, see Lemma 3.1.2, each up : Or+1
Xp
→ L⊗np is surjective, hence cor-

responds to a morphism ip : Xp → Pp = PrYp of Yp-schemes such that L⊗np = i∗pOPp(1).
These closed immersions form an inductive system i• : X• → P•, hence they define a
morphism of formal schemes

i : X → P̂

such that L⊗n = i∗OP̂ (A), where P̂ is the completion of P = PrY over Y = Spec (A).
As i : X → Pr

Ŷ
is an adic morphism such that i0 is finite, it follows that ip is finite for

each p ≥ 0, see Lemma 3.3.6. By Nakayama’s lemma, see Lemma 3.1.2, it follows that
ip is a closed immersion for each p. Consequently, i : X → P̂ is a closed immersion of
formal schemes. By Corollary 3.3.1, there exists a unique closed subscheme

j : X → P = PrY

such that X̂ = X as subschemes of PrY . Moreover, by Theorem 3.2.16, there exists a line
bundle M on X, unique up to isomorphism, such that L ∼= M̂ . Since L⊗n = i∗OP̂ (1)

and (M⊗n)∧ = M̂⊗n, we get (M⊗n)∧ = (j∗OP (1))∧. Hence, by Theorem 3.2.16, we
get M⊗n = j∗OP (1), and therefore M is ample.

3.3.3 More on algebraization in formal geometry
We state without proof the following powerful theorems.

Theorem 3.3.9. Let f : X → S be a projective morphism of schemes, with S noethe-
rian. Let OX(1) be an invertible sheaf on X, ample relative to S. Let X0 be the scheme
of zeros of a section t of OX(1), and let X̂ be the formal completion of X along X0.
Let F be a coherent module on X̂, and let F0 be the induced coherent module on X0.
Suppose moreover that:

(1) F is flat over S.

(2) For each s ∈ S, the section ts of OXs(1) is Fs-regular.
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(3) For each s ∈ S, F0s is of depth ≥ 2 at the closed points of X0s.

Assume S admits an ample invertible sheaf. There exists a coherent sheaf F on X and
an isomorphism between F̂ , the formal completion of F , and F.

Proof. See [SGAII].

Theorem 3.3.10. Let f : X → S be a projective morphism of schemes, with S noethe-
rian. Let OX(1) be an invertible sheaf on X, ample relative to S, let Y be the scheme
of zeros of a section t of OX(1), let J be the ideal that defines Y ⊂ X, let Xn be the
subscheme of X defined by Jn+1, X̂ the formal completion of X along Y , f̂ : X̂ → S
the composition X̂ → X → S, F a coherent module on X, flat relative to S. We
suppose moreover that for each s ∈ S, the coherent OXs-module Fs is of depth > n at
the closed points of Xs, and that t is F -regular. Then the following holds.

(1) The canonical morphism
Rif∗(F )→ Rif̂∗(F̂ )

is an isomorphism for i < n, and a monomorphism for i = n.

(2) The canonical morphism

Rif̂∗(F̂ )→ lim←−R
if∗(Fm)

is an isomorphism for i ≤ n.

Proof. See [SGAII].

Corollary 3.3.11. Assume the conditions in Theorem 3.3.10. Assume S is affine.
Then:

(1) The canonical morphism

H i(X,F )→ H i(X̂, F̂ )

is an isomorphism for i < n and injective for i = n.

(2) The canonical morphism

H i(X̂, F̂ )→ lim←−H
i(Xm, Fm)

is an isomorphism for i ≤ n.
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3.3.4 The Picard group of a hypersurface
We begin with:

Lemma 3.3.12. Let k be a field and P = Pnk be the projective space of dimension n
over k. Let X ⊂ P be a closed subscheme of pure dimension r ≥ 1. Let U ⊂ P be an
open neighbourhood of X in P . Then codim(P − U, P ) ≥ 2.

Proof. We may assume that k = k̄ and that X is integral. Suppose that U 6= P
and let Z be an irreducible component of P \U , endowed with its reduced subscheme
structure. Consider the subvarieties X ⊂ P and Z ⊂ P . We have dim(X) = r. Let
s := dim(Z). By [Har77, Chapter I, Theorem 7.2], since X ∩ Z = ∅, we must have
r + s− n < 0. Therefore, s < n− r ≤ n− 1 because r ≥ 1.

Proposition 3.3.13. Let X be a smooth variety over a field k. Let Y ⊂ X be a closed
subset of codimension ≥ 2. The restriction Pic(X)→ Pic(X \ Y ) is an isomorphism.

Proof. See [SGAII, Exposé XI, Corollaire 3.8].

Theorem 3.3.14. Let X0 ⊂ Pn+1
k be a hypersurface of dimension ≥ 3. Then

Pic(X0) = Z · OX0(1).

Proof. Define X := Pn+1
k . We proceed in steps:

(1) First, we prove that Pic(X0) = Pic(X̂). Let I ⊂ OX be the ideal sheaf of X0 ⊂ X.
For an integer m ≥ 0, define Xm = (X0,OX/Im+1). We have exact sequences

0→ Im+1/Im+2 → OX0/I
m+2 → OX0/I

m+1 → 0.

Consider the exact sequences

0→ Im+1/Im+2 → O∗Xm+1
→ O∗Xm

→ 0, (3.15)

where Im+1/Im+2 → O∗Xm+1
is the map sending x to 1+x. Indeed, the sequence (3.15)

induces for m ≥ 0 an exact sequence

H1(X0, I
m+1/Im+2)→ H1(Xm+1,O∗Xm+1

)→ H1(Xm,O∗Xm
)→ H2(X0, I

m+1/Im+2).

Note that I ∼= OX(−d) ⊂ OX . Therefore,

Im+1/Im+2 ∼= Im+1 ⊗OX/I ∼= OX0(−(m+ 1)d),

so that by Theorem 1.1.13, we have:

H i(X0, I
m+1/Im+2) = H i(X0,OX0(−(m+ 1)d)) = 0, i = 1, 2, m ≥ 0.

Consequently, as H1(Xn,O∗Xn
) = Pic(Xn), we get Pic(Xn+1) = Pic(Xn) for n ≥ 0.

Hence Pic(X0) = Pic(X̂) as desired.
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(2) Next, we need to show that Pic(X̂) = Pic(X). We first prove surjectivity of
Pic(X)→ Pic(X̂):

(a) Let L be an invertible sheaf on X̂. By Theorem 3.3.9, there exists a coherent
sheaf F on X such that F̂ ∼= L. Now L = F̂ is locally free of rank one on X̂, hence
(by Nakayama, see Lemma 3.1.2), there exists an open neighbourhood U ⊃ X0

such that F |U is locally free of rank one on U . Thus F |U ∈ Pic(U).

(b) Observe that since U is an open neighbourhood ofX0, we have codim(X−U,X) ≥
2, see Lemma 3.3.12. Hence Pic(X) = Pic(U) by Proposition 3.3.13. Thus, we
can extend F |U to a line bundleM on X. We get that the map Pic(X)→ Pic(X̂)
is surjective.

(3) It remains to prove that the map Pic(X) → Pic(X̂) is injective. For this, let L1

and L2 be line bundles on X and suppose that there is a morphism f : L̂1 → L2. This
gives a section

s(f) ∈ Γ(X̂,H om(L̂1, L̂2)).

Consider the natural map H om(L1, L2)∧ →H om(L̂1, L̂2); we claim that

lim←−
m

Γ(Xm,H om(L1, L2)|Xm) = Γ(X̂, lim←−
m

H om(L1, L2)|Xm) = Γ(X̂,H om(L̂1, L̂2)).

Indeed, this follows from item (2) in Corollary 3.3.11. Combining this with item (1)
in Corollary 3.3.11, we get that the natural map

Γ(X,H om(L1, L2))→ Γ(X̂,H om(L̂1, L̂2))

is an isomorphism. Hence there exists a unique section σ(g) ∈ Γ(X,H om(L1, L2)),
corresponding to a morphism L1 → L2, that induces the section s(f). In other words,
Hom(L1, L2) = Hom(L̂1, L̂2). We conclude that, in particular, if L̂ ∼= OX̂ for some line
bundle L on X, then L ∼= OX .

This finishes the proof of Theorem 3.3.14.
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Chapter 4

Hodge theory of hypersurfaces

4.1 Lecture 11: Infinitesimal Torelli for hypersurfaces

The goal of Lectures 11 – 14 is to prove that, for a general hypersurface X ⊂ Pn+1
C

and open neighbourhood B′ of the point 0 corresponding to X in the moduli space of
smooth hypersurfaces without additional automorphisms, the differential of the period
map

dPn
0 : TB′,0 → TD ,Pn(0) ⊂

⊕
p

Hom
(
Hp,n−p(X0)pr, H

p−1,n−p+1(X0)pr
)

(see (2.20)) is an embedding. This is called the infinitesimal Torelli theorem for hy-
persurfaces. It implies that the period map Pk is an immersion at the point 0 ∈ B′
corresponding to X. As B′ is smooth around 0, it follows that Pn : B′ → D is an em-
bedding at the point 0. Thus, in some sense, for b ∈ B′ close to zero, the corresponding
hypersurface Xb ⊂ Pn+1

C is determined by the Hodge structure on Hn(Xb,C).

4.1.1 Universal family of hypersurfaces with no automorphisms

Fix positive integers d and n. Let k be a field, let Pn+1 = Pn+1
k , and define

U ⊂ A := Spec
(
Sym

(
H0(Pn+1,OPn+1(d))∨

)) ∼= AN
k

(
N =

(
n+ 2

d

))
as the open subset of polynomials F whose attached hypersurfaceX = {F = 0} ⊂ Pn+1

is smooth. We let

X =
{

(F, x) ∈ U × Pn+1 | F (x) = 0
}
⊂ U × Pn+1,

with its natural scheme structure. Moreover, the projection onto U defines a proper
flat family of hypersurfaces X → U , fitting in a commutative diagram

X � � //

π
��

Pn+1 × U

zz

U.
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We write Xt = π−1 ⊂ Pn+1 for t ∈ U . One can show that U(k) 6= ∅, see [KS99, p. 333].
For example, if char(k) - d, then the Fermat hypersurface of degree d is smooth.

For a hypersurface X ⊂ Pn+1 over k, we define Aut(X,OX(1)) ⊂ Aut(X) as the
subgroup of automorphisms that are induced by an automorphism of Pn+1.

Theorem 4.1.1 (Chang, Matsumura–Monsky). Assume k = k̄. If X is a smooth
hypersurface in Pn+1 of degree d over k, where n ≥ 1, d ≥ 3 and (n, d) does not equal
(1, 3) or (2, 4), then Aut(X) = Aut(X,OX(1)).

Proof. See [Cha78] for the case n = 1 and [MM63] for the case n ≥ 2.

Let k be an arbitrary field, and let U ⊂ A be as above. There exist open subsets

B ⊂ Blin ⊂ U

such that, for t̄ ∈ U(k̄), we have t̄ ∈ B(k̄) (resp. t̄ ∈ Blin(k̄)) if and only if Aut(Xt̄) =
{id} (resp. Aut(Xt̄,OXt̄

(1)) = {id}).

Remarks 4.1.2. Let k be an arbitrary field and define B ⊂ Blin as above. Note that
possibly, B = ∅. Moreover, even if B 6= ∅, one could have B(k) = ∅.

(1) Suppose that n ≥ 1, that d ≥ 3, and that (n, d) 6∈ {(1, 3), (2, 4)}. Then B = Blin.
This is the content of Theorem 4.1.1.

(2) A result of Matsumura and Monsky says that if n ≥ 1, d ≥ 3, and (n, d) 6= (1, 3),
then Blin 6= ∅ (and hence dense in U), see [Poo05, Theorem 1.5].

(3) Poonen has shown that Blin(k) 6= ∅ in the range n ≥ 1, d ≥ 3, and (n, d) 6= (1, 3).
Moreover, if in addition (n, d) 6= (2, 4), then B(k) 6= ∅ in view of Theorem 4.1.1.

(4) Whether B(k) 6= ∅ for (n, d) = (2, 4) seems an open question. This question
concerns smooth quartics in P3, which are K3 surfaces. For char(k) ∈ {0, 2, 3, 5},
this question has been solved by Van Luijk, see [Lui06].

Without any assumptions on the pair (n, d), the action of the linear algebraic group
GLn+2 on A over k (which is induced by the action of GLn+2(R) on H0(Pn+1

R ,O(d))
for every k-algebra R) preserves the open subsets B ⊂ U ⊂ A, and the quotients

B′ = B/GLn+2 and X ′ = X/GLn+2

exist in the category of schemes over k, see [MFK94]. Moreover, the induced morphism

π′ : X ′ → B′ (4.1)

is a family of smooth projective hypersurfaces in Pn+1 over k with no geometric auto-
morphisms, and in fact the universal family of such hypersurfaces.
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4.1.2 Infinitesimal Torelli theorem for hypersurfaces: statement
We consider now the case k = C. Let π′ : X ′ → B′ be the universal family of smooth
hypersurfaces X ⊂ Pn+1

C of degree d with no non-trivial automorphisms, see (4.1). We
fix a point 0 ∈ B′. Let Hn(X0,C)pr be the primitive n-th cohomology group of X0,
with complex coefficients, and define

bp,npr = dimF pHn(X0,C)pr.

This yields a sequence of n numbers bn,npr ≤ · · · ≤ b1,n
pr . Consider the polarized period

domain
D ⊂ Flag

(
bn,npr , . . . , b

1,n
pr , H

n(X0,C)pr
)
,

as well as the period map

Pn : B
′′ → D , b 7→ [F •Hn(Xb)pr ⊂ Hn(Xb)pr = Hn(X0)pr] .

Here, B′′ ⊂ B′ is a sufficiently small open neighbourhood of 0 in B′. See Section 2.3.4,
and in particular (2.17), (2.18), and Remark 2.3.13.

Theorem 4.1.3. Let d and n be positive integers and let π′ : X ′ → B′ be the universal
family of smooth hypersurfaces X ⊂ Pn+1

C of degree d in with trivial automorphism
group. Let b ∈ B′. Then the differential of the period map

dPn
b : TB′,b → TD ,Pn(b) ⊂

⊕
p

Hom
(
Hp,n−p(Xb)pr, H

p−1,n−p+1(Xb)pr
)

(4.2)

is injective.

The strategy of the proof will be as follows:

(1) Prove that the Kodaira–Spencer map TB′,b → H1(Xb, TXb
) is an isomorphism.

As a consequence, it suffices to show that the natural map H1(Xb, TXb
) →

Hom (Hp,n−p(Xb)pr, H
p−1,n−p+1(Xb)pr) is injective for some p with 0 ≤ p ≤ n.

(2) Associate a certain graded artinian local C-algebra R(Xb) to the hypersurface
Xb and prove that, if t(p) = (n − p + 1) · d − (n + 2), then Hp,n−p(Xb)pr

∼=
Rt(p)(Xb), compatibly with the maps Hp,n−p(Xb)pr×Hn−p,p(Xb)pr → Hn,n(Xb)pr

and Rt(p)(Xb)×Rt(n−p)(Xb)→ Rσ(Xb), for σ = (n+ 1) · (d− 2).

(3) Prove that Rd(Xb) = H1(Xb, TXb
).

(4) Prove that under the above isomorphisms, the differential of the period map at
b with respect to the p-th piece of the Hodge filtration, which we view as a map
TB′,b → Hom(Hp,n−p(Xb)prim, H

p−1,n−p+1(Xb)prim), becomes identified with the
canonical map

Rd(Xb)→ Hom(Rt(p), Rt(p)+d). (4.3)

(5) Conclude by proving that there exists p such that (4.3) is injective.
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4.2 Lecture 12: Logarithmic De Rham complex

Let X be a complex manifold and let D ⊂ X be a hypersurface, i.e. D is locally
defined by the vanishing of a holomorphic equation. We say that D is a normal
crossings divisor if for each 0 ∈ X there are local holomorphic coordinates z1, . . . , zn
for X around 0, in which D is defined by the equation z1 · · · zr = 0 for some r ≤ n
(which depends on the point 0 ∈ X).

Definition 4.2.1. Consider a pair (X,D) with X a complex manifold and D ⊂ X a
normal crossings divisor. Fix an integer k ≥ 0. Let Ωk

X(∗D) be the sheaf of meromor-
phic differential k-forms on X which are holomorphic on X \D. We define a subsheaf
of OX-modules

Ωk
X(logD) ⊂ Ωk

X(∗D)

in the following way. Let U ⊂ X be an open subset. For α ∈ Ωk
X(D)(U), we have

α ∈ Ωk
X(logD)(U) if, for each x ∈ U and each open neighbourhood x ∈ V ⊂ U such

that D ∩ V = ∪ri=1Di with the Di meeting transversally, we have that the orders of
the poles of α|V and dα|V along Di are at most one, for each i ∈ {1, . . . , r}.

By construction, there is a natural differential Ωk
X(logD) → Ωk+1

X (logD). This
gives a complex which we denote by Ω•X(logD), and which we call the logarithmic De
Rham complex. Let U = X \D, and let j be the inclusion of U in X. Then, consider
the composition

Ω•X(logD) ⊂ j∗Ω
•
U → j∗A

•
U . (4.4)

Lemma 4.2.2. Consider a pair (X,D) with X a complex manifold and D ⊂ X a
normal crossings divisor. Let U ⊂ X be an open subset, biholomorphic to Cn via
holomorphic coordinates z1, . . . , zn, such that D ∩ U = {z1 · · · zr = 0} ⊂ U for some
r ≤ n. Then Ωk

X(logD)|U is a sheaf of free OU -modules, with basis given by the
elements dzi1

zi1
∧ · · · ∧ dzi`

zi`
∧ dzj1 ∧ · · · ∧ dzjm with is ≤ r, js > r and `+m = k.

Proof. Exercise.

Proposition 4.2.3 (Griffiths, Deligne). Consider a pair (X,D) with X a complex
manifold and D ⊂ X a normal crossings divisor. Let U = X \ D with inclusion
j : U → X. The morphism Ω•X(logD)→ j∗A •

U defined in (4.4) is a quasi-isomorphism.

Proof. See [Voi02, Proposition 8.18].

Corollary 4.2.4. In the above notation, let U = X \D. There is a canonical isomor-
phism Hk(U,C) = Hk(X,Ω•X(logD)).

Proof. On the one hand, by Proposition 4.2.3, we haveHk(X,Ω•X(logD)) = Hk(X, j∗A •
U ).

On the other hand,

Hk(X, j∗A
•
U ) = Hk(Γ(X, j∗A

•
U )) = Hk(Γ(U,A •

U )) = Hk(U,C)

because the sheaves j∗A p
U (p ≥ 0) are acyclic (being sheaves of C∞X -modules), and

because C→ A •
U is an acyclic resolution of C.
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4.2.1 Cohomology of smooth hypersurfaces in smooth projective varieties
Let X be a smooth projective complex variety and let

Y ↪→ X

be a smooth hypersurface. Define

U = X \ Y j−→ X.

Then Ωk
X(log Y ) is the locally free OX-module, locally generated by ΩX and df/f ,

where f is a local holomorphic equation for Y . Moreover, under the isomorphism (...),
the inclusion Ω•X ↪→ Ω•X(log Y ) induces the restriction Hk(X,C) → Hk(U,C). Define
a map of sheaves as follows:

Res: Ω•X(log Y )→ Ω•−1
Y , α ∧ df/f 7→ Res(α ∧ df/f) = 2iπ · α|Y . (4.5)

Example 4.2.5. Let X = C with coordinate z, and let D = {z = 0} = {0} ⊂ C. Let
U ⊂ X be an open subset containing 0. Consider the map

Res: Ω1
X(logD)(U)→ Ω0

D(D ∩ U) = C, α ∧ df/f 7→ 2iπ · α(0).

Let f : U → C be a meromorphic function which is holomorphic on U −D and which
has a pole of order one at 0. Then

fdz ∈ Ω1
X(logD)(U).

Moreover, Res(fdz) equals 2πi · a−1 if f(z) = a−1z
−1 + g(z) for some g(z) which is

holomorphic at z. In other words, Res(fdz) equals the contour integral of f(z) on a
small circle around 0.

As Hk(Y,Ω•−1
Y ) = Hk−1(Y,C), the map (4.5) induces a map in cohomology, called

the residue map,

Res: Hk(U,C)→ Hk−1(Y,C). (4.6)

Let T be a tubular neighbourhood of Y in X; thus T is an open neighbourhood
T ⊂ Y ⊂ X, and if π : N → Y is the normal bundle of Y in X, then there is a smooth
map J : N → X such that J◦0N = i : Y → X, and such that J(N) = T and J : N → T
is a diffeomorphism. The Thom isomorphism gives a canonical isomorphism

Hk(T, T \ Y,Z) = Hk(N,N \ 0N ,Z) = Hk−1(Y,Z).

Moreover, we have inclusions X \ T ⊂ U ⊂ X and hence, by excision, we have

Hk(X,U,Z) = Hk(T, U \ (X \ T ) ,Z) = Hk(T, T − Y,Z).

In particular,
Hk(X,U,Z) = Hk(T, T \ Y,Z) = Hk−1(Y,Z).
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Lemma 4.2.6. The map (4.6) coincides with the composition

Hk(U,C)
δk−→ Hk+1(X,U,C)

∼−→ Hk−1(Y,C),

where δk the k-th coboundary map in the long exact sequence of relative cohomology.

Proof. Exercise.

It follows that (4.6) admits a canonical integral lift Hk(U,Z) → Hk−1(Y,Z) that
fits in a long exact sequence

· · · → Hk(X,Z)→ Hk(U,Z)
Res−−→ Hk−1(Y,Z)→ Hk+1(X,Z)→ · · · . (4.7)

The map Hk−1(Y,Z)→ Hk+1(X,Z) in (4.7) is given by the Gysin homomorphism; in
other words, it is the map induced by Poincaré duality and push-forward on homology.

Lemma 4.2.7. Let ` : Y ⊂ X be a smooth ample hypersurface, with dim(X) = n+ 1,
with complement j : U = X \ Y → X. Define

Hn(Y,Q)ev = Ker
(
`∗ : H

n(X,Q)→ Hn+2(X,Q)
)
.

Then (4.7) induces a short exact sequence

0 // Hn+1(X,Q)prim
j∗
// Hn+1(U,Q) Res // Hn(Y,Q)ev // 0. (4.8)

Proof. Exercise.

Next, we turn to the case where the ambient space is the projective space of di-
mension n+ 1. In this case, we have:

Lemma 4.2.8. For a smooth hypersurface X ⊂ Pn+1
C , Hn(X,C)ev = Hn(X,C)pr.

Proof. Exercise.

Theorem 4.2.9 (Griffiths). Let X ⊂ P = Pn+1 = Pn+1
C be a smooth hypersurface,

with complement j : U = P \ X → P. Let p be an integer with 1 ≤ p ≤ n. Then
Hn+1(P,Q)prim = 0 hence Hn+1(U,Q) = Hn(X,Q)ev. Moreover, the image of the
composition of maps

H0(P, KP(pX))→ H0(U,Ωn+1
U )→ Hn+1(U,C)

∼−→ Hn(X,C)ev (4.9)

equals F n−p+2Hn(X,C)ev = F n−p+2Hn(X,C) ∩Hn(X,C)ev.

Proof. See [Voi02, Théorème 18.5].
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4.3 Lecture 13: Variation of Hodge structure of hypersurfaces

4.3.1 Jacobian ring: first properties
Let n and d be positive integers. Let k be a field whose characteristic is prime to d−1
and d. Define S as the graded polynomial ring

S = k[x0, . . . , xn+1] =
⊕
i≥0

Si, Si = {homogeneous polynomials of degree i} .

For a non-zero F ∈ Sd, we write ∂iF ∈ Sd−1 for the partial derivatives ∂iF = ∂F/∂xi.
The Hessian of F is the matrix of homogeneous polynomials of degree d − 2 defined
as

H(F ) =

(
∂2F

∂xi∂xj

)
i,j

.

We put
σ := (n+ 2) · (d− 2).

Then, for F ∈ Sd non-zero, we have

detH(F ) ∈ Sσ.

Definition 4.3.1. Let F ∈ Sd be a non-zero degree d homogeneous polynomial with
coefficients in k. The Jacobian ideal of F is the homogeneous ideal

J(F ) = (∂iF ) = (∂0F, . . . , ∂n+1F ) ⊂ S,

generated by the partial derivatives ∂iF of F . The Jacobian ring of F is the quotient

S → R(F ) := S/J(F ),

equipped with its natural grading. If F ∈ Sd defines a smooth hypersurface X =
{F = 0} ⊂ Pn+1

C , we define J(X) = J(F ) and R(X) = S/J(X) = R(F ).

Lemma 4.3.2. Let B be a ring, and let b1, . . . , bm ∈ B. Then b1, . . . , bm is a regular
sequence in B if and only if the image of the sequence b1, . . . , bm in Bp defines a regular
sequence in Bp, for each prime ideal p of B.

Proof. Let i be a positive integer with i ≤ m. Put A := B/(b1, . . . , bi−1). Multiplica-
tion by bi defines a map A → A. If b1, . . . , bm is a regular sequence, then this map is
injective, hence remains injective after localization at a prime ideal (by flatness of the
localization map), so that the images form a regular sequence in Bp for each prime
ideal p of B. Conversely, if, for each prime ideal p of B, the images of the bi in Bp form
a regular sequence and bix = 0 for some x ∈ A = B/(b1, . . . , bi−1), then bix = 0 in the
localization of A at each of the prime ideals p of B. If x 6= 0, then the annihilator of
x is contained in a maximal ideal m of A; localizing at m gives a contradiction.
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Lemma 4.3.3. Let F ∈ Sd \{0} such that the hypersurface X = {F = 0} ⊂ P = Pn+1
k

is smooth. Then, the Jacobian ring

R(X) = R(F ) = S/J(F )

is a zero-dimensional local ring, and a finite dimensional k-algebra.

Proof. The Euler equation

d · F =
n+1∑
i=0

xi∂iF (4.10)

combined with the Jacobian criterion imply that the affine intersection ∩V (Fi) ⊂ An+2

is the point 0 ∈ An+2. A sequence ai, i = 1, . . . , dim(A) in a regular local ring A is a
regular sequence if the height of the ideal (ai) equals the dimension of A. In particular,
the elements ∂iF form a regular sequence in the localization of S at each of its prime
ideals, hence they form a regular sequence in S, see Lemma 4.3.2. Thus, R(X) is a
zero-dimensional noetherian ring.

In particular, the underlying topological space of the subscheme Spec (R(X)) ⊂
An+2
k consists of a finite set of points. These points must be closed, because if p is a

prime ideal which is not maximal, and m is a maximal ideal containing p, then p ( m
contradicts the zero-dimensionality of R(X).

We claim that there is only one maximal ideal of R(X). To see this, note that the
subscheme Spec (R(X)) ⊂ An+2

k is Gm-invariant, with respect to the diagonal action
of Gm on An+2

k , because the polynomials ∂iF are homogeneous. Hence, indeed, there
is only one closed point.

Let m ⊂ R(X) be the corresponding maximal ideal. We claim that m is nilpotent.
To see this, observe that mn = mn+1 for some n ≥ 1 because R(X) is artinian. Hence
I = mn is an ideal such that mI = I; since I ⊂ rad(R(X)) = m, we get that I = 0 by
Nakayama’s lemma, see Lemma 3.1.2. Consequently, any element xn1

i1
· · ·xnk

ik
∈ R(X)

satisfies xnI = 0. We conclude that R(X) is a finite-dimensional k-algebra.

4.3.2 Hodge decomposition for hypersurfaces
Let d and n be positive integers. Let X be a smooth hypersurface of degree d in
P = Pn+1

C . Define

S = C[x0, . . . , xn+1] =
⊕
i≥0

H0(P,OP(i)),

Si = C[x0, . . . , xn+1]i = H0(P,OP(i)).

Recall that there is an isomorphism

OP → KP(n+ 2), 1 7→ Ω :=
∑

(−1)ixidx0 ∧ · · · d̂xi · · · ∧ dxn.
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and

OP(pd)
∼−→ OP(pY ) = (sheaf of meromorphic functions, poles of order p along Y ) ,

Q 7→ Q/F p.

In particular, for pd ≥ n, we get canonical isomorphisms

H0(P,O(pd− n− 2))→ H0(P, KP(pd)), P 7→ PΩ,

H0(P,O(pd− n− 2))→ H0(P, KP(pX)), P 7→ PΩ

F p
.

Recall that Hn(X,C)ev = Hn(X,C)prim, see Lemma 4.2.8. We can thus extend the
composition of maps (4.9) to get a canonical morphism

αp : H0(P,OP(pd− n− 2))→ Hn(U,C) = Hn(X,C)prim,

P 7→ Res(PΩ/F p|U) ∈ Hn(X,C)prim.
(4.11)

By Theorem 4.2.9, the image of (4.11) is the subspace F n−p+2Hn(X,C)prim.

Theorem 4.3.4. Let d and n be positive integers. Let X be a smooth hypersurface of
degree d in P = Pn+1

C , with defining equation F ∈ Sd. Let J(F ) ⊂ S be the Jacobian
ideal of X, see Definition 4.3.1. For an integer p ≥ 0, define ᾱp as the composition

ᾱp : Spd−n−2 = H0(P,OP(pd− n− 2))→ F n−p+2Hn(X,C)pr

→ F n−p+2Hn(X,C)pr/F
n−p+3Hn(X,C)pr = Hn−p+2,p−2(X)pr.

(4.12)

Then the following sequence is exact:

0→ J(F )pd−n−2 → Spd−n−2 → Hn−p+2,p−2(X)pr → 0. (4.13)

Proof. See [Voi02, Théorème 18.10].

For convenience, we put

t(p) := (n− p+ 1) · d− (n+ 2).

Corollary 4.3.5. Let F ∈ Sd be a non-zero element such that X = {F = 0} ⊂ Pn+1
C

smooth. Then for p ≥ 0, the residue map induces a isomorphism

R(F )t(p) = Hp,n−p(X)pr.

Here, R(F )i = Si/J(F )i is the i-th component of the Jacobian ring R(F ) of X.

Proof. Indeed, we can replace p by t(p) in Theorem 4.3.4 to get the result.
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4.3.3 Infinitesimal variation of Hodge structure for hypersurfaces

We consider the open subset U ⊂ AN defined in Section 4.1.1. Hence, over it, we have
the universal hypersurface

π : X → U. (4.14)

We would like to describe associated the infinitesimal variation of Hodge structure,
i.e., the maps given in (2.19):

∇n−p+2

b : Hn−p+2,p−1(Xb)pr → Hom(TU,b, H
n−p+1,p(Xb)pr).

Here, Xb ⊂ Pn+1 is the fibre of (4.14) above a point b ∈ B. To do so, we consider the
maps

ᾱp : H0(P,OP(pd− n− 2))→ Hn−p+2,p−2(X)pr,

see (4.12).

Theorem 4.3.6. Consider the universal family of smooth hypersurfaces π : X → U of
degree d in Pn+1. Let b ∈ U . Then, for P ∈ H0(P,OP(pd − n − 2)) and H ∈ TU,b =
H0(P,OP(d)), we have

∇n−p+2

b (ᾱp(P ))(H) = −p · ᾱp+1(PH).

Proof. See [Voi02, Théorème 18.13].

Corollary 4.3.7. Consider the universal family of smooth hypersurfaces π : X → U
of degree d in Pn+1. Let b ∈ U . Then the following diagram commutes:

H0(P,OP(pd− n− 2)) //

ᾱp

��

Hom (H0(P,OP(d)), H0(P,OP((p+ 1)d− n− 2)))

��

Hn−p+2,p−2(Xb)pr
− 1

p
·∇n−p+2

b
// Hom(TU,b, H

n−p+1,p−1(Xb)pr).

Here, the upper horizontal arrow is given by multiplication, and the right vertical arrow
is induced by the canonical isomorphism TU,b = H0(P,OP(d)) and the map ᾱp+1.

Lemma 4.3.8. Let n ≥ Z≥1 be a positive integer, and let X → U be the universal
family of smooth hypersurfaces of degree d in Pn+1. Let b ∈ U . Assume that either
n ≥ 3, or that n = 2 and d 6= 4. Then the composition

Sd = H0(Pn+1,OPn+1(d)) = TU,b
ρ−→ H1(Xb, TXb

),

where ρ is the Kodaira–Spencer map, is surjective with kernel J(F )d. Thus, if the pair
(n, d) satisfies n ≥ 3, or n = 2 and d 6= 4, then the following sequence is exact:

0→ J(F )d → Sd = TU,b
ρ−→ H1(Xb, TXb

)→ 0.
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Proof. Write P = Pn+1 and X = Xb ⊂ P. We combine the Euler sequence 0→ OP →
OP(1)⊕(n+2) → TP → 0, see (1.3), with the normal bundle sequence 0→ TX → TP|X →
OX(d)→ 0, see (1.8). By tensoring the former with OX , we obtain an exact sequence

0→ OX → OX(1)⊕(n+2) → TP|X → 0.

Here, we used that OP is flat over OP. This yields the following diagram with exact
rows follows:

H0(OX(1))⊕(n+2)

����

H0(TX) // H0(TP|X)

��

// H0(OX(d)) // H1(TX) // H1(TP|X)

H1(OX) 0.

(4.15)

Here, H1(OX) = H1(X,OX) = 0 because n ≥ 2, see Theorems 1.1.13 and 1.1.8.
Hence, the kernel of

ρ̄ : H0(OX(d))→ H1(TX)

is given by the image of

H0(OX(1))⊕(n+2) → H0(OX(d)), (h0, . . . , hn+1) 7→
∑
i

hi · ∂iF,

hi ∈ H0(OX(1)) = H0(OP(1)).

Here, we use that the exact sequence 0 → IX(1) → OP(1) → OX(1) → 0 and the
canonical isomorphism IX = OP(−d) give rise to an exact sequence

0 = H0(OP(1− d))→ H0(OP(1))
∼−→ H0(OX(1))→ H1(OP(1− d)) = 0.

Similarly, the exact sequence 0 → IX(d) → OP(d) → OX(d) → 0 and the canonical
isomorphism IX = OP(−d) give rise to an exact sequence

0→ H0(OP)
17→F−−−→ H0(OP(d))→ H0(OX(d))→ H1(OP) = 0,

so that we can view H0(OX(d)) as the quotient of H0(OP(d)) by the ideal generated
by F .

The sequence (1.10) induces an exact sequence

0→ TP(−d)→ TP → TP|X → 0, (4.16)

which gives rise to an exact sequence

H0(P, TP)→ H0(X, TP|X)→ H1(P, TP(−d)) = Hn(P, KP ⊗ ΩP(d))∨

∼= Hn(P,ΩP(d− n− 2))∨ = 0.
(4.17)
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Here, the last equality holds by Bott vanishing, because n ≥ 2 (see Theorem 1.1.8).
We conclude that the restriction map H0(P, TP)→ H0(X, TP|X) is surjective.

Furthermore, we have a commutative diagram

H0(P, TP) //

��

H0(X, TP|X)

��

H0(P,OP) // H0(P,OP(d)) //

ρ
,,

H0(X,OX(d))

��

H1(X, TX).

The composition

H0(P, TP)→ H0(X, TP|X)→ H0(X,OX(d))

sends xj∂/∂xj to xi∂F/∂xj|X = xi∂jF |X . The surjectivity of H0(TP) → H0(TP|X)
implies that the kernel of ρ is generated by the images of H0(TP) → H0(OP(d)) and
H0(OP) → H0(OP(d)). Thus, the kernel of ρ is generated by the elements xi∂jF and
by F , hence by J(F )d and by F . The Euler equation (4.10) implies that the ideal
generated by the elements F and xi∂jF (0 ≤ i ≤ n+ 1) equals the ideal generated by
the xi∂jF , which proves that the kernel of ρ : H0(P,OP(d)) → H1(X,OX(d)) equals
J(F )d.

Finally, remark that (4.16) and (4.17) provide us with an exact sequence

H1(P, TP(−d)) = 0→ H1(P, TP)→ H1(X, TP|X)→ H2(P, TP(−d)). (4.18)

By Serre duality, we have

H1(P, TP) = Hn(P,ΩP(−n− 2))∨,

H2(P, TP(−d)) = Hn−1(P,ΩP(d− n− 2))∨.

If n ≥ 3, then we have 1 < n− 1 < n < dim(P) = n+ 1, hence

Hn(P,ΩP(−n− 2))∨ = 0 = Hn−1(P,ΩP(d− n− 2))∨

by Theorem 1.1.8. If n = 2 and d 6= 4, then also Hn(P,ΩP(−n − 2))∨ = 0 =
Hn−1(P,ΩP(d − n − 2))∨, where, in this case, the second equality holds because
d 6= 4 = n+ 2, see Theorem 1.1.8.

Consequently, for all (n, d) such that n ≥ 2 and d 6= 4 if n = 2, we have

H1(P, TP) = 0 = H2(P, TP(−d)).

Thus, by the exactness of (4.18), we get H1(X, TP|X) = 0 in that range as well. The
horizontal exact sequence in (4.15) then allows us to conclude.
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4.4 Lecture 14: Jacobian ring & proof of infinitesimal Torelli

In this section, let again k be any field whose characteristic is coprime to d and d− 1,
and fix a non-zero polynomial F ∈ Sd such that X = {F = 0} ⊂ Pn+1

k is smooth. The
goal will be to prove the following:

Theorem 4.4.1. Let F ∈ Sd be a non-zero homogeneous degree d polynomial, with
associated hypersurface X = {F = 0} ⊂ Pn+1, and assume that X is smooth. Let
R := R(X) be the Jacobian ring of X. Then R is a naturally graded artinian local ring
and a finite-dimensional k-algebra, and has the following properties.

(1) The Poincaré polynomial of R is given by

P (R) :=
∞∑
i=0

dim(Ri)t
i =

(
1− td−1

1− t

)n+2

.

(2) We have Ri = 0 for i > σ and Rσ
∼= k.

(3) The determinant of the Hessian H(F ) generates Rσ.

(4) Multiplication defines a perfect pairing

Ri ×Rσ−i −→ Rσ
∼= k. (4.19)

Before we prove Theorem 4.4.1, we show that it implies Theorem 4.1.3.

Proof of Theorem 4.1.3. First, observe that J(F )d ⊂ Sd is the tangent space to F at
the orbit GLn+2(C) · [F ], where [F ] ∈ Sd = H0(P,OP(d)) is the point that gives F (see
e.g. [Voi02, Remarque 18.16]). Recall that B′ = B/GLn+2(C). From this we onclude
that, if b ∈ B′ is the image of [F ] ∈ B, then

TbB
′ = Sd/Jd = Rd, (4.20)

which is the degree d part of the Jacobian ring R of F .
In view of Lemma 4.3.8, we can conclude from this that the Kodaira–Spencer map

ρ′ : TbB
′ → H1(Xb, TXb

) (4.21)

is an isomorphism. By Corollary 4.3.7, via the isomorphisms

Rpd−n−2
∼= Hn+1−p,p−1

pr , R(p+1)d−n−2
∼= Hn−p,p

pr ,

and
TbB

′ ∼= H1(Xb, TXb
) ∼= Rd (given by (4.20) and (4.21)),

the map ∇n+1−p
b identifies, up to a non-zero coefficient, with

Rpd−n−2 → Hom(Rd, R(p+1)d−n−2).
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There exists p ≥ 0 such that either 0 ≤ t(p) ≤ σ − 3 or Rd = 0, unless (n, d) = (2, 3)
(cubic surfaces). Hence, by Theorem 4.4.1, multiplication in R gives an injection

Rd ↪→ Hom(Rt(p), Rt(p)+d).

Via Proposition 2.3.18, the theorem follows.

Proof of Theorem 4.4.1. Write fi := ∂iF . Then f0, . . . , fn+1 ∈ S is a regular sequence
of homogeneous polynomials of degree d − 1. For an exact sequence of graded S-
modules

0→Mm → · · · →M0 → 0,

the additivity of the Poincaré polynomial implies∑
(−1)jP (M j) = 0.

Now, define Ri = S/(f0, . . . , fi), and consider the sequence

0→ Ri−1 ·fi−→ Ri−1 → Ri → 0.

This is exact, as the sequence f0, . . . , fn+1 is a regular sequence. Consequently,

P (Ri) = P (Ri−1)− P (fi ·Ri−1) = P (Ri−1)− td−1P (Ri−1) = (1− td−1)P (Ri−1).

By induction,

P (R) = P (Rn+1) = (1− td−1)P (Rn) = (1− td−1)n+1P (R0) = (1− td−1)n+2P (S).

Now P (S) = P (k[x0, . . . , xn+1]) = 1/(1− t)n+2. The first item follows.
Item (2) follows from Item (1). Indeed, note that

deg(P (R)) = (n+ 2) · deg(1 + t+ . . .+ td−2) = (n+ 2) · (d− 2) = σ;

to prove that dimRσ = 1, we use again that

P (R)(t) = P (R) = (1 + t+ . . .+ td−2)n+2.

It remains to prove that the pairings (4.19) are perfect. Notice that

P (R)(t) = P (R)(tσ) · P (R)(1/t).

Hence dimRi = dimRσ−i. Therefore, it suffices to show that for each homogeneous

g 6∈ (fi)

there exists a homogeneous polynomial h with 0 6= ḡ · h̄ ∈ Rσ. Equivalently, one must
show that the degree σ part (ḡ)σ ⊂ R of the homogeneous ideal (ḡ) ⊂ R is not trivial.
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Let us prove this. Let i be maximal so that (ḡ)i 6= 0, and pick 0 6= Ḡ ∈ (ḡ)i. Suppose,
for the sake of contradiction, that i < σ. Then Ḡ · (x̄0, . . . , x̄n+1) ⊂ (ḡ)i+1 = 0. Hence

G · (x0, . . . , xn+1) ⊂ (f0, . . . , fn+1).

Consequently, the map
k → R, 1 7→ Ḡ

defines a non-trivial morphism of S-modules, which is not a scalar-multiple of any
such a morphism induced by the isomorphism Rσ

∼= k. In particular, we must have
dimk HomS(k,R) > 1. We conclude by using the lemma below.

Lemma 4.4.2. Let S → R be as above. Then dimk HomS(k,R) = 1.

Proof. Let V ∗ be the vector space V ∗ = 〈x0, . . . , xn+1〉. Then consider the Koszul
complex

K•(fi) :

(
n+2∧

V ∗ → · · · →
k∧
V ∗ → · · · →

2∧
V ∗ → V ∗ → k

)
⊗k S,

concentrated in homological degrees (n+ 2, n+ 1, . . . , 1, 0), with differentials

∂p(xi1 ∧ · · · ∧ xip) =
∑

(−1)jfij · xi1 ∧ · · · x̂ij ∧ · · · xip .

It is a standard fact that for a regular sequence (fi), the Koszul complex is exact in
degree 6= 0 with

H0(K•(fi)) ∼= Coker(V ∗ ⊗ S → S) ∼= R = S/(f0, . . . , fn+1).

Then, split the Koszul complex K•(fi) into short exact sequences as follows:

0→ Ker(δ0)→ S → R→ 0,

0→ Ker(δ1)→ V ∗ ⊗k S → Ker(δ0)→ 0,

0→ Ker(δ2)→
2∧
V ∗ ⊗k S → Ker(δ1)→ 0,

0→ Ker(δ3)→
3∧
V ∗ ⊗k S → Ker(δ2)→ 0,

· · ·

0→
n+2∧

V ∗ ⊗k S →
n+1∧

V ∗ ⊗k S → Ker(δn)→ 0.

Observe that

ExtiS(k,

p∧
V ∗ ⊗ S) = 0 ∀i < n+ 1.

Therefore, the above short exact sequences induce a sequence of embeddings

HomS(k,R) ↪→ Ext1
S(k,Ker(∂0)) ↪→ · · · ↪→ Extn+2

S (k,
n+2∧

V ∗ ⊗ S) ∼= k.

Consequently, dimk HomS(k,R) ≤ 1. The map k ∼−→ Rσ ⊂ R gives a non-zero map of
S-modules. Hence dimk HomS(k,R) ≥ 1 and the lemma follows.
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Chapter 5

Linear subspaces and quadric
fibrations

5.1 Lecture 15: Linear subspaces of cubic hypersurfaces

Lemma 5.1.1. Let k be a field of characteristic zero and let X ⊂ Pn+1
k be a smooth

hypersurface of degree d ≥ 2. The dimension of any linear subspace contained in X is
not greater than n/2.

Proof. Let a1, . . . , aN be the coefficients of any polynomial F that defines X in Pn+1
k .

Then X has a model over K := Q(a1, . . . , aN) ⊂ k. Say Y is a smooth hypersurface
over K such that Yk ∼= X.

Suppose that X contains a linear subspace P ⊂ X of dimension `. Let b1, . . . , bM
be the coefficients of any polynomial that defines P in Pn+1

k . Then, over the field

L := Q(a1, . . . , aN , b1, . . . , bM) ⊃ K,

the hypersurface YL = Y ×K L contains a linear subspace of dimension `. Choosing an
embedding Y ⊂ C, we get that YC = Y ×K C contains a linear subspace of dimension
`. In particular, to prove the lemma, we may assume that k = C.

In this case, if h ∈ H2(X,Z) is the class of a hyperplane, we have

H2i(X,Z) = Z · hi if 2i < n. (5.1)

See Corollary 1.2.7. Let P` ⊂ X be a linear subspace, and suppose that ` > n/2. If

c = n− `

is the codimension of P` in X, then c = n− ` < n− n/2 = n/2 so that (5.1) gives:

[P`] = m · hc, m ∈ Z.

Let j : X ↪→ Pn+1 be the inclusion, and let H ∈ H2(Pn+1,Z) be the class of a hyper-
plane. Then j∗(H) = h, and

[P`] ∪ h` = [P`] ∪ j∗(H`) = j∗[P`] ∪H` = Hc+1 ∪H` = 1.
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However,
[P`] ∪ h` = m ∪ hc+` = m ∪ hn = m · d.

We conclude that m · d = 1, which is absurd as d > 1. Hence ` ≤ n/2 as desired.

Lemma 5.1.2. Let k be a field, and let X = V (F ) ⊂ Pn+1
k be a smooth hypersurface

of degree d ≥ 2. Let P ⊂ X be a linear subspace such that dim(P ) > n/2. Then there
exists a point a ∈ P such that ∂iF (a) = 0 for all i ∈ {0, . . . , n+ 1}.

In particular, if char(k) - d, then

dim(P ) ≤ n/2

for any linear subspace P ⊂ X.

Proof. Let ` = dim(P ). We claim that ` ≤ n/2. We may assume that P =
V (x`+1, . . . , xn+1) ⊂ X. Therefore, we can write

F =
n+1∑
j=`+1

xjGj, Gj ∈ k[x0, . . . , xn+1].

As d ≥ 2, we have deg(Gj) ≥ 1. Notice that if a ∈ P = V (x`+1, . . . , xn+1), then we
can write a = [a0 : · · · : a` : 0 : · · · : 0] hence

∂iF (a) =

(
n+1∑
j=`+1

xj∂iGj

)
(a) = 0 ∀i ≤ `,

∂iF (a) = Gi(a) + (xi∂iGi)(a) = Gi(a) + ai∂iGi(a) = Gi(a) ∀i ≥ `+ 1.

Assume, for the sake of contradiction, that ` > n/2. Then

V (G`+1, . . . , Gn+1) ∩ P` 6= ∅

for codimension reasons (see e.g. [Har77, Chapter I, Theorem 7.2] or [Ful98, §8.2, p.
137]). Therefore, there exists a ∈ P such that

Gi(a) = ∂iF (a) = 0 ∀i ∈ {`+ 1, . . . , n+ 1} ,

It follows that ∂i(F ) = 0 for all i ∈ {0, . . . , n+ 1}. As P ⊂ X, we have a ∈ X. Via the
Jacobian criterion, this contradicts the smoothness of X at a ∈ X. Hence ` < n/2.

Exercise 5.1.3. Let X = V (F ) ⊂ Pn+1 be a hypersurface of degree d. Assume that
for some i ∈ {0, . . . , n+ 1}, the degree of F as a polynomial in xi is less than or equal
to d− 2. Show that X is singular.

Example 5.1.4. Let F = x2
0x

2
2 + x0x

3
2 + x4

1, and consider the plane quartic curve
X = V (F ) ⊂ P2. Then d = 4 and degx0

(F ) = 2 = d − 2. Let a = [1 : 0 : 0] ∈ P2(k).
Then F (a) = 0. Moreover, ∂0F = 2x0x

2
2 + x3

2, ∂1F = 4x3
1 and ∂2F = 2x2

0x2 + 3x0x
2
2.

Thus, we have F (a) = ∂iF (a) = 0 for i ∈ {0, 1, 2}, hence X is singular at a.
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Remark 5.1.5. Let k = F3, and consider the cubic

X = V (F ) ⊂ P1
k, F = x2

0x1 − x0x
2
2 ∈ k[x0, x1, x2].

Then X = V (F ) is smooth. However, ∂0F = 2x0x1 − x2
1 = 2x0x1 + 2x2

1 and ∂2F =
x2

0 − 2x0x1 = x2
0 + x0x1 both vanish at [1 : − 1].

Thus, it is not true, for an arbitrary field k and polynomial F ∈ k[x0, . . . , xn+1]d
of degree d ≥ 0, that the condition ∩iV (∂iF ) 6= ∅ implies that V (F ) is singular (even
though this does hold when char(k) - deg(F ) by the Euler equation, see (4.10)).

Exercise 5.1.6. Let k = F3. Does there exist a smooth cubic threefold X ⊂ P4
k such

that X contains a plane P ⊂ P4
k? Does there exists a smooth cubic fivefold X ⊂ P6

k

such that X contains a linear subspace P ⊂ P6
k of dimension three?

5.1.1 Linear subspaces of generic cubic hypersurfaces
Let C be a smooth projective connected curve C over a field k. For a divisor D on
C, let |D| denote the set of all effective divisors on C which are linearly equivalent to
D. We have a canonical identification |D| = PH0(C,OC(D)), see [Har77]. A linear
series (or linear system) is a tuple (D,P(V ) ⊂ |D|), where D is a divisor on C and
P(V ) ⊂ |D| is a linear subspace, defined by a vector subspace V ⊂ H0(C,OC(D)).
The dimension of this linear series is the dimension of P(V ), and the degree of this
linear series is the degree of D. The linear system (D,P(V )) is complete if P(V ) = |D|.

Lemma 5.1.7. Let C ⊂ P2 be a smooth plane curve of degree d ≥ 4. Then we have
h0(C,OC(1)) = 3. Moreover, |OC(1)| is the unique linear system on C of degree d and
dimension two on C.

Proof. See [Arb+85, p. 18, Exercise 56].

Lemma 5.1.8. Let X be a proper integral variety over a field k. For any field extension
k′ of k, the map Pic(X)→ Pic(X ′) is injective, where X ′ = X ×k k′.

Proof. Let π : X ′ → X be the canonical morphism. Let L be a line bundle onX and let
L′ = π∗(L). By cohomology and flat base change, we haveH0(X,L)⊗kk′ = H0(X ′,L′),
see [Stacks, Tag 02KH]. Therefore, if L′ is trivial, then there exists 0 6= s ∈ H0(X,L)
and 0 6= t ∈ H0(X,L∨). Thus, there is a non-trivial morphism s : OX → L, whose
dual is a morphism s∨ : L∨ → OX . Similarly, there is a non-trivial morphism t : OX →
L∨. The composition s∨ ◦ t is a morphism OX → L∨ → OX , giving an element
r ∈ H0(X,OX) = k which is non-zero on a dense open subset U ⊂ X. Hence r ∈ k∗
is invertible, which implies that s∨ ◦ t is an isomorphism. Hence t : OX → L∨ is
injective. Thus, for each x ∈ X, the map t(x) ∈ L∨ ⊗ k(x) is non-zero and hence an
isomorphism; in particular, the maps tx : OX,x → L∨x are isomorphisms (Nakayama’s
lemma, cf. Lemma 3.1.2). Consequently, the map t : OX → L∨ is an isomorphism.

Proposition 5.1.9. Let S ⊂ P3 be a smooth hypersurface of dimension two in P3 over
a field k, which has degree d ≥ 1.
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(1) If char(k) = 0, then Pic(S) is torsion-free.

(2) If d = 3, then Pic(S) is torsion-free.

Proof. Assume char(k) = 0. Let a1, . . . , aN be the coefficients of any polynomial F
that defines S in P3

k. Define K := Q(a1, . . . , aN) ⊂ k. Then K ⊂ k, and there exists
a smooth surface Y ⊂ P3

K of degree d over K such that Yk ∼= S. By Lemma 5.1.8, we
have Pic(Y ) = Pic(S). We may therefore assume that k ⊂ C. Applying Lemma 5.1.8
again, we may assume that k = C. The restriction map H1(P3,OP3) → H1(S,OS) is
an isomorphism by Theorem 1.1.13, because p + q = 0 + 1 < n = 2. In particular,
H1(S,OS) = 0. The vanishing of H1(S,OS) implies that the map Pic(S)→ H2(S,Z)
is injective. Moreover, H2(S,Z) is torsion-free, see Corollary 1.4.1. Hence, Pic(S) is
torsion-free also.

Assume d = 3. In light of Lemma 5.1.8, one may assume k = k̄. The result follows
from [Man86, Proposition 25.1].

Question 5.1.10. Let S ⊂ P3 be a smooth hypersurface of dimension two and degree
d ≥ 4 over a field k. Assume char(k) = p > 0. Is Pic(S) torsion-free?

Proposition 5.1.11. Let k be a field of characteristic zero. Let (n, d) be positive
integers with (n, d) 6∈ {(1, 3), (2, 4)}. Consider two smooth hypersurfaces X ⊂ Pn+1

and X ′ ⊂ Pn+1 over k, of degree d and dimension n. Then any isomorphism f : X ∼= X ′

lifts to an automorphism of Pn+1.

Proof. It suffices to show f ∗OX′(1) ∼= OX(1). First assume n ≥ 3. Then Pic(Y ) =
Z · OY (1) for any smooth degree d hypersurface Y ⊂ Pn+1, see Theorem 3.3.14. In
particular, f ∗OX′(1) ∼= OX(1), because both sheaves are ample generators of Pic(X).

Next, assume n = 2 but d 6= 4. We have ωX ∼= OX(d− 4), see Proposition 1.1.12,
which is a non-trivial multiple of OX(1) (because d 6= 4). Clearly, f ∗ωX′ ∼= ωX .
Therefore, there exists m ∈ Z − {0} such that m · f ∗OX′(1) ∼= m · OX(1) (namely,
one can take m = d − 4). By Proposition 5.1.9, we have that Pic(X) is torsion-free.
Consequently, f ∗OX′(1) ∼= OX(1) as desired.

It remains to treat the case n = 1, d 6= 3. Thus X = C and X ′ = C ′ are smooth
plane curves of degree d 6= 3. We may assume d ≥ 4, for if d ≤ 2 then C and C ′ are
rational and thus have Picard group free of rank one. If d = 4 then the embedding
C ↪→ P2 is canonical, that is, KC = OC(1). As f ∗KC′

∼= KC , we are done in this case.
Assume d ≥ 5. This implies g = (d− 1)(d− 2)/2 ≥ 6. In particular, the isomorphism
f : C ∼= C ′ satisfies f ∗OC′(1) ∼= OC(1) because of Lemma 5.1.7.

Question 5.1.12. Let Si ⊂ P3
k (i = 1, 2) be smooth hypersurfaces of degree d ≥ 1.

Assume that char(k) = p > 0 and that d 6= 4. Assume there exists an isomorphism
f : S1

∼= S2. Do we have f ∗OS′(1) ∼= OS(1)?
Compare Question 5.1.10. Compare [Har10, p. 143, Exercise 21.1.(c)].

Lemma 5.1.13. Let P = Pn+1. Let P ⊂ P be a linear subspace of dimension `−1 > 0.
Consider the subspace

H0(P, IP (3)) ⊂ H0(P,OP(3)) (5.2)
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classifying cubic homogeneous polynomials F ∈ k[x0, . . . , xn+1] such that X = V (F )
contains the linear subspace P . Then

dimH0(P, IP (3)) = dimH0(P,OP(3)⊗ IP ) =

(
n+ 4

3

)
−
(
`+ 2

3

)
.

Proof. We have an exact sequence

0→ IP (3)→ OP(3)→ OP (3)→ 0.

Therefore, we obtain an exact sequence

0→ H0(P, IP (3))→ H0(P,OP(3))→ H0(P,OP (3))→ H1(P, IP (3))→ 0.

Observe that
H1(P, IP (3)) = 0.

Therefore, h0(P, IP (3)) = h0(P,OP(3))− h0(P,OP (3)) and, hence, we have

h0(P, IP (3)) = h0(P,OP(3))− h0(P,OP (3)) =

(
n+ 4

3

)
−
(
`+ 2

3

)
.

The lemma follows.

Corollary 5.1.14. Let Mn be the coarse moduli space of smooth cubic hypersurfaces
of dimension n. Let P ⊂ Pn+1 be a linear subspace of dimension `− 1 > 0. Then, we
have that dim |OP(3)⊗ IP | < dimMn if and only if (n+ 2)2 <

(
`+2

3

)
+ 1.

Corollary 5.1.15. Suppose that n, ` and d are positive integers with ` > 1. Assume

(n+ 2)2 <

(
`+ 2

3

)
+ 1.

Then the generic smooth cubic hypersurface X ⊂ Pn+1
k does not contain a linear sub-

space of dimension k − 1.

Proof. Look at the composition
∣∣OPk̄

(3)⊗ IP
∣∣→ ∣∣OPk̄

(3)
∣∣→Mn(k̄).

Remark 5.1.16. We know that PGLn+2(k) acts on H0(Pn+1
k ,O(1)). The latter can

be identified with the space (Pn+1(k))∨ of hypersurfaces in Pn+1
k . Hence PGLn+2(k)

acts naturally on (Pn+1(k))∨. One may wonder how this action is defined, explicitly.
Any point a = [a0 : · · · : an+1] defines a hyperplane H(a) := {

∑
i aixi = 0} ⊂ Pn+1.

The association a 7→ H(a) defines an isomorphism Pn+1 → (Pn+1)∨, where the latter
denotes the space of hyperplanes in Pn+1. This isomorphism is PGLn+2-equivariant, if
we let PGLn+2 act on (Pn+1)∨ by sending a linear polynomial F = F (x0, . . . , xn+1) to
g · F = F (g−T (x0, . . . , xn+1)), for g ∈ PGLn+2(k).

Proposition 5.1.17. Let ` ≥ 2 be an integer. Let n ∈ Z≥0. Consider the following
assertions A1(`) and A2(`), that depend on `:
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A1(`). We have the inequality

k(n+ 2− k) <

(
k + 2

3

)
. (5.3)

A2(`). The generic cubic threefold X ⊂ Pn+1 does not contain a linear subspace P ⊂
Pn+1 of dimension `− 1.

Then A1(`) =⇒ A2(`).

Proof. Let P ⊂ Pn+1 be a linear subspace of dimension ` − 1. Assume that P =
{xk = · · · = xn+1 = 0}. Define

G(k̄) ⊂ GLn+2(V )

as the subgroup of matrices of the form(
A 0
C D

)
with A,B ∈ GLk(k̄), C ∈ Mc(k̄), k + c = n+ 2.

Let G(k̄) act on Pn+1(k̄) via the embedding G(k̄) ⊂ GLn+2(k̄) and the action of
GLn+2(k̄) on Pn+1(k̄). Notice that G(k̄) arises as the group of k̄-points of a closed
subgroup scheme G ⊂ GLn+2 over k, and that the above action extends to an action
of G on Pn+2 over k.

Observe that with respect to this action, G stabilizes the subspace P ⊂ Pn+1.
In particular, with respect to the induced action on H0(Pn+1,O(3)), G stabilizes the
subspace (5.2) of global sections of IP (3). Consider the natural morphism

ϕ : MP
n (k̄) := G(k̄) \

(
H0(Pn+1

k̄
, IPk̄

(3))− {0}
)

→ GLn+2(k̄) \
(
H0(Pn+1

k̄
,O(3))− {0}

)
= Mn(k̄),

where Mn denotes the coarse moduli space of all cubic hypersurfaces of dimension n.
Observe that if ϕ is not surjective, then assertion A2(`) holds. Thus, it suffices to show
that A1(`) implies that ϕ is not surjective.

We calculate the dimension of G. It is given by the dimension of the spaces of ma-
trices A ∈ GLn+2(k̄) minus the dimension of the space of matrices C ∈ M(n+2−`)×`(k̄).
As such, it equals:

dim(G) = (n+ 2)2 − `(n+ 2− `).

Therefore

dimMP
n (k̄) < dimMn(k̄) ⇐⇒(

n+ 4

3

)
−
(
`+ 2

3

)
− (n+ 2)2 + `(n+ 2− `) <

(
n+ 4

3

)
− (n+ 2)2 ⇐⇒

`(n+ 2− `) <
(
`+ 2

3

)
.

The proposition follows.
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Corollary 5.1.18. The generic cubic fourfold does not contain a plane.

Proof. Then

3(n− 1) <

(
5

3

)
= 10 ⇐⇒ n < 5.

In view of Proposition 5.1.17 applied to the case ` = 3, the corollary follows.

Remark 5.1.19. Recall that, if char(k) 6= 3, then a smooth cubic hypersurface of
dimension n does not contain a linear subspace of dimension > n/2, see Proposition
5.1.2. In particular, if char(k) 6= 3, then no smooth cubic threefold contains a plane.

Proposition 5.1.20. Let X ⊂ Pn+1
C be a cubic hypersurface over C. Assume that

n = dim(X) ≥ 12. Then X contains a plane.

Proof. Let F ∈ C[T0, . . . , Tn+1] be homogeneous polynomial of degree three. Given
three vectors x, y, z ∈ Cn+2, consider the condition

(?) F (λx+ µy + νz) = 0 in C[λ, µ, ν].

We prove the proposition via the following steps.

(1) The dimension of (Cn+2)⊕3 equals 3n+ 6.

(2) Condition (?) yields ten equations on the coordinates of x, y, z ∈ C.

(3) Let V (?) ⊂ (Cn+2)⊕3 be the space of triples x, y, z such that (?) holds. By (1)
and (2), the dimension of V (?) is at least 3n+ 6− 10 = 3n− 4.

(4) The dimension of the space of all triples such that x, y, z are linearly dependent
is 2(n+ 2) + 2 = 2n+ 6.

(5) Hence, if 2n + 6 < 3n− 4, then 2n + 6 < dim(V (?)) by (3). If that is the case,
there must be a linearly independent triple (x, y, z) ∈ V (?).

(6) Remark that 2n+ 6 < 3n− 4 if and only if n ≥ 11. We conclude that if n ≥ 11,
then there is a linear subspace

P ⊂ X = {F = 0} ⊂ Pn+1
C

of dimension two.

This proves the proposition.
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5.2 Lecture 16: Quadric fibrations of cubic hypersurfaces

Let X ⊂ Pn+1 be a smooth cubic hypersurface. Suppose that X contains a linear
subspace P ⊂ Pn+1 with dim(P ) = ` − 1. Let y ∈ Pn+1 − P , and let yP ⊂ Pn+1

be the linear subspace spanned by y and P . Then yP ∼= P`. Hence X ∩ yP is an
`− 1-dimensional subspace of X, containing P , so that

X ∩ yP = P ∪Q for some subscheme Q ⊂ Pn+1.

We call Q the residue of the subscheme P ⊂ X ∩ yP . Let us calculate the degree of
the closed subscheme Q ⊂ Pn+1. For a hyperplane H ⊂ Pn+1, we have:

deg
(
X ∩ yP

)
= deg(P ∪Q) = P ·Hn+1−(`−1) +Q ·Hn+1−(`−1) = 1 + deg(Q).

Notice that yP ≡ Hn+1−` (numerical equivalence), so that

deg
(
X ∩ yP

)
= deg

(
3H ·Hn+1−`) = 3.

We conclude that deg(Q) = 2, i.e., the subscheme Q ⊂ yP ∼= P` is a quadric.

Example 5.2.1. LetX ⊂ P3 be a cubic surface and P = {p} ⊂ X for some p ∈ X. Let
y 6= p ∈ P3. The line yp ⊂ P3 intersects X in three points (counted with multiplicity).
Hence yp = {p} ∪Q with Q = {q1, q2} or Q = 2 {q}, as a divisor Q ⊂ yp ∼= P1. In any
case, X ∩ yp is given by a homogeneous cubic polynomial in two variables; splitting
off the linear factor that defines p ∈ X gives a quadratic polynomial that defines Q.

We will consider the following result, without providing a proof.

Theorem 5.2.2. Let X ⊂ Pn+1 be a smooth cubic hypersurface. Assume that there is
a linear subspace P ⊂ Pn+1 with P ⊂ X, such that dim(P ) = ` − 1 and there is no
linear subspace P ′ ⊂ Pn+1 of dimension ` such that P ⊂ P ′ ⊂ X.

Let W ⊂ V be a subspace of dimension ` so that P = P(W ) ⊂ P(V ) = Pn+1.
Choose a linear subspace P(U) ⊂ P(V ) of codimension ` that does not intersect P(W ).
Then the linear projection from P defines a diagram

BlP (Pn+1)
φ

((

BlP (X)
ψ
//

OO

P(V/W ) ∼= Pn+1−`

with the following properties:

(1) With respect to the isomorphisms P(U) ∼= P(V/W ) ∼= Pn+1−`, the fibre

ψ−1(y) ⊂ BlP (X), y ∈ Pn+1−`

is the quadric Qy ⊂ yP = φ−1(y) which is the residual quadric of P ⊂ yP ∩X.
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(2) There exists a divisor DP ∈ |OPn+1−`(`+ 3)| such that the fibres of ψ are singular
exactly over DP ⊂ Pn+1−`.

(3) The morphism ψ : BlP (X)→ Pn+1−` is flat.

Proof. See [Huy23, Chapter 1, Proposition 5.3].

We discuss some applications, and some questions related to rationality and uni-
rationality of cubic hypersurfaces.

Corollary 5.2.3. Assume X ⊂ Pn+1 is a smooth cubic hypersurface of even dimension
containing a linear subspace P ∼= Pn/2 ⊂ Pn+1. The linear projection from P defines a
quadric fibration BlP (X)→ Pn/2 with discriminant divisor DP ∈ |O((n/2) + 3)|.

Proof. See Theorem 5.2.2 and Proposition 5.1.2.

Corollary 5.2.4. Assume that a smooth cubic hypersurface X ⊂ Pn+1 of even di-
mension n = 2m contains two linear subspaces P(W ) ⊂ X and P(W ′) ⊂ X, both of
dimension m, such that P(W ) ∩ P(W ′) = ∅. Then:

(1) the quadric fibration ψ : BlP (X)→ P(W ′) of Theorem 5.2.2 admits a section;

(2) X is rational.

Proof. The existence of the section is clear. As any quadric admitting a rational
point is rational, the scheme-theoretic generic fibre φ−1(η) is a rational quadric over
K(W ′) ∼= K(Pn+1). Hence, BlP (X) is rational and, therefore, X itself is.

Alternatively, to prove that X is rational, one may proceed as follows. Consider
the rational map

f : P (W )× P (W ′) 99K X, (x, x′) 7→ p ∈ X : xx′ ∩X = {x, x′, p} . (5.4)

The map f is well-defined for all (x, x′) for which the line xx′ is not contained in X,
hence on a non-open subset of P (W )× P (W ′).

Let y ∈ X \ (P ∪ P ′). Then there exists a unique x ∈ P and a unique x′ ∈ P ′

such that xx′ ∩X = {x, x′, y}. Hence f is generically injective on k̄-points, so that, if
char(k) = 0, then f is birational. Indeed, this follows from Corollary 5.2.6 below.

With no assumptions on k, (5.4) has a rational inverse X 99K P (W )×P (W ′).

Lemma 5.2.5. Let k be a field and let V and W be integral k-varieties. Suppose
that V → W is a dominant morphism such that k(W ) → k(V ) is a separable field
extension. Then there is a dense open subscheme U ⊂ V such that U → W is smooth.

Proof. If k = k̄ and char(k) = 0, apply [Har77, Chapter III, Section 10, Corollary 10.7]
to the composition X̃1 → X1 → X2, where X̃1 → X1 is a resolution of X1.

For arbitrary k, see [EGAIV, Quatrième partie, Proposition 17.7.8(ii)]. Alterna-
tively, one may apply [Stacks, Tag 07ND], see also [Stacks, Tag 00TB].
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Corollary 5.2.6. Let f : X1 → X2 be a dominant map of integral varieties over a field
k of characteristic zero, generically injective on k̄-points. Then f is birational.

Proof. We have dim(X1) = dim(X2). There are non-empty affine opens U ⊂ X1 and
V ⊂ X2 such that U → V is finite, bijective, and smooth, see [Stacks, Tag 02NW] and
Lemma 5.2.5. Thus, f is finite locally free of rank one, see [Stacks, Tag 02KB]. This
means that f is an isomorphism.

Examples 5.2.7. (1) Let

X = V (x3
0 + · · ·+ x3

5) ⊂ P5.

Let P1 = V (x0−ζx1x2−ζ2x3, x4−ζ3x5) and P2 = V (x0−ζ2x1x2−ζ3x3, x4−ζx5),
where ζ is a primitive third root of unity.

(2) Let

X = V (F ) ⊂ P5, F = x2
0x1 − x0x

2
1 + x2

2x3 − x2x
2
3 + x2

4x5 − x4x
2
5.

Then X contains P = V (x0, x2, x4) and P ′ = V (x1, x3, x5).

Proposition 5.2.8. Assume k = k̄. Let X be a smooth cubic hypersurface of dimen-
sion at least two. Then X is unirational.

Proof. Let n = dim(X) ≥ 2. Let Yi ⊂ X be generic hyperplane sections for i = 1, 2.
Consider the map

Y1 × Y2 99K X, (y1, y2) 7→ x ∈ X : y1y2 ∩X = {x, y1, y2} .

This map is dominant, and has a rational inverse. Thus, by induction, we are reduced
to the case n = dim(X) = 2. In this case, in view of Corollary 5.2.4, it suffices to show
that X, as a smooth cubic surface, contains two disjoint lines. For this, see Section
7.2.

In fact, a much more precise result holds:

Theorem 5.2.9. Let k be a field and X ⊂ Pn+1 a smooth cubic hypersur-face of
dimension n ≥ 2 over k. Then X is unirational if and only if X has a k-point.

Proof. See [Kol02].
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Chapter 6

Deformation theory

6.1 Lecture 17: Deformation theory over the dual numbers

Throughout this section, k is a field, t is a variable, andD = k[t]/(t2). A good reference
for the material in this section is [Har10, Chapter 1].

6.1.1 Infinitesimal deformations of a subscheme
Lemma 6.1.1. Let M be a module over a noetherian ring. Then M is flat over A if
and only if for every prime ideal p ⊂ A, we have TorA1 (M,A/p) = 0.

Proof. By definition,M is flat over A if and only if TorA1 (M,−) = 0 as a functor on the
category of A-modules. Now Tor commutes with direct limits, and every A-module is
a direct limit of finitely generated A-modules. If N is finitely generated, then N has
a filtration with quotients of the form A/pi for various prime ideals pi ⊂ A.

Lemma 6.1.2. Let A′ be a noetherian ring and J ⊂ A′ an ideal of square zero. Define
A = A′/J . Then an A′-module M ′ is flat over A′ if and only if

(1) M = M ′ ⊗A′ A is flat over A, and

(2) the natural map M ⊗A J →M ′ is injective.

Proof. Consider the diagram of exact sequences

0

��

0

��

0 // J // p′

��

// p //

��

0

0 // J // A′

��

// A //

��

0

A′/p′

��

A/p

��

0 0.
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Tensoring it with M ′, yields:

0

��

0

��

TorA
′

1 (M ′, A′/p) //

��

TorA1 (M,A/p)

��

M ⊗A J //M ′ ⊗A′ p′ //

��

M ⊗A p

��

// 0

M ⊗A J //M ′

��

//M

��

// 0

M ′ ⊗A′ A′/p′

��

M ⊗A A/p

��

0 0.

By hypothesis (2), the second horizontal sequence is exact, and hence also the first.
Thus, the Tors on top are isomorphic. The second Tor is zero by hypothesis (1), and
we are done by Lemma 6.1.1.

Definition 6.1.3. Let D = k[t]/(t2) for some field k. Let X be a scheme over k and
let Y ⊂ X be a closed subscheme. We define a deformation of Y over D in X to be
a closed subscheme

Y ′ ⊂ X ′ := X ×k D,

flat over D, such that Y ′ ×D k = Y as subschemes of X.

Proposition 6.1.4. Let X = Spec (B) be an affine scheme over k. Let Y = Spec (B/I) ⊂
X for some ideal I ⊂ B. Then the following sets are in bijection:

(1) The set of deformations of Y over D in X.

(2) The set of ideals I ′ ⊂ B′ := B[t]/(t2) with B′/I ′ flat over D and such that the
image of I ′ in B = B′/tB′ is I ⊂ B.

(3) The set HomB(I, B/I).

Proof. The bijection between (1) and (2) is clear. Let I ′ ⊂ B′ be an ideal with image
I ⊂ B. Then the flatness of B′/I ′ over D is equivalent to the exactness of the sequence

0→ B/I
t−→ B′/I ′ → B/I → 0, (6.1)

which is in turn equivalent to the exactness of the sequence

0→ I
t−→ I ′ → I → 0.
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Note that, as B-modules, we have B′ = B ⊕ tB. Take an element x ∈ I and lift it to

x+ ty ∈ I ′ ⊂ B ⊗ tB.

Then the image ȳ ∈ B/I of the element y ∈ B does not depend on the choice of lift of
x, and we get a morphism ϕ : I → B/I that sends x to ȳ.

Conversely, given ϕ ∈ HomB(I, B/I), consider the map π : B → B/I and define

I ′ = {x+ ty | x ∈ I, y ∈ B, π(y) = ϕ(x) ∈ B/I} .

In other words, I ′ is the fibre product of I and B over B/I (via the morphisms π and
ϕ). Then I ′ is an ideal of B′ = B ⊗ tB, and there is an exact sequence

0→ I
t−→ I ′ → I → 0.

Thus, (6.1) is exact, hence we get an element of the set (2). These constructions are
inverse and define the bijection between the sets (2) and (3).

Corollary 6.1.5. Let X be a scheme over a field k and let Y be a closed subscheme
of X. Then, the deformations of Y over D in X are in natural bijection with the
elements of H0(Y,NY/X).

Proof. Let Y ⊂ X be a closed subscheme of a scheme X over k. By Lemma 6.1.4, we
have a natural bijection between the set of deformations Y ′ ⊂ X ′ of Y ⊂ X and the
set Hom(I,OY ). Now note that

HomX(I,OY ) = H0(X,HomX(I,OY )) = H0(Y,HomY (I/I2,OY )) = H0(Y,NY/X).

The lemma follows.

6.1.2 Infinitesimal deformations of coherent sheaves
Proposition 6.1.6. Let X be a scheme over k and let L be a line bundle on X. Then
there is a natural bijection between H1(X,OX) and the set of isomorphism classes of
line bundles L′ on X ×k D =: X ′ such that L′ ⊗O′X OX ∼= L.
Proof. The exact sequence

0→ OX
t−→ OX′ → OX → 0

gives rise to an exact sequence

0→ OX
α−→ O∗X′ → O∗X → 0, α(x) = 1 + tx.

The exact sequence 0 → k → D → k → 0 splits, hence the above exact sequences do
so, too. Thus, taking cohomology yields an exact sequence

0 // H1(X,OX) // H1(X ′,O∗X′) // H1(X,O∗X) // 0

0 // H1(X,OX) // Pic(X ′) // Pic(X) // 0.

The proposition follows.
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Definition 6.1.7. Let X be a scheme over k and let F be a coherent sheaf on X. We
define a deformation of F over D to be a coherent sheaf F ′ on X ′ := X ×k D, flat
over D, together with a homomorphism

F ′ → F

such that the induced map F ′ ⊗D k → F is an isomorphism. We say that two such
deformations F ′1 → F and F ′2 → F are equivalent if there is an isomorphism F ′1 ∼= F ′2
compatible with the given maps to F .

Proposition 6.1.8. Let X be a scheme over k and F a coherent sheaf on X. Equiva-
lence classes of deformations of F over D are naturally parametrized by Ext1

X(F ,F).

Proof. Let F ′ be a coherent sheaf on X ′ together with a morphism of OX-modules
F ′ → F . By Lemma 6.1.2, the flatness of F ′ over D is equivalent to the exactness of
the sequence

0→ F t−→ F ′ → F → 0

obtained by tensoring F ′ with 0 → k → D → k → 0. The latter sequence splits, so
that we have a splitting OX → OX′ , which allows us to view the above sequence as a
sequence of OX-modules. This yields an element ξ ∈ Ext1

X(F ,F). Conversely, given
an extension F ′ of F by F as OX-modules, we can give F ′ a D-module structure by
specifying how t ∈ D acts; we let t act on F ′ via the endomorphism F ′ → F → F ′.

Corollary 6.1.9. If E is a vector bundle on a scheme X over k, then deformations
of E over D are in natural bijection with elements of H1(X,E nd(E)).

Proof. See Exercise 6.2.9.

Example 6.1.10. Consider the vector bundle

E0 := O(−1)⊕O(1)

on P1. Then the following assertions hold:

(1) We have Ext1(E0, E0) = H1(P1,E nd(E0)).

(2) We have dimH1(P,E nd(E0)) = 1.

(3) We have Ext1(E0, E0) = Ext1(O(1),O(−1)).

(4) We have Ext1(O(1),O(−1)) = H1(P1,O(−2)).

(5) For t ∈ Ext1(O(1),O(−1)), let Et be the associated extension

0→ O(−1)→ Et → O(1)→ 0.

Then for t 6= 0, we have Et ∼= O ⊕O, whereas for t = 0 we get E0.
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Proof. Item (1) follows from Corollary 6.1.9. Item (2) follows from the fact that

E nd(E0) = E ∨0 ⊗ E0
∼= O⊕2 ⊕O(2)⊕O(−2).

Item (3) holds because

Ext1(E0, E0) =Ext1(O(1),O(1))⊕ Ext1(O(1),O(−1))

⊕ Ext1(O(−1),O(1))⊕ Ext1(O(−1),O(−1))

=Ext1(O(1),O(−1)).

The latter equality follows from the vanishings

Ext1(O(a),O(b)) = H1(P1,O(b− a)) = 0 ∀a, b ∈ Z | b− a ≥ −1.

Item (4) is clear.
It remains to prove item (5). For t = 0 ∈ Ext1(O(1),O(−1)), the associated

extension Et is the trivial extension O(−1) ⊕ O(1). Let t 6= 0 ∈ Ext1(O(1),O(−1)).
As

dimExt1(O(1),O(−1)) = dimH1(P1,E nd(E0)) = 1

by what has already been proved, it suffices to show that there exists a vector bundle
F that fits into a non-trivial extension of the form

0→ O(−1)
f−→ F g−→ O(1)→ 0, such that F ∼= O ⊕O.

Indeed, one obtains a one-dimensional family of such extensions, parametrized by
t ∈ k∗, by considering

0→ O(−1)
λ·f−−→ F λ·g−→ O(1)→ 0 for λ ∈ k∗;

moreover, the sheaves O ⊕O and O(−1)⊕O(1) are clearly non-isomorphic.
To obtain such F , we consider the twisted Euler sequence

0→ O(−1)→ O⊕2 → TP1(−1)→ 0, where TP1(−1) ∼= O(2− 1) = O(1).

This finishes the proof, and concludes the example.

6.1.3 Infinitesimal deformations of smooth affine schemes
For the following theorem, we need:

Definition 6.1.11. Let f : X → S be a morphism of schemes. Then f is called
formally smooth if for any ring R with an ideal I ⊂ R such that I2 = 0, any morphism
Spec (R)→ S and any morphism Spec (R/I)→ X so that the composition

Spec (R/I)→ X → S
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agrees with the composition

Spec (R/I)→ Spec (R)→ S,

there exists a morphism Spec (R)→ X compatible with all the other given maps.
In other words, for any pair (R, I) as above, and any solid commutative diagram

X

��

Spec (R/I)

//

// Spec (R)

::

// S

(6.2)

there exists an arrow Spec (R)→ X that makes diagram (6.2) commute.

Theorem 6.1.12 (Grothendieck). Let f : X → S be a morphism of schemes. The
following are equivalent:

(1) The morphism f is smooth.

(2) The morphism f is locally of finite presentation and formally smooth.

Proof. See [EGAIV].

Definition 6.1.13. (1) Let B be a k-algebra. Then a deformation of B over D is a
flat D-algebra B′ together with a morphism of D-algebras B′ → B (where B is
a D-algebra via the map D → k) such that the induced morphism of k-algebras

B′ ⊗D k → B

is an isomorphism. Two such B′i → B (i = 1, 2) are equivalent if there exists an
isomorphism B′1 → B′2 compatible with the given maps to B.

(2) Let A be an artinian ring over k, and let X be a scheme over k. Define a defor-
mation of X over A to be a flat A-scheme X ′ together with a closed immersion
i : X ↪→ X ′ such that the induced map

i×A k : X → X ′ ×A k

is an isomorphism. Two such deformations are equivalent if there is an isomor-
phism f : X ′1 → X ′2 over A compatible with i1 and i2, i.e., such that i2 = f ◦ i1.

Corollary 6.1.14. Let X be a smooth affine scheme over k. Let A be a local Artin k-
algebra. Let X ′ be a scheme, flat over Spec (A), with X ′×Ak ∼= X. Then X ′ ∼= X×kA.
In other words, infinitesimal deformations of smooth affine schemes are trivial.

Proof. Apply Theorem 6.1.12 to the diagram

X

��

X

id
//

� � // X ′

::

// Spec (k)
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We obtain a morphism ρ : X ′ → X such that ρ◦ι = id, where ι is the closed embedding
X ↪→ X ′. Then if π is the morphism X ′ → D = Spec k[t]/(t2), we get a morphism
ρ ×k π : X ′ → X ×k D. This morphism is an isomorphism over the closed fibres over
0 ∈ D, hence ρ×k π is an isomorphism, see Lemma 6.1.16 below.

Lemma 6.1.15. Let A be an artinian local k-algebra with residue field k. Then the
closed immersion ι : : Spec (k) → Spec (A) is a universal homeomorphism. In other
words, for any A-scheme X, the map X ×A k → X is a homeomorphism.

Proof. The map ι is integral, universally injective, and surjective. Therefore, by
[Stacks, Tag 04DF], the map ι is a universal homeomorphism.

Lemma 6.1.16. Let A be a local artinian k-algebra with residue field k. Let Xi

(i = 1, 2) be flat, finite type A-schemes. Let f : X1 → X2 be a morphism of A-schemes
inducing an isomorphism

f ⊗A k : X1 ×A k
∼−→ X2 ×A k.

Then f is an isomorphism.

Proof. By Lemma 6.1.15, the map f : X1 → X2 is a homeomorphism, since it becomes
one after passing to the fibres over Spec (k) ↪→ Spec (A). Thus, it suffices to show
that the map f−1OX2 → OX1 is an isomorphism of sheaves. We may therefore assume
that

Xi = Spec (Bi)

is an affine scheme, with Bi a flat A-algebra (i = 1, 2). In this case, the exact sequence
of A-modules

0→ Ker(f#)→ B2
f#

−→ B1 → Coker(B2
f#

−→ B1)→ 0 (6.3)

yields an exact sequence of A-modules

0→ K := Ker(π)→ B1
π−→ Q := Coker(B2

f#

−→ B1)→ 0.

Let m be the maximal ideal of A. Tensoring with A/m over A, using the flatness of
B1 over A, yields an exact sequence

TorA1 (B1, A/m) = 0→ TorA1 (Q,A/m)→ K ⊗A A/m→ B1 ⊗A A/m→ Q⊗A A/m→ 0.

As B2 ⊗A A/m
∼−→ B1 ⊗A A/m, we get that Q ⊗A A/m = 0, so that Q = mQ. By

Nakayama’s lemma, see Lemma 3.1.2, this gives

Q = 0.

In particular, (6.3) gives rise to an exact sequence

0→ Ker(f#)→ B2
f#

−→ B1 → 0,
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and hence an exact sequence

TorA1 (B1, A/m) = 0→ Ker(f#)⊗A A/m→ B2 ⊗A A/m→ B1 ⊗A A/m→ 0.

As the map B2 ⊗A A/m→ B1 ⊗A A/m is an isomorphism, we get

Ker(f#)⊗A A/m = 0,

and hence Ker(f#) = 0 by Nakayama’s lemma, see Lemma 3.1.2.

6.2 Lecture 18: Deformations of cubic hypersurfaces

Lemma 6.2.1. Let B be a k-algebra. To give a deformation of B over D is to give a
k-algebra B′ with a homomorphism of k-algebras B′ → B fitting in an exact sequence
of k-modules

0→ B → B′ → B → 0. (6.4)

Proof. Compare Proposition 6.1.8. Given such an exact sequence (6.4), we let D act
on B′ via the endomorphism t : B′ → B′ which is the composition B′ → B → B′.
Then B′ ⊗D k = B. Moreover, B = B′ ⊗D k is flat over k, and the exact sequence

0→ k
t−→ D = k[t]/(t2)→ k → 0

induces, via tensoring with B′ over D, an exact sequence

0 // B′ ⊗D k // B′ // B′ ⊗D k // 0

0 // B t // B′ // B // 0.

Hence, by Lemma 6.1.2, we see that B′ is flat over D. Conversely, if B′ is a flat
D-algebra and B′ → B a homomorphism of k-algebras such that B′ ⊗D k → B is an
isomorphism, the map B′ → B is surjective with kernel t ·B ⊂ B′.

Remark 6.2.2. Let B be a finite k-algebra. Then equivalence classes of deformations
of B over D as a module are parametrized by Ext1

k(B,B) = 0, see Proposition 6.1.8.
In particular, any deformation B′ over D of the k-vector space B is of the form
B′ = B ⊗k D = B[t]/(t2). This is also reflected by the isomorphism of D-modules

B′ = B′ ⊗D D = B′ ⊗D k ⊗k D = (B′ ⊗D k)⊗k D = B ⊗k D.

Thus, it is only the algebra structure of B that can deform non-trivially over D.

Proposition 6.2.3. Let B be a k-algebra and let B′ be a deformation of B over D
(cf. Lemma 6.2.1). The automorphism group of the extension 0→ B → B′ → B → 0
is in canonical bijection with the tangent module TB/k(B) = Derk(B,B).
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Proof. Consider the exact sequence

0→ B
ν−→ B′

π−→ B → 0. (6.5)

Let AutB−B−Ext(B
′) be the automorphism group of the extension (6.5). Let φ ∈

AutB−B−Ext(B
′),

φ : B′
∼−→ B′,

be an automorphism of the extension (6.5). Let b ∈ B and let b′ ∈ B′ such that
π(b′) = b. Then there exists a unique element b ∈ B such that

φ(b′) = b′ + ν (d(b)) ∈ B′

Let b′2 = b′ + ν(a′) be another lift of B to B′. Then

φ(b′2) = φ(b′ + ν(a′)) = φ(b′) + ν(a′) = b′ + ν(d(b)) + ν(a′) = b′2 + ν(d(b)).

Hence the element d(b) ∈ B depends only on b, and not on the lift b′ ∈ B′ of B. This
gives a map d : B → B.

We claimt that d is a k-derivation. Let a, b ∈ B. Then

ab+ νd(ab) = φ(ab) = φ(a)φ(b) = (a+ νd(a)) · (b+ νd(b)) = ab+ ν(ad(b) + bd(a)).

Therefore,
d(ab) = ad(b) + bd(a) ∀a, b ∈ B.

Moreover, if λi ∈ k, bi ∈ B (i = 1, 2), then

λ1b1 + νλ1d(b1) + λ2b2 + νλ2d(b2) = λ1φ(b1) + λ2φ(b2)

= φ(λ1b1 + λ2b2) = λ1b1 + λ2b2 + νd(λ1b1 + λ2b2),

which gives d(λ1b1 + λ2b2) = λ1d(b1) + λ2d(b2). We conclude that, indeed, the map
d : B → B is a k-derivation.

Conversely, given a k-derivation d : B → B, the map B′ → B′ defined as

b′ 7→ b′ + ν(d(π(b′)))

defines an automorphism B′ ∼= B′ as an extension of B by B. The two constructions
are inverse, which proves that AutB−B−Ext(B

′) = Derk(B,B) as desired.

As a corollary, we obtain the following result.

Theorem 6.2.4. Let X be a smooth scheme over a field k. Then deformations of X
over the dual numbers D = k[t]/(t2) are in natural bijection with elements of the group
H1(X, TX), where TX = HomX(ΩX ,OX) is the tangent sheaf of X.
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Proof. Let X ′ be a deformation of X. Let U = (Ui) be an affine open covering of X.
Consider the induced deformation U ′i of Ui over D, see Lemma 6.2.5 below. This defor-
mation is trivial because Ui is affine and smooth over k, see Corollary 6.1.14. Choose
an isomorphism ϕi : Ui ×k D ∼= U ′i for each i. Then on Uij we have an automorphism

ψij = ϕ−1
j ϕi : Uij ×k D

∼−→ Uij ×k D, with inverse ψ−1
ij = ϕ−1

i ϕj = ψji.

Notice that on Uijk ×k D, we have:

ψjkψij = ϕ−1
k ϕjϕ

−1
j ϕi = ϕ−1

k ϕi = ψik = ψ−1
ki .

In other words:

ψki ◦ ψjk ◦ ψij = id on Uijk ×k D. (6.6)

By Proposition 6.2.3, we have canonical isomorphisms

Autdef (Uij ×k D) = Derk(O(Uij),O(Uij)) = H0(Uij, TX).

Via these identifications, the automorphism ψij corresponds to an element

θij ∈ H0(Uij, TX).

Furthermore, in view of (6.6), we have

θij + θjk + θki = 0 ∈ H0(Uijk, TX).

One verifies that the induced Čech cohomology element

θ ∈ Ȟ1(U , TX) (6.7)

does not depend on the chosen isomorphisms ϕi. Since U is an affine open covering and
TX is a coherent sheaf, we have Ȟ1(U , TX) = H1(X, TX). The construction [X ′] 7→ θ
defines the desired bijection between the set of infinitesimal deformations of X and
the set H1(X, TX); we leave the details to the reader.

Lemma 6.2.5. Let i : U ↪→ X be an open immersion of schemes over a field k. Let
(X ′, ι : X ↪→ X ′) be a deformation of X over D. Note ι is a homeomorphism by Lemma
6.1.15; define U ′ := ι(U). Then U ′ is a deformation of U . Moreover, the morphism

H1(X, TX)→ H1(X, i∗TU) = H1(U, TU)

induced by adjunction TX → i∗i
∗TX = i∗TU makes the following diagram commute:

DefD(X) // DefD(U)

H1(X, TX) // H1(U, TU).
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Proof. Exercise.

Exercise 6.2.6. Use Theorem 6.1.12 to show that if

f : X → Y

is a smooth morphism of varieties over k, then for each p ∈ X(k), the induced mor-
phism on Zariski tangent spaces TX,x → TY,f(p) is surjective.

Let P be a smooth scheme over a field k. LetX ⊂ P be a smooth closed subscheme.
Let DefD(X) be the set of isomorphism classes of deformations of X over the dual
numbers D (see Definition 6.1.13) and let DefD(X ⊂ P ) be the set of deformations of
the subscheme X ⊂ P over the dual numbers (see Definition 6.1.3).

On the one hand, consider the map

DefD(X ⊂ P )→ DefD(X)

that sends an infinitesimal deformation of X as a subscheme of P to the underlying
infinitesimal deformation of X as a scheme over k. On the other hand, consider the
conormal exact sequence (see [Stacks, Tag 06AA]):

0→ I/I2 → ΩP |X → ΩX → 0.

Its dual gives rise to the normal bundle sequence

0→ TX → TP |X → NX/P → 0. (6.8)

Taking global sections of (6.8) yields a morphism ρ : H0(X,NX/P )→ H1(X, TX).

Lemma 6.2.7. Consider the above notation. Then, with respect to the canonical iso-
morphisms DefD(X) = H1(X, TX) of Theorem 6.2.4 and DefD(X ⊂ P ) = H0(X,NX/P )
of Corollary 6.1.5, the following diagram commutes:

DefD(X ⊂ P ) //

��

DefD(X)

��

H0(X,NX/P )
ρ
// H1(X, TX).

Proof. Let s ∈ H0(X,NX/P ) correspond to a deformation

X ′ ⊂ P ×k D

of X in P over D. Let {Ui} be an affine open cover of X so that s|Ui
lifts to a section

ti ∈ H0(Ui, TP |Ui
). Then on Uij = Ui ∩ Uj, we have

θij := ti|Uij
− tj|Uij

∈ H0(Uij, TX).

As θij + θjk + θki = 0, we obtain a Čech cohomology element

θ = ρ(s) ∈ Ȟ1(U , TX) = H1(X, TX).

We leave it to the reader to verify that this element coincides with the element con-
structed in (6.7).
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Theorem 6.2.8. Any infinitesimal deformation of a smooth cubic hypersurface as a
variety over k is again a smooth cubic hypersurface.

Proof. LetX ⊂ P := Pn+1 be a smooth cubic hypersurface. The infinitesimal deforma-
tions of X as a scheme are parametrized by H1(X, TX). The infinitesimal deformations
of X as a subscheme X ⊂ Pn+1 are parametrized by H0(X,NX/Pn+1). Consider the
normal bundle sequence 0 → TX → TP |X → NX/P → 0. Applying cohomology yields
a morphism

ρ : H0(X,NX/P )→ H1(X, TX)

whose cokernel is contained in H1(X, TP |X). By Lemma 6.2.7, it suffices to show that
ρ is surjective, hence that H1(X, TP |X) = 0.

Consider the exact sequence

(0→ OP (−3)→ OP → OX → 0)⊗OP
TP = (0→ TP (−3)→ TP → TP |X → 0) .

It yields an exact sequence

H1(P, TP )→ H1(X, TP |X)→ H2(P, TP (−3)). (6.9)

Assume first that n ≥ 2. Then by Serre duality (see Theorem 1.1.6) and Bott vanishing
(see Theorem 1.1.8), we have

H1(P, TP) = Hn(P,ΩP(−n− 2))∨ = 0,

H2(P, TP(−3)) = Hn−1(P,ΩP(3− n− 2))∨ = 0.

Hence H1(X, TP |X) = 0 so that ρ is surjective.
If n = 0 then H1(X, TX) = 0 hence the result is trivial.
Let n = 1, so that X ⊂ P2 is a smooth plane cubic curve. Consider the exact

sequences

0→ OP2 → OP2(1)⊕3 → TP2 → 0,

0→ OP2(−3)→ OP2(−2)⊕3 → TP2(−3)→ 0.

The first one yields

0 = H1(P2,OP2(1))⊕3 → H1(P, TP)→ H1(P2,OP2) = 0 =⇒ H1(P, TP) = 0.
(6.10)

The second one yields

0 = H2(P2,OP2(−2))⊕3 → H2(P2, TP2(−3))→H3(P2,OP2(−3)) = 0

=⇒ H2(P2, TP2(−3)) = 0.
(6.11)

By (6.9), (6.10) and (6.11), we get that H1(X, TP |X) = 0. Hence, ρ is surjective.

Exercise 6.2.9. Recall (see Proposition 6.1.8) that given a scheme X over k and a
coherent sheaf F on X, equivalence classes of deformations F ′ → F over D of F over
k are in natural correspondence with elements of Ext1

X(F ,F).
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(1) Show that if F is locally free, then Ext1
X(F ,F) = H1(X,E nd(F)).

(2) Reprove the fact (see Proposition 6.1.6) that infinitesimal deformations of a line
bundle on X are parametrized by H1(X,OX).

(3) Show that if X is smooth over k, then there is a one-to-one correspondence
between the set of infinitesimal extensions of X by F up to isomorphism, and
the group H1(X,F⊗TX). Here, an infinitesimal extension of X by F is a scheme
X ′ over k together with a sheaf of ideals I ′ ⊂ OX′ with (I ′)2 = 0, such that

(X ′,OX′/I ′) ∼= (X,OX)

and such that I, with its resulting OX-module structure, is isomorphic to the
OX-module F .

(4) Show that a deformation (X ′, X ↪→ X ′) of X over D corresponds to an exact
extension as OX-modules of the form

0→ OX → OX′ → OX → 0

where OX′ → OX is a morphism of sheaves of k-algebras. Thus, X ′ is an
infinitesimal extension of the scheme X by the sheaf OX in the above sense, and
we see again that infinitesimal deformations of X are classified by H1(X, TX).

Exercise 6.2.10. Let C be an elliptic curve over a field k. Let EP be a rank two
vector bundle obtained as a non-split extension

0→ OC → EP → OC(P )→ 0, for some P ∈ C(k).

(1) Calculate the determinant line bundle det(EP ) of EP . Show that the degree
deg(EP ) of EP equals one, where deg(EP ) := deg(det(EP )).

(2) For a vector bundle E on C, consider the following property:

(?) H0(C, E) 6= 0 and for any line bundle L on C with deg(L) < 0, we have
H0(C, E ⊗ L) = 0.

Show that EP satisfies (?).

(3) Show that EP is uniquely determined by P , up to isomorphism.

(4) Show that h0(C, EP ) = 1 and h1(C,E nd(EP )) = 1.

(5) Let E be any rank two vector bundle of degree one on C satisfying (?). Show
that there exists a unique point P ∈ C(k) such that E ∼= EP .

(6) Conclude that the family of rank two vector bundles of degree one on C that
satisfy (?) are parametrized by C itself. Remark that this is consistent with the
calculation h1(C,E nd(E)) = 1 of item (4).
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6.3 Lecture 19: Pro-representable functors and formal moduli

Before we pass to deformation theory in algebraic geometry, based on formal geometry
(see Chapter 3), we give an overview of deformation theory in complex geometry.

6.3.1 Universal deformations of complex manifolds
Definition 6.3.1. Let X0 be a compact complex manifold. A deformation of X0

consists of:

(1) a germ of complex analytic spaces (B, 0),

(2) a smooth proper morphism

φ : X → B, (6.12)

(3) an isomorphism f : φ−1(0) ∼= X0.

We say that the deformation (6.12) of X0 is complete if for any pointed complex
analytic space (B′, 0′) and any smooth proper family φ′ : X ′ → B′ and isomorphism
f ′ : (φ′)−1(0) ∼= X0, there exists a morphism of germs of complex analytic spaces

(B′, 0′)→ (B, 0)

and an isomorphism

X ′ ∼= X ×B B′ as families over the germ (B′, 0′), compatibly with f and f ′. (6.13)

We say that (φ : X → B 3 0, f) is a universal deformation of X0 if for any deformation
(φ′ : X ′ → B′ 3 0′, f ′) ofX0, there is a unique morphism of germs (B′, 0′)→ (B, 0) such
that (6.13) holds. If a universal deformation of X0 exists, it is unique up to unique
isomorphism. If the deformation (X → B 3 0, f) of X0 is complete, and for any
deformation (φ′ : X ′ → B′ 3 0′, f ′) of X0 and any morphism of germs (B′, 0′)→ (B, 0)
such that (6.13) holds, the induced morphism on tangent spaces TB′,0′ → TB,0 is unique,
then the deformation is called versal.

Let (φ : X → B 3 0, f) be a deformation of a compact complex manifold X0. Then
we have an exact sequence of coherent sheaves on X:

0→ φ∗ΩB → ΩX → ΩX/B → 0,

and hence, after restricting to X0 and dualizing, an exact sequence of vector bundles
on X0:

0→ TX0 → TX |X0 → φ∗(TB)|X0 = TB,0 ×X0 → 0.

The Kodaira–Spencer map, see Section 2.3.5, is the induced morphism

ρ : TB,0 → H1(X0, TX0).
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Theorem 6.3.2 (Kodaira, Kuranishi, Nirenberg, Spencer). Let X0 be a compact com-
plex manifold. Then X0 admits a versal deformation (φ : X → B 3 0, f) for which the
Kodaira–Spencer map TB,0 → H1(X0, TX0) is an isomorphism. Moreover:

(1) If H2(X0, TX0) = 0, then there exists a versal deformation (φ : X → B 3 0, f) of
X0 such that B is smooth (i.e., a complex manifold).

(2) If H0(X0, TX0) = 0, then a universal deformation of X0 exists.

(3) Let (X → B 3 0, f) be a versal deformation of X0, and suppose that the function
t 7→ h1(Xt, TXt) is constant on B. Then the family X → B defines a versal
deformation of any of its fibres Xt.

Example 6.3.3. Let C be a compact Riemann surface of genus g ≥ 2. Then
H2(C, TC) = 0 because 2 > dim(C) = 1, and deg(KC) = 2g − 2 > 0. In partic-
ular, deg(TC) < 0, so that H0(C, TC) = 0. Thus, by Theorem 6.3.2, the curve C
admits a universal deformation (φ : X → B, 0 ∈ B, f : φ−1(0) ∼= C), such that B is a
complex manifold, and T0B ∼= H1(C, TC) via the Kodaira–Spencer map. Remark that
dim(B) = dim(T0B) = dimH1(C, TC) = dimH0(C,K⊗2

C ). Riemann–Roch gives

h0(C,K⊗2
C ) = h0(C,K⊗2

C )− h0(C,K−1
C ) = 1− g + deg(K⊗2

C ) = 1− g + 2 · (2g − 2),

so that h0(C,K⊗2
C ) = 3g − 3. Hence the universal deformation space (B, 0) of C is

smooth of dimension dim(B) = 3g − 3.

6.3.2 Cotangent complex of a morphism of schemes
For a morphism of rings A → B, one can consider its cotangent complex LB/A, a
naturally defined complex of B-modules, see [Stacks, Tag 08PL]. More generally, for
X → S be a morphism of schemes, consider the complex LX/S of OX-modules called
cotangent complex of X over S (see [Stacks, Tag 08UT]). It has following properties:

(1) We have a canonical isomorphism H0(LX/S) = ΩX/S of sheaves of OX-modules.

(2) If f : X → Y and g : Y → Z are morphisms of schemes, then there is a canonical
distinguished triangle

Lf ∗(LY/Z)→ LX/Z → LX/Y → Lf ∗LY/Z [1]

in the derived category D(OX) of sheaves of OX-modules.

For any B-module M , and integer i ≥ 0, we define

T i(B/A,M) = hi(HomB(LB/A,M)).

Similarly, for a morphism of schemes X → S, and an OX-moduleM, define

T i(X/S,M) = hi(H omOX
(LX/S,M)).
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These are covariant additive functors in M . Moreover, if

0→M ′ →M →M ′′ → 0

is a short exact sequence of B-modules, then there is a long exact sequence

0→ T 0(B/A,M ′)→ T 0(B/A,M)→ T 0(B/A,M ′′)→ T 1(B/A,M ′)→ · · · .

Furthermore, if
A→ B → C

is a sequence of ring homomorphisms and ifM is a C-module, then there is a canonical
long exact sequence of C-modules

0→ T 0(C/B,M)→ T 0(C/A,M)→ T 0(B/A,M)→ T 1(C/B,M)→ · · · .

Notice that T 0(B/A,M) = HomB(ΩB/A,M) = DerA(B,M), and hence that

T 0(B/A,B) = HomB(ΩB/A, B) = DerA(B,B).

Theorem 6.3.4. Let X be a scheme over a field k. Define T 1
X = T 1(X/k,OX). Then

there exists a canonical exact sequence

0→ H1(X, TX)→ Def(X/k,D)→ H0(X, T 1
X)→ H2(X, TX).

Proof. See [Har10, Exercise 5.7].

6.3.3 Pro-representable functors
Fix a field k. Throughout Section 6.3.3, we assume that k is algebraically closed. Let C
be the category of local artinian k-algebras with residue field k. Let Ĉ be the category
of complete local k-algebras with residue field k. For R ∈ Ĉ, let

hR : C → (Sets)

be the restriction to C of the functor hR : C → (Sets) with hR(A) = Homk−alg(R,A).

Definition 6.3.5. A covariant functor

F : C → (Sets)

is called pro-representable if there exists a complete local k-algebra R with residue
field k, such that hR ∼= F as functors C → (Sets).

Lemma 6.3.6. Let G : C → (Sets) be a functor, and define Ĝ : Ĉ → (Sets) as the
functor with

Ĝ(R) = lim←−G(R/mn).

Let H : Ĉ → (Sets) be a functor, and define Hres : C → (Sets) as the composition of
the natural functor C → Ĉ and the functor H. Then

Hom(Gres, F ) = Hom(G, F̂ ).
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Proof. Let ϕ : Gres → F be a morphism of functors. Let A = lim←−A/m
n ∈ Ĉ. We

construct a map
G(A)→ lim←−F (A/mn)

as follows. By the universal property of the projective limit, it suffices to construct a
compatible system of morphisms

G(A)→ F (A/mn) (6.14)

for each n ∈ Z≥1, and we define (6.14) as the composition

G(A)→ G(A/mn) = Gres(A/m
n)

ϕ−→ F (A/mn).

It is clear that the so-constructed map (6.14) is functorial in A, hence we obtain an
element ψ ∈ Hom(G, F̂ ).

Conversely, given ψ ∈ Hom(G, F̂ ), let us construct a morphism ϕ : Gres → F . Let
A ∈ C. Then ψ defines a morphism

Gres(A) = G(A)
ψ−→ F̂ (A) = F (A),

and it is clear that this yields a morphism of functors ϕ : Gres → F . The constructions
are inverse, hence we are done.

Exercise 6.3.7. Let F : C → (Sets) be a covariant functor. Let R be a complete
local k-algebra with residue field k. Show that to give a homomorphism of functors
ϕ : hR → F is to give an element

ξ ∈ lim←−F (R/mn),

called a formal family of F over the ring R. Thus, F̂ (R) is the set of formal families
of F over R, and F̂ (R) = Hom(hR, F ) = Hom(hR, F̂ ) (see Lemma 6.3.6).

Definition 6.3.8. If ξ : hR → F is an isomorphism, we get an element ξ ∈ F̂ (R), and
we say that the pair (R, ξ) pro-represents the functor F .

More generally, a pair (R, ξ) with R ∈ Ĉ and ξ ∈ F̂ (R) is called a versal family for
F if the associated map hR → F is strongly surjective. Here, we say that a morphism
of functors G→ F is strongly surjective if for every A ∈ C, the map G(A)→ F (A) is
surjective, and furthermore, for every surjection B → A in C, the map

G(B)→ G(A)×F (A) F (B)

is surjective. If, in addition, the map hR(D)→ F (D) is bijective, where D = k[t]/(t2),
then (R, ξ) is called a versal family, and we say that F has a pro-representable hull
(R, ξ). We say that (R, ξ) is a universal family if it pro-represents the functor F .

Theorem 6.3.9. Let X0 be a scheme over k. Then the functor DefX0 of deformations
of X0 over local artin rings has a versal family if
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(1) X0 is affine with isolated singularities

(2) X0 is projective.

Moreover, if X0 is projective with H0(X0, TX0) = 0, then the functor of deformations
of X0 is pro-representable.

Proof. See [Har10, Theorem 18.1 & Corollary 18.3].

Remark 6.3.10. Let X be a projective scheme over a field k. By Theorem 6.3.9, the
functor DefX0 of deformations of X0 has a pro-representable hull (R, ξ). This means:

(1) R is a complete local k-algebra with residue field k.

(2) There exists a formal scheme X and a morphism of formal schemes

X → Spf(R)

together with a closed embedding ι : X ↪→ X inducing an isomorphism X ∼=
X ×R̂ k, such that the following holds. For each artinian local k-algebra A with
residue field k, and each deformation (X ′, i′ : X ↪→ X ′) of X over A, there exists
a morphism Spf(A) → Spf(R) that extends to a cartesian diagram of formal
schemes

X ′

��

// X

��

Spf(A) // Spf(R).

which is compatible with the closed embeddings ι and i′. Moreover, for each de-
formation (X ′, i′ : X ↪→ X ′) of X over D = k[t]/(t2), there is a unique morphism
of formal schemes

Spf(D)→ Spf(R), such that X ′ ∼= X ×R D over D,

and this isomorphism is compatible with the morphisms ι and i′.
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Chapter 7

Intersection theory

7.1 Lecture 20: Intersecting Cartier divisors on a proper scheme

Recall (see [Har77, Chapter I, Theorem 7.5]) that a theorem due to Hilbert and Serre
says that if X ⊂ PN is an n-dimensional closed subscheme of the N -dimensional
projective space PN = PNk over a field k, then the function

Z 7→ Z, m 7→ χ(X,OX(m)) =
∑
i

(−1)ihi(X,OX(m))

is polynomial of degree n, that is, there exists a unique polynomial P ∈ Q[t] such that

P (m) = χ(X,OX(m))

for each m ∈ Z. The degree of X in PN is then defined as n! times the coefficient of
mn. If H ⊂ X is a hyperplane section, then the degree is also written as Hn. We
would like to generalize this definition and associate an intersection number

deg(D1 · · ·Dn) ∈ Z

to any set of Cartier divisors D1, . . . , Dn on a proper n-dimensional scheme X over k.

7.1.1 Projection formula
First, we state without proof the following theorem.

Theorem 7.1.1. Let f : X → Y be a morphism of schemes. Let F be an OX-module.
Let E be a finite locally free OY -module. There exists an isomorphism of OY -modules

E ⊗OY
Rqf∗F

∼−→ Rqf∗ (f ∗E ⊗OX
F)

for each q ∈ Z≥0.

Proof. See [Stacks, Tag 01E6].
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Remark 7.1.2. More precisely, in the notation of Theorem 7.1.1, there exists an
isomorphism

E ⊗OY
Rf∗F

∼−→ Rf∗(f
∗E ⊗OX

F),

in the derived category of bounded below complexes of OY -modules. Moreover, if we
assume that f : X → Y is a proper morphism of projective varieties over a field, then
there exists an isomorphism

E• ⊗LOY
Rf∗ (F•) ∼−→ Rf∗

(
Lf ∗(E•)⊗LOX

F•
)

in the derived category of bounded complexes of coherent sheaves on Y , for any
bounded complexes of coherent sheaves F• on X, E• on Y , cf. [Huy06, p. 83].

Corollary 7.1.3. Let f : X → Y be a morphism of schemes. Let F be an OX-module.
Let L be a line bundle on Y . Then there exists an isomorphism of OY -modules

L ⊗OY
f∗F ∼= f∗(f

∗L ⊗OX
F).

Proof. This is clear from Theorem 7.1.1.

7.1.2 Intersection numbers of Cartier divisors
Before we prove that n Cartier divisors D1, . . . , Dn on an n-dimensional proper scheme
X give rise to a well-defined intersection number deg(D1 · · ·Dn) ∈ Z, we recall the
following result.

Definition 7.1.4. Let K be an abelian category. Let K′ be a subset of the set of
objects of K. We say that K′ is exact if 0 ∈ K′ and if, for every exact sequence
0 → A′ → A → A′′ → 0 in K such that two of the three objects A,A′, A′′ are in K′,
the third object is also in K′.

Theorem 7.1.5. Let X be a noetherian scheme. Let K′ be an exact subset of the
abelian category Coh(X) of coherent sheaves on X. Suppose that one of the following
two conditions is verified.

(1) For every integral closed subscheme Y ⊂ X with generic point y ∈ Y , there exists
an OX-module G ∈ K′ such that the OX,y-module structure on Gy extends to an
OY,y = k(y)-module structure making Gy a one-dimensional k(y)-vector space.

(2) Every coherent direct factor of a coherent OX-module M ∈ K′ belongs to K′,
and for every integral closed subscheme j : Y ↪→ X with generic point y ∈ Y ,
there exists an OX-module G ∈ K′ such that Supp(G) = Y (equivalently, such
that G = j∗j

∗G and j∗G is a torsion-free coherent OY -module).

Then K′ = Coh(X).

Proof. See [EGAIII, Première partie, §3, Théorème 3.1.2, Corollaire 3.1.3, p. 115].
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Corollary 7.1.6. Let X be a noetherian scheme. Let K′ be an exact subset of the
abelian category Coh(X) of coherent sheaves on X. Suppose that for every integral
closed subscheme j : Y ↪→ X, we have j∗OY ∈ K′. Then K′ = Coh(X).

Proof. Indeed, if G = j∗OY , and if y ∈ Y is the generic point of Y , then Gy = OY,y =
k(y), hence the result follows from Theorem 7.1.5.

Theorem 7.1.7. Let D1, . . . , Dr be Cartier divisors on a proper scheme X over k.
For any coherent sheaf F on X, the function

(m1, . . . ,mr) 7→ χ(X,F(m1D1 + · · ·+mrDr)) (7.1)

takes the same values on Zr as a polynomial with rational coefficients of degree at most
the dimension of the support of F .

Proof. Step 1: Reduction to X integral and F = OX. Consider the abelian
category Coh(X) of coherent sheaves on X. Let K′ be the subset of coherent sheaves
F on X such that the function (7.1) takes the same values on Zr as a polynomial with
rational coefficients of degree at most the dimension of the support of F . Let

0→ F ′ → F → F ′′ → 0

be an exact sequence of coherent sheaves on X. Note that, for (m1, . . . ,mr) ∈ Z⊕r,
we have

χ(X,F(
∑

miDi)) = χ(X,F ′(
∑

miDi)) + χ(X,F ′′(
∑

miDi)).

In particular,

if two of the three sheaves F ,F ′,F ′′ are in K′, then the third one is also in K′.

Hence K′ ⊂ Coh(X) is exact, see Definition 7.1.4. In order to prove Theorem 7.1.7, it
suffices to show K′ = Coh(X), which, By Corollary 7.1.6, is equivalent to the assertion
that for every integral closed subscheme j : Y ↪→ X, the coherent OX-module j∗OY is
in K′. Now note that, for such a closed subscheme Y , we have by Corollary 7.1.3 that

j∗OY
(∑

miDi

)
= j∗j

∗OX
(∑

miDi

)
= j∗

(
OY
(∑

miDi|Y
))

.

Therefore,

χ(X, j∗OY (
∑

miDi)) =
∑

(−1)jhj
(
Y,OY

(∑
miDi

))
.

In particular, to prove Theorem 7.1.7, we may assume that X is integral and F = OX .

Step 2: Reduction to the case r = 1. Assume that the theorem holds for
r = 1. If d is a positive integer and f : Z⊕r → Z be a map such that for each i,
(n1, . . . , n̂i, . . . , nr) ∈ Z⊕(r−1), the map m 7→ f(n1, . . . , n̂i, . . . , nr) is polynomial of
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degree at most d. Then f takes the same values on Z⊕r as a polynomial in r indeter-
minates with rational coefficients.

It follows that there exists a polynomial

P ∈ Q[t1, . . . , tr]

such that χ(X,m1D1 + · · ·mrDr) = P (m1, . . . ,mr). Let d be its total degree. If
tn1
1 · · · tnr

r is a monomial of degree
∑
ni = d in P (t1, . . . , tr), for some integers n1, . . . , nr,

then the degree of Q(t) = P (n1t, . . . , nrt) is still d. Now note that

Q(m) = P (n1m, . . . , nrm) = χ(X,m(n1D1+· · ·+nrDr)) = χ(X,mD), D =
∑

niDi.

From the r = 1 case, it follows that d ≤ dim(X).

Step 3: Finish the proof. By Steps 1 and 2, we may assume that X is inte-
gral, F = OX and r = 1. Put D := D1. Choose an embedding of OX(D) into KX .
Set

I1 = OX(−D) ∩ OX I2 = OX(D) ∩ OX .
Let Yj ⊂ X be the subscheme of X defined by the ideal Ij. Since X is integral, Yj has
dimension smaller than X. Note that I1(D) is isomorphic to I2, so there are exact
sequences

0 // I1(mD) // OX(mD) // OY1(mD) // 0,

0 // I2((m− 1)D) // OX((m− 1)D) // OY2((m− 1)D) // 0.

This gives

χ(X,mD)− χ(X, (m− 1)D) = χ(Y1,mD)− χ(Y2, (m− 1)D).

By induction, the right hand side is a polynomial function in m of degree d < dim(X).
But if a function f : Z → Z is such that f(m) − f(m − 1) is polynomial of degree
d, then f is polynomial of degree d + 1. Therefore, χ(X,mD) is polynomial in m of
degree ≤ d+ 1 ≤ dim(X), with rational coefficients.

Definition 7.1.8. Let D1, . . . , Dr be Cartier divisors on a proper scheme X, with
r ≥ dim(X). The intersection number

deg(D1 · · ·Dr)

is the coefficient of m1 · · ·mr in the polynomial χ(X,m1D1 + · · ·+mrDr).
If Y ⊂ X is a subscheme of dimension at most s, we put

deg(D1 · · ·Ds · Y ) = deg(D1|Y · · ·Ds|Y ).

Proposition 7.1.9. Let D1, . . . , Dr be Cartier divisors on a proper scheme X of di-
mension n ≤ r. Then
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(1) deg(D1 · · ·Dr) = 0 for r > dim(X);

(2) if D1, . . . , Dr are effective and meet properly in a finite number of points, then
deg(D1 · · ·Dr) equals the number of points in the zero-dimensional closed sub-
scheme D1 ∩ · · · ∩Dn ⊂ X, counted with multiplicity.

(3) The map
(D1, . . . , Dn) 7→ deg(D1 · · ·Dn)

is multilinear, symmetric, and takes integral values.

(4) If Dn is effective with associated subscheme Y , then D1 · · ·Dn = D1 · · ·Dn−1 ·Y .

Proof. See [Deb01, Proposition 1.8].

7.1.3 Curves
Let X be a proper curve over k. If x ∈ X is a closed point and f a regular element of
OX,x, we define the vanishing order of f at x as

ordx(f) = `OX,x
(OX,x/(f)) (the length of OX,x/(f) as an OX,x-module).

If x ∈ X is a regular point, then OX,x is a discrete valuation ring and this is the usual
order of f in OX,x. For f/g in the total ring of fractions of OX,x, we put

ordx(f/g) = ordx(f)− ordx(g).

We extend this to Cartier divisors D on X as follows: if, in a neighbourhood of x ∈ X,
the Cartier divisor D is defined by a rational function f/g, then

ordx(D) = ordx(fx/gx) = ordx(fx)− ordx(gx).

We can associate to D the Weil divisor∑
x∈X

ordx(D) · x.

Lemma 7.1.10. Let X be a proper curve over a field k. Consider the integer deg(D) ∈
Z, see Definition 7.1.8 and Proposition 7.1.9. Then

deg(D) =
∑

ordx(D) · [k(x) · k].

If D is effective, then deg(D) = dimkH
0(X,OD).

Lemma 7.1.11. If X is a reduced proper curve over a field k, with normalization
X̃ → X, then deg(D) = deg(D̃).
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A Cartier divisor D on a proper curve X is called principal if there exists a rational
function f on X such that D = div(f). For a principal divisor D we have deg(D) = 0.
Two Cartier divisors D1, D2 are linearly equivalent if D1−D2 is principal. Recall that
each line bundle L on X corresponds to a Cartier divisor D on X which is unique up
to linear equivalence. Thus, we can put deg(L) = deg(D).

Theorem 7.1.12 (Riemann–Roch). Let X be a proper curve over a field k, and let L
be a line bundle on X. Then

χ(L) = deg(L) + χ(OX).

Proposition 7.1.13. Let X be a proper variety. Let D be a Cartier divisor and let
C ⊂ X be a curve contained in X. Then deg(C ·D) = degOC(D).

Proof. We have

C ·D = deg(D|C) = coefficient of m in the polynomial χ(C,mD) =

deg(mD) + χ(OC) = m deg(D) + χ(OC) = m · degOC(D) + χ(OC).

Hence deg(C ·D) = deg(D|C) = deg(OC(D)) as wanted.

7.2 Lecture 21: Line bundles on a cubic surface

Definition 7.2.1. Let X be a proper surface over k. Let D and E be two effective
divisors on X with no common irreducible component. Let x ∈ X be a closed point.
Define

ix(D,E) = lengthOX,x
(OX,x/ (OX(−D)x +OX(−D)x)) .

We call this the intersection multiplicity of D and E at x.

Example 7.2.2. LetX = Spec k[u, v]. Let x ∈ X correspond to (U, v). LetD = V (u)
and E = V (u+ vr), for r ≥ 2. Then

ix(D,E) = length(k[u, v]/(u, u+ vr)) = dimk (k[v]/(vr)) = r.

The following theorem is known as the Riemann–Roch theorem for surfaces.

Theorem 7.2.3. Let X be a smooth proper surface over a field k, with canonical
bundle KX . Let D be a Cartier divisor on X. Then

χ(D) = χ(OX) +
D ·D −D ·KX

2
.

Example 7.2.4. Consider the projective plane P2. Then χ(OP2(1)) = h0(OP2(1)) = 3,
(deg(OP2(1)) = 1 and deg(OP2(KP2))) = −3. This gives χ(OP2(1)) = χ(OP2) + 1

2
·

(deg(OP2(1))− deg(OP2(KP2))), which is compatible with Theorem 7.2.3.

Example 7.2.5. Let X ⊂ P3 be a smooth cubic surface. We have seen in Proposition
1.4.11 that for a Cartier divisor D on X, we have χ(D) = 1

2
· (D ·D+D · OX(1)) + 1,

see (1.31). This also follows from Theorem 7.2.3 by observing that χ(OX) = 1 in view
of Claim 1.1.15, and that KX = OX(−1) in view of Proposition 1.1.12.
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Chapter 8

Étale cohomology

8.1 Lecture 22: Étale morphisms of schemes

In this lecture, we introduce smooth and étale morphisms of schemes. We also define
the notion of site, and consider fpqc, fppf, étale and Zariski coverings, leading to
various sites associated to a single scheme. This yields various cohomology theories.

8.1.1 Smooth and étale morphisms of schemes
We would like to define what it means for a morphism of schemes X → Y to be étale.
We will first show how to get the right notion in the locally algebraic case.

Definition 8.1.1. Let X and Y be schemes, locally of finite type over an algebraically
closed field k. Let f : X → Y be a morphism of k-schemes. Let x ∈ X, y = f(x),
A = OY,y and B = OX,x. We say that f is étale at x if the morphism on completions

Â→ B̂

is an isomorphism.

Note that the above definition of étale morphisms will not be stable under base
change. In particular, one cannot use it to endow Sch/S, the category of schemes
over a fixed base scheme S, with the structure of a site (see Definition 8.1.33 below).
One way to fix this, would be to assume that S is locally of finite type over an alge-
braically closed field, and consider the full subcategory LFT/S ⊂ Sch/S whose objects
are schemes X/S whose structure morphism X → S is locally of finite type. We shall
not take this approach, but follow [Stacks, Tag 03X7] instead, using Sch/S as under-
lying category of the big étale site (Sch/S)ét of an arbitrary scheme S. Thus, we need
to introduce the notion of smooth and étale morphisms between arbitrary schemes.

Note that the category of locally noetherian schemes does not have all fibre prod-
ucts. For example, the ring Q⊗Q Q is not noetherian. We do have the following:

Lemma 8.1.2. Let f : X → Y be a morphism between locally noetherian schemes.
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(1) For each y ∈ Y , the fibre Xy = X ×Y Spec (k(y)) is locally noetherian.

(2) Suppose Y = Spec k is the spectrum of a field k. Let k′/k be a finitely generated
field extension. Then X ×k k′ is locally Noetherian.

Proof. Exercise.

Recall that a local Noetherian ring (R,m) is said to be regular if m can be generated
by dim(R) elements. A Noetherian ring R is regular if every local ring Rp of R is
regular. A locally noetherian scheme X is regular at x ∈ X if there exists an affine
open neighbourhood U of x such that OX(U) is noetherian and regular. Finally, a
locally noetherian scheme X is regular if X is regular at all of points. Equivalently,
X is locally noetherian and all of its local rings are regular.

Definition 8.1.3 (cf. Définition (6.7.6) in [EGAIV]). Let k be a field. Let X be a
scheme over k which is locally noetherian.

(1) X is geometrically regular at a point x ∈ X if, for every finite field extension k′
of k, the scheme X ′ = X×k k′ is regular at all points x′ ∈ X ′ that lie over x ∈ X.

(2) X is geometrically regular if X is geometrically regular at all of its points.

Proposition 8.1.4. Let X be a scheme, locally of finite type over a field. The following
are equivalent:

(1) X is geometrically regular.

(2) X ×k k′ is regular, for every finite field extension k′ of k.

(3) X ×k k′ is regular, for every field extension k′ of k.

(4) X ×k k′ is regular, for some perfect field extension k′ of k.

Proof. The equivalence of items (1) and (2) follows from Definition 8.1.3. For the rest,
see [EGAIV, Proposition (6.7.7)].

Definition 8.1.5 (cf. [EGAIV], Définition (6.8.1)). Let X and Y be schemes. Let
f : X → Y be a morphism locally of finite presentation. Let x ∈ X and y = f(x) ∈ X.

(1) We say that f is regular at x if f is flat at x (i.e. OX,x is flat over OY,y), and if
the fibre Xy = f−1(y) is geometrically regular at x ∈ Xy over k(y).

(2) We say that f is regular if f is regular at x for each x ∈ X.

Definition 8.1.6 (cf. Définition (17.1.1) & Remarque (17.1.2).(ii) in [EGAIV]). A
morphism of schemes f : X → Y is formally smooth (resp. formally unramified, resp.
formally étale) if for every affine scheme Y ′ and every closed subscheme Y ′0 ⊂ Y ′

defined by an ideal I ⊂ O(Y ′) with I2 = 0, and every morphism Y ′ → Y , the map

HomY (Y ′, X)→ HomY (Y ′0 , X)

deduced by the embedding Y ′0 → Y ′, is surjective (resp. injective, resp. bijective).
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Definition 8.1.7 (cf. Définition (17.3.1) in [EGAIV]). Let f be a morphism of schemes
X → Y . We say that f is smooth (resp. unramified, resp. étale) if f is locally of finite
presentation and formally smooth (resp. unramified, resp. étale).

Recall that if X, Y and S are schemes, and f : X → Y and g : Y → S are mor-
phisms, then there is a canonical exact sequence of quasi-coherent sheaves

f ∗Ω1
Y/S → Ω1

X/S → ΩX/Y → 0. (8.1)

Proposition 8.1.8. Let f : X → Y be a morphism of schemes; then f is formally
unramified if and only if Ω1

X/Y = 0.

Proof. See Proposition (17.2.1) in [EGAIV].

Corollary 8.1.9. Let f : X → Y and g : Y → S be morphisms of schemes. Then f is
formally unramified if and only if f ∗Ω1

Y/S → Ω1
X/S is surjective.

Proof. This follows from Proposition 8.1.8 and the exact sequence (8.1).

This aligns with our intuition that unramified morphisms of varieties should induce
injections between tangent spaces.

Proposition 8.1.10. Let S be a scheme. Let X and Y be schemes over S. Let
f : X → Y be a formally smooth morphism of schemes over S.

(1) The quasi-coherent OX-module Ω1
X/Y is locally projective. If f is locally of finite

type, then Ω1
X/Y is locally free of finite rank.

(2) The morphism of quasi-coherent OX-modules f ∗Ω1
Y/S → Ω1

X/S is injective. In
other words, the sequence 0→ f ∗Ω1

Y/S → Ω1
X/S → ΩX/Y → 0 is exact.

Proof. See Proposition (17.2.3) in [EGAIV].

Example 8.1.11. There are morphisms of schemes f : X → Y which are flat, locally of
finite presentation and such that ΩX/S finite locally free, but such that f is not smooth.
Namely, consider let p be a prime number, let t be a variable, let s = tp ∈ Fp[t] and
consider the canonical ring map

Fp[s]→ Fp[t].

The exact sequence

Fp[s]⊗Fp[t] Fp[t]dt
0−→ Fp[s]ds→ ΩFp[s]/Fp[t] → 0

shows that the canonical map Fp[s]ds→ ΩFp[s]/Fp[t] is an isomorphism of Fp[s]-modules.

Proposition 8.1.12. Let S be a scheme. Let X and Y be schemes over S. Let
f : X → Y be a morphism of S-schemes which is formally étale. Then the canonical
morphism of OX-modules f ∗Ω1

Y/S → Ω1
X/S is an isomorphism.
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Proof. Note that a formally étale morphism is formally smooth and formally unrami-
fied. Hence, the proposition follows from Corollary 8.1.9 and Proposition 8.1.10.

This corresponds to our intuition that étale morphisms should induce bijections on
tangent spaces (see also Proposition 8.1.31 in Section 8.1.2 below).

Definition 8.1.13. Let f : X → Y be a morphism of schemes. We say that f is smooth
(resp. unramified, resp. étale) at a point x ∈ X if there exists an open neighbourhood
U of x in X such that the restriction f |U is a morphism U → Y which is smooth (resp.
unramified, resp. étale).

Theorem 8.1.14. Let f : X → Y be a morphism of schemes, locally of finite presen-
tation. Let x ∈ X and y = f(x) ∈ Y . The following properties are equivalent:

(1) f is unramified at x.

(2) (Ω1
Y/X)x = 0.

(3) The k(y)-scheme f−1(y) is unramified over k(y) at x.

(4) myOX,x = mx and k(x) is a finite separable field extension of k(y).

If Y is locally noetherian and k(x) = k(y), these properties are further equivalent to:

(5) the homomorphism between the completed local rings ÔY,y → ÔX,x is surjective.

Proof. See Théorème (17.4.1) and Proposition (17.4.4) in [EGAIV].

Theorem 8.1.15. Let f : X → Y be a morphism of schemes, locally of finite presen-
tation; let x ∈ X and y = f(x). The following conditions are equivalent:

(1) f is smooth at the point x.

(2) f is flat at the point x and Xy = f−1(y) is smooth over k(y) at x ∈ Xy.

(3) f is regular at the point x.

If Y is locally noetherian and k(x) = k(y), these conditions are further equivalent to:

(5) ÔX,x is a ÔY,y-algebra isomorphic to an algebra of the form ÔY,y[[T1, . . . , Tn]].

Proof. See Théorème (17.5.1) and Proposition (17.5.3) in [EGAIV].

In the affine case, the above definitions translate to:

Definition 8.1.16. An algebra A over an algebraically closed field k is called smooth
over k if the ring map k → A is of finite type and the module of differentials Ω1

A/k is
finite locally free as an A-module, and rankAp(Ω

1
Ap/k

) = dimAp for each prime p ⊂ A.

This turns out to be equivalent to the condition that the map of schemes Spec (A)→
Spec (k) is smooth:

133



Proposition 8.1.17. The following assertions are true.

(1) Let X be a scheme over an algebraically closed field k. Then X is smooth over k
if and only if X is locally of finite type over k and for each affine open U ⊂ X,
the k-algebra OX(U) is smooth over k.

(2) A morphism of schemes f : X → Y is smooth if and only if it is flat, locally of
finite presentation, and the geometric fibres satisfy the property in item (1).

Proof. It clearly suffices to prove the second item, and in view of the equivalence of (1)
and (2) in Theorem 8.1.15, we may assume Y = Spec k for a field k. By item (3) in
Theorem 8.1.15, we need to show that the morphism f : X → Spec k is regular, that
is, that X is geometrically regular. By Proposition 8.1.4, we may assume k = k̄, and
it suffices to prove X is regular. This question is local on X, hence we may assume
X = Spec A is affine, and A = O(X) is an algebra of finite type over the algebraically
closed field k. We then need to show X is regular if and only if Ω1

A/k is finite locally
free of rank equal to the dimension.

If X is regular, then the morphism X → Spec k is regular, and hence smooth by
Theorem 8.1.15, which implies that Ω1

A/k is locally free of finite rank, see Proposition
8.1.10. By [Stacks, Tag 0B2D], for each x ∈ X, there is a canonical isomorphism of
vector spaces TX/k,x = HomOX,x

(ΩX/k,x, k(x)) = Homk(x)(ΩX/k,x ⊗OX,x
k(x), k(x)). In

particular, as Ω1
A/k is finite locally free and X is regular, Ω1

A/k is locally free of rank
equal to the dimension. This proves one direction.

Suppose Ω1
A/k is finite locally free and rankAp(Ω

1
Ap/k

) = dimAp for each prime ideal
p ⊂ A. We claim X = Spec A is regular. Because TX/k,x = (ΩX/k,x ⊗OX,x

k(x))∨, we
see that dimTX/k,x = dimOX,x at every x ∈ X. Hence X is regular.

Definition 8.1.18. Let A be an algebra over a field k.

(1) We say that A is étale over k if A ⊗k k̄ is isomorphic as a k̄-algebra to a finite
product of copies of k̄.

(2) We say that a ring map A → B is étale if A → B is flat, of finite type, and for
each p ∈ Spec A, the map k(p)→ B ⊗A k(p) is étale.

This will turn out to be equivalent to the condition that Spec (B) → Spec (A) is
étale. We will also see below that B is étale over A if and only if the ring map A→ B
is of finite type and the module of differentials Ω1

A/k is zero. First, we prove:

Lemma 8.1.19. Let k be a field, T a variable. Let P (T ) ∈ k[T ] be a monic polynomial
of positive degree. Let f ∈ k[T ] monic with (P (T ), P ′(T )) = (f) ⊂ k[T ]. Let g ∈ k[T ]
such that f becomes a unit in k[T ]g. The ring map k → k[T ]g/(P ) is étale.

Proof. Suppose that P (T ) =
∏m

i=1(T −ai)ni ∈ k̄[T ], where a1, . . . , am ∈ k̄ are pairwise
different and n1, . . . , nm ∈ Z≥1 are such that deg(P ) =

∑
i ni. Define I := {1, . . . ,m}.

Then
P ′(T ) =

∑
i∈I

ni(T − ai)ni−1
∏

j∈I|j 6=i

(T − aj)nj ∈ k̄[T ].
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For each i, the polynomial (T −ai)ni−1 divides both P (T ) and P ′(T ) (in the ring k̄[T ]),
and in fact

f =
∏
i∈I

(T − ai)ni−1 =
∏

i∈I|ni≥2

(T − ai)ni−1 ∈ k̄[T ].

Let ḡ ∈ k[T ]/(P ) be the image of g. The above shows that we have:

k̄[T ]g/(P ) =
(
k̄[T ]/(P )

)
ḡ

=
∏

i∈I|ni=1

k̄[T ]/(T − ai) ∼=
∏

i∈I|ni=1

k̄.

The lemma follows.

Lemma 8.1.20. Let A be a ring. Let T be a variable and P (T ) ∈ A[T ] a monic
polynomial with coefficients in A. Let b ∈ A[T ] such that P ′(T ) is a unit in A[T ]b/(P ).
The ring map A→ A[T ]b/(P ) is étale.

Proof. Let B := A[T ]b/(P ). Note that the map A → B is flat, for since P is monic,
B is finite and free as an A-module. As B → Bb is flat, the map A → Bb is flat.
These ring maps are of finite type. We need to prove that Spec Bb → Spec A is
unramified. For this, it suffices to show that for each p ∈ Spec A, the base change
Spec (Bb ⊗A k(p)→ Spec k(p) is unramified (cf. Theorem 8.1.14). Note that

B ⊗A k(p) = A[T ]b/(P )⊗A Ap/pAp = k(p)[T ]b̄/(P ),

where P (resp. b̄) is the image of P (resp. b̄) in k(p)[T ] (resp. k(p)[T ]b̄). As P ′(T ) is a
unit in B, its image P̄ ′ is a unit in B ⊗A k(p). By Lemma 8.1.19, we are done.

Definition 8.1.21. A morphism of rings A → C is standard étale if C ∼= A[x]g/(f)
as A-algebras for f, g ∈ A[x] with f monic such that f ′ is a unit in A[x]g/(f). A
morphism of affine schemes X → Y is standard étale if O(Y )→ O(X) is so.

Theorem 8.1.22. Let f : X → Y be a morphism of schemes, locally of finite presen-
tation. Let x ∈ X and y = f(x) ∈ Y . The following conditions are equivalent:

(1) f is étale at the point x.

(2) f is smooth at the point x and unramified at the point x.

(3) f is flat at the point x and unramified at the point x.

(4) f is flat at the point x and OX,x/myOX,x is a field, which is a finite separable
field extension of k(y).

(5) There are affine open neighbourhoods U and V of x and y such that f(U) ⊂ V
and the morphism f |U : U → V is standard étale (cf. Definition 8.1.21).

If Y is locally noetherian and k(x) = k(y), these properties are further equivalent to:

(5) the morphism ÔY,y → ÔX,x is an isomorphism.
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Proof. For the implication (4) =⇒ (5), see [Mil80, Chapter I, Theorem 3.14]. Let us
show that (5) implies (1). Let f : X → Y be a morphism which is étale at x ∈ X. Let
U and V be affine open neighbourhoods of x and y = f(x) such that f(U) ⊂ V and
f |U : U → V is standard étale. It suffices to show that f |U : U → V is étale in the sense
of Definition 8.1.6. Thus, we may assume that X and Y are affine and that f : X → Y
is standard étale. Thus, let X = Spec A, Y = Spec C,C = Bb, B = A[T ]/(P ) = A[t].
Let X ′ = Spec R and X ′0 = Spec R0 = Spec R/I for some ideal I ⊂ R with I2 = 0.
We are given an A-morphism g0 : C → R0 and we want to find a unique g : C → R
that makes the following diagram commute:

C
g0
//

g

  

R0

A

OO

// R.

OO

Let r ∈ R such that g0(t) = r̄ ∈ I, where r̄ = r mod I. The fact that P ′(t) ∈ C∗

implies g0(P ′(t)) = P ′(g0(t)) = P ′(r̄) ∈ R∗0. This in turn implies P ′(r) ∈ R∗. Define

h = −P (r) · P ′(r)−1 ∈ I, r′ = r + h ∈ R.

Then r′ ≡ r mod I and P (r′) = 0. Define g : C → R as the map that sends t to r′.
This proves the implication (5) =⇒ (4).

See [EGAIV, Théorème (17.6.1), Proposition (17.6.3)] for the rest of the proof.

Corollary 8.1.23. Let f : X → S be a morphism of schemes which is locally of finite
presentation. The following assertions are equivalent.

(1) f is étale.

(2) f is smooth of relative dimension zero. That is, f is smooth and all non-empty
fibres are zero-dimensional.

(3) f is smooth and ΩX/S = 0.

(4) f is smooth and unramified.

(5) f is flat and unramified.

(6) f is flat and each fibre f−1(y) is a disjoint union of spectra of finite separable
field extensions of k(y).

Proof. Clear from the above.

8.1.2 Properties of étale morphisms
Proposition 8.1.24. Let f : X → S be a flat morphism of schemes which is locally
of finite presentation. Then f is open. In particular, smooth morphisms and étale
morphisms are open.
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Proof. See [EGAIV, Proposition 2.4.6].

We follow [Stacks, Tag 020C] and will use the following definition of variety.

Definition 8.1.25. Let k be a field. A variety over k is a scheme X over k which is
integral and such that the morphism X → Spec k is separated and of finite type.

Remark 8.1.26. With this definition, the base change of a variety over some finite
field extension may no longer be a variety.

For a local ring A with maximal ideal mA, define

gr(A) =
⊕
n

mn/mn+1, m = mA.

For a geometrically integral affine variety

V = Spec k[X1, . . . , Xn]/a

over an algebraically closed field k such that 0 ∈ V (k) ⊂ kn, let a∗ = {f∗ : f ∈ a},
where f∗ is the homogeneous part of f of lowest degree. Let P ∈ V (k) be the point
which is the origin in An(k). Define the tangent cone of V at P to be the k-algebra

CP (V ) = k[X1, . . . , Xn]/a∗.

Lemma 8.1.27. Let V ⊂ An be a geometrically integral affine variety defined by an
ideal a such that p = (0, . . . , 0) ∈ V . The map Cp(V ) = k[X1, . . . , Xn]/a∗ → gr(OV,p)
that sends the class of Xi in Cp(V ) to the class of Xi in gr(OV,p) is an isomorphism.

Example 8.1.28. Let X = V (y2 = x3) ⊂ A2. With p = (0, 0) ∈ X(k). Then

Cp(X) = k[x, y]/(y2) = k[x]⊗k k[y]/(y2)

is the coordinate ring of the double line through the origin which is tangent to X at
p. We have OX,p = k[x, y]/(y2 − x3)(0,0) with maximal ideal m = (x, y). As y ∈ m
satisfies y2 = x3 ∈ m3, the class [y] ∈ gr(OX,p) of y satisfies [y]2 = 0. The natural map
k[x]⊗k k[y]/(y2)→ gr(OX,p) sending x to [x] and y to [y], is an isomorphism.

Proposition 8.1.29. Let f : A→ B be a local morphism of local noetherian rings.

(1) The map f defines a homomorphism of graded rings gr(f) : gr(A)→ gr(B).

(2) The map gr(f) is an isomorphism if and only if f̂ : Â→ B̂ is an isomorphism.

Proposition 8.1.30. Let V and W be a morphism of geometrically integral varieties
over an algebraically closed field k. Then a morphism of varieties ϕ : W → V is étale if
and only if for each w ∈ W , the map ÔV,ϕ(w) → ÔW,w induced by ϕ is an isomorphism.

Proof. See Theorem ... above. We will give an alternative proof.

Let S be a scheme. For a scheme X over S, and a point x ∈ X, we let TX/S,x denote
the (Zariski) tangent space of X over S at x, see [Stacks, Tag 0B28]. If S = Spec k for
a field k, and if X is a variety over k, and x ∈ X, then we define TX,x := TX/Spec k,x.

Proposition 8.1.31. Let X and Y be smooth varieties of an algebraically closed field.
Then a morphism of varieties f : X → Y is étale if and only if for each x ∈ X, the
induced map on Zariski tangent spaces dfx : TX,x → TY,f(x) is an isomorphism.
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8.1.3 Sites
We begin with the following definition that we shall frequently use.

Definition 8.1.32. Let C be a category. A family of morphisms with fixed target
U = {ϕi : Ui → U}i∈I is the data of

(1) an object U ∈ C,

(2) a set I, possibly empty,

(3) for all i ∈ I, a morphisms ϕi : Ui → U of C with target U .

Definition 8.1.33. A site is a tuple

T = (T ,Cov(T ))

where C is a category and Cov(C) is a set of families of morphisms with fixed target
called coverings, such that

(1) If ϕ : V → U is an isomorphism, then {ϕ : V → U} is a covering.

(2) If {ϕi : Ui → U}i∈I is a covering and for all i ∈ I, {ψij : Uij → Ui}j∈Ji is a cover-
ing, then

{ϕi ◦ ψij : Uij → U}i∈I,j∈Ji
is a covering.

(3) If {Ui → U}i∈I is a covering and V → U is a morphism in C, then

(a) for all i ∈ I, the fibre product Ui ×U V exists in C; and
(b) {Ui ×U V → V }i∈I is a covering.

If (T ,Cov(T )) is a site, then we shall often abuse notation, and denote it simply
by T (the set of coverings being implicitly understood). This abuse of notation can be
compared with the common way of denoting a topological space (X,Op(X)) simply by
its underlying set X, the category Op(X) of opens in X being implicitly understood.

Remark 8.1.34. Explain the difference between terminology: What we call a site is
a called a category endowed with a pretopology in [Exposé II, Définition 1.3, SGA4].
In [ArtinTopologies] it is called a category with a Grothendieck topology.

Example 8.1.35. Let X be a topological space, and let Op(X) be the category of
opens U ⊂ X (the morphisms between opens are the inclusion mappings, if they
exist). Then Op(X) underlies a site XZar defined as follows: the coverings are the
usual topological coverings (for an open U ⊂ X and a set of inclusions of opens
U = {Ui ⊂ U}i∈I , U is a covering if ∪i∈IUi = U). Observe that if U, V ⊂ W ⊂ X
are open subsets then U ×W V = U ∩ V exists: this category has fibre products. The
verifications of the axioms are trivial. This site called the Zariski site of X.
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Example 8.1.36. Let X be a scheme. Let C be the category of tuples

(U, π : U → X)

where U is a scheme and π an étale morphism. For U ∈ C, let Cov(U) be the set of
surjective families of étale morphisms U = {ϕi : Ui → U}i∈I , where U is surjective if
the induced morphism tiUi → U is surjective. Then C together with the set Cov(C) =
{Cov(U)}U∈C is a site.

Definition 8.1.37. Let X be a scheme.

(1) The small étale site of X is the site constructed in Example 8.1.36 and is denoted
by Xét.

(2) The small Zariski site of X is the site constructed in Example 8.1.35 and is
denoted by XZar.

Definition 8.1.38. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
with fixed target (see Definition 8.1.32).

(1) The family of morphisms with fixed target {fi : Ti → T}i∈I is a Zariski covering
if each fi is an open immersion and T = ∪i∈Ifi(Ti).

(2) {fi : Ti → T}i∈I is an étale covering if each fi is étale and T = ∪i∈Ifi(Ti).

(3) We say that {fi : Ti → T}i∈I is an fppf covering if each fi is flat and locally of
finite presentation, and T = ∪i∈Ifi(Ti).

(4) We say {fi : Ti → T}i∈I is an fpqc covering of T if the following conditions hold:

(a) fi : Ti → T is flat for each i ∈ I;
(b) for every affine open U ⊂ T , there exists a finite subset IU ⊂ I and for each

i ∈ IU , a quasi-compact open Vi ⊂ Ti, such that

U =
⋃
i∈IU

fi(Ui).

Definition 8.1.39. Let X be a scheme. Let τ ∈ {fpqc, fppf, étale, Zariski}. The
big τ -site of X is the site with underlying category Sch/X, the category of schemes
over X, and for which a family of morphisms with fixed target U = {Ui → T}i∈I is a
covering if and only if if it is an τ -covering, see Definition 8.1.38.

Definition 8.1.40. Let S be a scheme. Let F be a contravariant functor on the
category of schemes over S with values in sets. Let U = {Ui → T}i∈I be a family of
morphisms of schemes over S with fixed target, see Definition 8.1.32.

(1) We say that F satisfies the sheaf property for the family U if for any collection of
elements si ∈ F (Ui) such that si|Ui×TUj

= sj|Ui×TUj
there exists a unique element

s ∈ F (T ) such that si = s|Ui
∈ F (Ui).
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(2) We say that F satisfies is a sheaf for the fpqc (resp. fppf, resp. étale, resp. Zariski)
topology if it satisfies the sheaf property for any fpqc (resp. fppf, resp. étale, resp.
Zariski) covering U .

Similarly, suppose τ ∈ {étale, Zariski}. Let X be a scheme, and suppose F is presheaf
on the small τ -site of X, see Definition 8.1.37. Then F is a sheaf for the τ -topology if
F satisfies the sheaf property for every U ∈ Cov(Xτ ).

Remark 8.1.41. An fppf covering is an fpqc covering. A fortiori, any étale covering
is an fpqc covering. In particular, if F is a contravariant functor on the category of
schemes over a scheme S with values in sets, and F is a sheaf for the fpqc topology,
then F is a sheaf for the fppf topology. Similarly, fppf sheaves are étale sheaves and
étale sheaves are Zariski sheaves. For a certain converse, see Proposition 8.3.7.

Remark 8.1.42. Throughout Section 8.1.3 (and in the rest of this chapter), we ignore
some set-theoretic issues. To resolve these, either use the approach outlined in [Stacks,
Tag 03X7], or use universes, cf. [SGA4, Exposé I].

8.2 Lecture 23: Sheaves on the étale site

8.2.1 Morphisms of sites
Definition 8.2.1. Let C and D be sites. A functor u : C → D is called continuous if
for every {Vi → V }i∈I ∈ Cov(C), we have the following:

(1) {u(Vi)→ u(V )}i∈I ∈ Cov(D),

(2) for any morphism T → V and any i ∈ I, the morphism u(T ×V Vi)→ u(T )×u(V )

u(Vi) is an isomorphism.

Let u : C → D be a functor between categories. We denote by

up : PSh(D)→ PSh(C)

the functor F 7→ F ◦ u.
For V ∈ D, define IuV as the category with

Ob(IuV ) = {(U, φ) | U ∈ Ob(C), φ : V → u(U)}
Mor((U, φ), (U ′, φ′)) = {f : U → U ′ in C | u(f) ◦ φ = φ′} .

Given a presheaf F on C, we obtain a functor

FV : IoppV → Set, (U, φ) 7→ F(U).

We define
upF(V ) := lim−→

IoppV

FV ,

where the colimit on the right is an object in Set, see [Stacks, Tag 002F].
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Lemma 8.2.2. Let u : C → D be a functor between categories.

(1) The functor up is left adjoint to the functor up.

(2) Assume that C has a final object X and that u(X) is a final object of D. Assume
that C has fibre products and that u commutes with them. Then (IuV )opp is filtered.

Definition 8.2.3. Let S be a site.

(1) A presheaf on S is a contravariant functor S → Set.

(2) Let F : S → Set be a presheaf. Then F is a sheaf if for every covering {Ui → U}i∈I ,
the diagram of sets

F (U)→
∏
i∈I

F (Ui)⇒
∏

(i,j)∈I×I

F (Ui)× F (Uj)

is exact. In other words, the map F (U) →
∏

i∈I F (Ui) is injective with image
the set of (si)i ∈

∏
i F (Ui) such that si|j = sj|i for each i, j ∈ I.

(3) If F and G are presheaves, then a morphism of presheaves F → G is a morphism
of functors, and if F andG are sheaves, then amorphism of sheaves is a morphism
of presheaves F → G. Hence the category of sheaves on S, denote by Sh(S), is
a full subcategory of the category of presheaves on S.

(4) Let T be a category. Then T is called a topos if T is equivalent to the category
of sheaves Sh(S) on a site S.

Let u : C → D be a continuous functor of sites. Let

us : Sh(D)→ Sh(C)

be the functor up restricted to the subcategory of sheaves of sets (it is readily checked
that upF is a sheaf on C if F is a sheaf on D). We define

us : Sh(C)→ Sh(D)

as the functor G 7→ (upG)#, where (−)# denotes the sheafification functor.

Lemma 8.2.4. In the above notation, the functor us is a left adjoint of us.

Recall that a functor F : C1 → C2 is called exact if C1 has all finite limits and
colimits, and if F commutes with them.

Definition 8.2.5. Let C and D be sites. A morphism of sites f : D → C is given by
a continuous functor u : C → D such that the functor us is exact.

Definition 8.2.6. Let C and D be sites.
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(1) A morphism of topoi f : Sh(D)→ Sh(C) is given by a pair of functors(
f∗ : Sh(D)→ Sh(C), f−1 : Sh(C)→ Sh(D)

)
such that f−1 is left adjoint to f∗, and such that f−1 is exact.

For example, let u : C → D be a continuous functor inducing a morphism of sites
f : D → C. Then the pair of functors

(f−1 := us, f∗ := us) (8.2)

is a morphism of topoi.

Proposition 8.2.7. Let u : C → D be a continuous functor between sites C and D.
Assume that C has a final object X, that u(X) is a final object of D, that C has fibre
products, and that u commutes with fibre products. The following assertions hold.

(1) u defines a morphism of sites f : D → C. In other words, us is exact.

(2) The pullback functor f−1 and the pushforward functor f∗ (see (8.2)) extend to
an adjoint pair

(f−1 : Ab(C)→ Ab(D), f∗ : Ab(D)→ Ab(C))

of functors of sheaves of abelian groups. Moreover, these functors commute with
taking the underlying sheaf of sets.

Examples 8.2.8. (1) Let f : X → Y be a continuous map of topological spaces.
The functor

Op(Y )→ Op(X), U 7→ f−1(U)

defines a morphism of sites XZar → YZar.

(2) Let X be a scheme. There is a natural morphism of sites Xét → XZar.

8.2.2 Galois coverings
Let ϕ : X → Y be a morphism of schemes, and let G be a finite group. A right action
of G on X over Y is a morphism α : G → AutX(Y ) such that α(gh) = α(h)α(g). In
other words, the morphism β : G → AutX(Y ) defined as β(g) = α(g)−1 is a group
homomorphism (called a left action of G on X over Y ), because

β(gh) = α(gh)−1 = (α(h)α(g))−1 = α(g)−1α(h)−1 = β(g)β(h).

Definition 8.2.9. Let ϕ : X → Y be a faithfully flat morphism of schemes, and let G
be a finite group acting on X over Y on the right. The morphism ϕ is called a Galois
covering if the morphism∐

g∈G

X = X ×G→ X ×Y X, (x, g) 7→ (x, xg) (8.3)

is an isomorphism; the group G is called the Galois group of the covering. This means
that for each scheme T and each x, y ∈ X(T ) with ϕ(x) = ϕ(y), there is a unique
g ∈ G(T ) such that xg = y.
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Lemma 8.2.10. (1) If ϕ : X → Y is a Galois covering, then ϕ is surjective, and
finite étale of degree equal to the order of G.

(2) Conversely, if ϕ : X → Y surjective and finite étale of degree #G, where G =
AutY (X), then the canonical right action of G on X over Y turns ϕ : X → Y
into a Galois covering with Galois group G.

Proof. Item (1) follows from fpqc descent, see [Stacks, Tag 02YJ] (and compare [GW20,
Chapter 14]). Namely, to check whether X → Y is surjective and finite étale of degree
#G, it suffices to verify that the same properties hold for the base changeX×YX → X.
This follows from (8.3). We leave item (2) as an exercise.

Remark 8.2.11. Galois coverings can be used for questions of descent. For instance, if
k ⊂ L is a finite Galois extension of fields, with Galois group G, let CGL be the category
of quasi-projective L-schemes Z → Spec L equipped with an action G → AutL(Z)
compatible with the action of G on L over k, and let Ck be the category of quasi-
projective k-schemes V → Spec k. Then the functor V 7→ V×kL defines an equivalence
of categories [Poo17, Corollary 4.4.6]. One may think of this as an analogue of the
classical fact that the category of k-vector spaces is in natural equivalence with the
category of L-vector spaces equipped with a G-action compatible with the action of G
on L over k (cf. [GW20, Theorem 14.85]).

Example 8.2.12. Let k be a field and let f(T ) ∈ k[T ] be a monic irreducible poly-
nomial of degree n ≥ 1. Define L = k[T ]/(f(T )). Then L is a field (because k[T ]
is one-dimensional) and is called separable over k if f(T ) has no repeated roots in k̄.
Moreover, L is called normal over k if each embedding L → k̄ identifies L with the
same subfield of k̄, that is, for any such an embedding, every automorphism of k̄ that
fixes k maps L into itself, that is, if f(T ) splits into linear factors over L, that is, there
is a k-algebra isomorphism

L⊗k L ∼=
n∏
i=1

L.

Note for example that Q[T ]/(T 3 − 2) is not normal over Q because there are three
embeddings Q[T ]/(T 3 − 2) → C, one for which the image of T lies either in R, and
two others for which the image of T lies in C−R. The extension L/k is called Galois
if L is normal and separable over k. If this is the case, then the morphism of schemes

Spec L→ Spec k

is a Galois covering, and its Galois group is G = Autk(L).

Lemma 8.2.13. Let X → Y be a Galois covering, with Galois group G, and let F
be a presheaf on Xét that takes disjoint unions to products. Then F satisfies the sheaf
condition for the covering X → Y if and only if the restriction map F (Y )→ F (X) is
injective with image F (X)G.
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Proof. Indeed, applying F to the diagram X ×Y X ⇒ X → Y shows that F satisfies
the sheaf condition for the covering X → Y if and only if the diagram of sets

F (Y )→ F (X)⇒
∏
g∈G

F (X)

is exact. The lemma follows.

8.3 Lecture 24: Étale cohomology groups

8.3.1 Definition of étale cohomology with values in an étale sheaf
Definition 8.3.1. Let f : X → Y be a morphism of schemes. We denote by f∗ : Sh(Xét)→
Sh(Yét) and f−1 : Sh(Yét)→ Sh(Xét) the functors constructed in Definition 8.2.7.

Tracing through the definitions above shows that

f∗F : Y opp
ét → Set is defined as (V → Y ) 7→ F(X ×Y V → X),

and that f−1G is the sheaf associated to the presheaf

(U → X) 7→ lim−→
U→X×Y V

G(V → Y ).

Here, the colimit is over the category of pairs

(V → Y, ϕ : (U → X)→ (X ×Y V → X)).

Example 8.3.2. Let F be a sheaf on Xét for a scheme X. Let ux̄ : x̄ → X be a
geometric point of X. The stalk of F at x̄, denoted by Fx̄, is the abelian group
u−1
x̄ (P ). More explicitly, Fx̄ = lim−→P (U) where the colimit is over all commutative

triangles
U

��

x̄oo

��

X

where U → X is étale; that is, over all étale neighbourhoods of x̄ in X. Note that Fx̄
is independent of the field k(x̄) chosen.

For an étale morphism U → X, a section s ∈ F (U) and a geometric point x̄→ U ,
we denote by sx̄ the image of s in Fx̄ under the canonical morphism F (U)→ Fx̄.

Recall that an object I of an abelian category is called injective if the functor
M 7→ Hom(M, I) is exact. For instance, an abelian group I is injective if for every two
abelian groups Ai (i = 1, 2) with A1 ⊂ A2 an abelian subgroup, the map Hom(A2, I)→
Hom(A1, I) is surjective. Applying this to nZ ⊂ Z for n ∈ Z≥2, we see that for every
g ∈ I there exists h ∈ I such that nh = g ∈ I. As this holds for every n, we conclude
that I is divisible. The converse is also true: divisible abelian groups are injective.
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An abelian category A is said to have enough injectives if, for every object M in
A there is an injective object I ∈ A and a monomorphism M → I. If A has enough
injectives and if f : A → B is a left exact functor from A into a second abelian category
B, then there is an essentially unique sequence of functors Rif : A → B (i ≥ 0), called
the right derived functors of f , such that R0f = f,Rif(I) = 0 if I is injective and
i > 0, and for any short exact sequence 0 → M1 → M2 → M3 → 0 in A, there exist
morphisms δi : Rif(M3)→ Ri+1f(M1) so that one obtains a long exact sequence

· · · → Rif(M1)→ Rif(M2)→ Rif(M3)
δi−→ Ri+1f(M1)→ · · ·

in B, and this association of a long exact sequence to a short exact sequence is func-
torial. An object M in A is f -acyclic if Rif(M) = 0 for all i > 0. If M → N• is
a resolution of M by f -acyclic objects N i, then Rif(M) is canonically isomorphic to
the i-th cohomology group of the complex fN•. We have the following:

Lemma 8.3.3. Let F be a sheaf on Xét. Let U → X be an étale morphism and let
s ∈ F (U). Suppose that for every geometric point x̄ → U , the element sx̄ ∈ Fx̄ (see
Example 8.3.2) is zero. Then s = 0.

Proof. Let u ∈ U and choose a geometric point x̄→ U with image u ∈ U . As s ∈ F (U)
maps to zero under F (U) → Fx̄, there exists an étale neighbourhood Vx̄ → U whose
image contains u, such that s|Vu = 0 ∈ F (Vu). The family {Vu → U}u∈U is an étale
covering of U . Hence, s = 0 by the sheaf condition, and we win.

Theorem 8.3.4. Let X be a scheme. Then the category Ab(Xét) of abelian sheaves
on the étale site Xét of X is an abelian category with enough injectives.

Proof. We first prove that Ab(Xét) is abelian. Let PAb(Xét) be the category of abelian
presheaves on Xét. We claim that PAb(Xét) is abelian. Let P and P ′ be presheaves of
abelian groups on Xét. Then the presheaf Q with Q(U) = P (U)⊕ P (U ′) and Q(f) =
P (f)⊕ P (f ′) is the direct sum of P and P ′ in PAb(Xét). As Hom(P, P ′) is naturally
an abelian group, PAb(Xét) is an additive category. The kernel (resp. cokernel) of a
morphism φ : P → P ′ is the presheaf K (resp. Q) with K(U) = Ker(φ(U)) (resp.
Coker(φ(U))). The direct sum (resp. product) of a family of presheaves is also given
U -pointwise, for U → X étale; a sequence P ′ → P → P ′′ is exact if and only if the
corresponding sequences P ′(U)→ P (U)→ P ′′(U) are exact for all U → X étale. We
conclude that, indeed, PAb(Xét) is naturally an abelian category.

Now Ab(Xét), as a full subcategory of PAb(Xét), is an additive category. Let
φ : F → F ′ be a morphism in Ab(Xét). It remains to verify that Coim(φ) → Im(φ)
is an isomorphism. The analogous statement is true in PAb(Xét) because the latter
is abelian; the sheafification functor (−)# : PAb(Xét) → Ab(Xét) defines an inverse
HomPAb(Xét)(F, F

′) → HomAb(Xét)(F, F
′) of the natural bijection HomAb(Xét)(F, F

′) →
HomPAb(Xét)(F, F

′). Thus Coim(φ) = Im(φ) in Ab(Xét).
To see that Ab(Xét) has enough injectives, let F ∈ Ab(Xét). For any geometric

point ux̄ : x̄ → X, choose an embedding u∗x̄(F ) ↪→ Gx̄ into an injective sheaf Gx̄ on
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k(x̄). Consider the composition

F →
∏

ux̄ : x̄→X

ux̄,∗(u
−1
x̄ F )→

∏
ux̄ : x̄→X

ux̄,∗(Gx̄).

The first morphism in this composition is a monomorphism because of Lemma 8.3.3.
The second morphism in this composition is a monomorphism because ux̄,∗ is left-
exact. Hence the composition is a monomorphism. As the object

∏
ux̄ : x̄→X ux̄,∗(Gx̄)

is injective because each Gx̄ is injective by Lemma 8.3.5 below, we are done.

Recall that if g : B → A is a contravariant functor, we say that g is right exact if
the associated functor Bop → A is right exact. In other words, for any exact sequence
0→M1 →M2 →M3 in B, the sequence g(M3)→ g(M2)→ g(M1)→ 0 is exact in A.

Lemma 8.3.5. Let f : A → B be a functor between abelian categories. Suppose that
f has a right exact left adjoint g : B → A. Then f preserves injectives.

Proof. Let I ∈ A be injective. The functor M 7→ HomB(M, f(I)) is isomorphic to
M 7→ HomA(g(M), I). The latter is a composition of the right exact functors g and
HomA(−, I), hence right exact. Thus M 7→ HomB(M, f(I)) is exact.

Definition 8.3.6. Let X be a scheme. Let Γ(Xét,−) denote the left exact functor

Γ(Xét,−) : Ab(Xét)→ Ab, F 7→ Γ(Xét, F ) = F (X).

The right derived functors of Γ(Xét,−) are written

H i(Xét,−) := RiΓ(Xét,−).

We say H i(Xét, F ) is the étale cohomology group of X with coefficients in F ∈ Ab(Xét).

8.3.2 Reformulation of the sheaf property
Let X be a scheme. Let

F : Xét → Set

be a sheaf for the étale topology. For U ∈ XZar, the open immersion U → X is étale,
and hence we obtain a well-defined set F(U). In this way, F induces a sheaf

F|XZar : XZar → Set.

Conversely, we have:

Proposition 8.3.7. Let X be a scheme. Let Sch/X be the category of schemes over
X. Let F be a contravariant functor Sch/X → Set. Then the following are equivalent.

(1) F is a sheaf for the étale (resp. fppf) topology;
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(2) F is a sheaf for the Zariski topology and satisfies the sheaf property for every
étale (resp. fppf) covering consisting of a single surjective étale (resp. flat, locally
finitely presented) morphism of X-schemes V → U , where U and V are affine.

The analogous statement holds for any presheaf F on the small étale site Xét of X.

In particular, the proposition says that a presheaf F on Xét is a sheaf if and only
if the restriction F|XZar to the small Zariski site XZar of X is a sheaf for the Zariski
topology, and for every surjective étale morphism of X-schemes

V → U,

where U and V are affine schemes which are étale over X, the diagram

F(U)→ F(V )⇒ F(V ×U V )

is exact. We point out that Proposition 8.3.7 has an analogon in the fpqc topology,
see Proposition 8.3.8 below.

Proof of Proposition 8.3.7. Let τ ∈ {étale, fppf}. Let U → X be a morphism of
schemes. We consider a covering

U = {Ui → U}i∈I

of U in the τ -topology. Define Uij = Ui ×U Uj; we need to prove that the sequence

F(U)→
∏
i

F(Ui)⇒
∏
ij

F(Uij) (8.4)

is exact.

Step 1. Claim: Define U ′ =
∐

i Ui. Then

F(U)→ F(U ′)⇒ F(U ′ ×U U ′) (8.5)

is exact if and only if (8.4) is exact.

Indeed, this follows from the fact that F is a sheaf in the Zariski topology.

Step 2. Claim: Define U ′ =
∐
Ui. Suppose that U admits an open covering

U = ∪j∈JVj and that U ′ admits an open covering U ′ = ∪j∈J,k∈Kj
Vjk that satisfy the

following properties: Vjk maps into Vj for each k, and for each j, the family of mor-
phisms with fixed target {Vjk → Vj}k∈Kj

is surjective (hence defines a τ -covering).
Assume that for each j ∈ J , the sequence

F(Vj)→
∏
k∈Kj

F (Vjk)⇒
∏
k,k′

F (Vjk ×Vj Vjk′) (8.6)
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is exact. Then (8.4) is exact.

Consider the following diagram:

F(U) //

��

F(U ′) //
//

��

F(U ′ ×U U ′)

��∏
j F(Vj) //

�� ��

∏
j

∏
k F(V ′jk) //

//

�� ��

∏
j

∏
k,k′ F(V ′jk ×Vj V ′jk′)

∏
j,j′ F(Vj ∩ Vj′) //

∏
j,j′
∏

k,k′ F(V ′jk ∩ Vj′,k′)

The two columns are exact because F is a sheaf in the Zariski topology. The middle
horizontal sequence is exact because it is the product of the exact sequences (8.6).
Hence, a diagram chase shows that (8.5) is exact. By Step 1, it follows that (8.4) is
exact as desired.

Step 3. Finish the proof. Let U ′ =
∐

i Ui as above. Let π : U ′ → U be the
canonical morphism. Then π is faithfully flat and locally of finite presentation. Con-
sequently, π is open, see Proposition 8.1.24.

Write U = ∪j∈JVj as a union of open affines. For each j ∈ J , write

π−1(Vj) =
⋃
k∈K′j

Vjk

as a union of open affines, for some index set K ′j, possibly infinite. Because π : U ′ → U
is open, the sets π(Vjk) ⊂ Vj are open in Vj. As Vj is affine, Vj is quasi-compact, hence
finitely many of the open subsets π(Vjk) cover Vj. In other words, there exists a finite
subset Kj ⊂ K ′j such that

Vj =
⋃
k∈Kj

π(Vjk).

By Step 2, to prove that (8.4) is exact, it suffices to show that for each j ∈ J , the
sequence (8.6) is exact. Define V ′j :=

∐
k∈Kj

Vkj. Then V ′j and Vj are affine and V ′j → Vj
is surjective and étale. Moreover, by Step 1, to prove that (8.6) is exact, it suffices to
show that

F(Vj)→ F(V ′j )⇒ F(V ′j ×Vj V ′j )
is exact for each j. This holds by assumption. The proposition follows.

Similarly, we have:

Proposition 8.3.8. Let X be a scheme and let Sch/X be the category of schemes
over X. Let F be a contravariant functor Sch/X → Set. Then F is a sheaf for the
fpqc topology if and only if it is a sheaf for the Zariski topology and satisfies the sheaf
property for any faithfully flat morphism of X-schemes V → U with V, U affine.

Proof. See [Stacks, Tag 022H].
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8.4 Lecture 25: Representable presheaves are sheaves

Definition 8.4.1. Let C be a category with fibre products. A morphism Y → X in C
is called a strict epimorphism if the sequence

Y ×X Y ⇒ Y → X

is exact. That is, for every Z ∈ C, the sequence of sets

Hom(X,Z)→ Hom(Y, Z)⇒ Hom(Y ×X Y, Z)

is exact.

Examples 8.4.2. (1) If the category C has not only fibre products but also finite
products, then the sequence of sets Hom(X,Z)→ Hom(Y, Z)⇒ Hom(Y×XY, Z)
is exact if and only if the sequence Hom(X,Z)→ Hom(Y, Z)⇒ Hom(Y × Y, Z)
is exact. Namely, the natural morphism Y ×X Y → Y × Y is a monomorphism.

(2) To prove that Y ×X Y → Y × Y is a monomorphism, observe that we have a
cartesian diagram

Y ×X Y

��

// Y × Y

��

X // X ×X.
The natural diagonal morphism ∆: X → X ×X is a monomorphism, because if
gi : T → X are morphisms (i = 1, 2) with ∆(g1) = ∆(g2), then g1 = pri∆(g1) =
pri∆(g2) = g2. Here, pri : X × X → X is the projection map (i ∈ {1, 2}).
Furthermore, the base change of a monomorphism is a monomorphism.

(3) Let M1,M2,M3 be objects in an abelian category A. Let f1, f2 be morphisms
M1 →M2, and consider a morphism g : M2 →M3. Then

M1 ⇒M2
g−→M3

is exact if and only if
M1

f1−f2−−−→M2
g−→M3 → 0

is exact, if and only if for any Z ∈ A, the sequence of abelian groups

0→ Hom(M3, Z)
g∗−→ Hom(M2, Z)

(f1−f2)∗−−−−−→ Hom(M1, Z)

is exact, if and only if for any Z ∈ A, the sequence of sets

Hom(M3, Z)
g∗−→ Hom(M2, Z)⇒ Hom(M1, Z)

is exact.
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(4) Let f : A→ B be a faithfully flat morphism of rings. Then

Spec(f) : Spec B → Spec A

is a strict epimorphism in the category of affine schemes. Consider the maps
ei : B → B ⊗A B defined as e0(b) = 1 ⊗ b and e1(b) = b ⊗ 1. To prove that
Spec(f) is a strict epimorphism in the category of affine schemes, it suffices to
show that the sequence of A-modules

0→ A
d(−1)

−−−→ B
d(0)

−−→ B ⊗A B, d(−1) := f, d(0) := e0 − e1, (8.7)

is exact as a sequence of A-modules. Namely, if such is the case, then for any
A-module M the sequence

HomA(M,A)→ HomA(M,B)⇒ HomA(M,B ⊗A B)

is exact by item (3).

(5) Let us prove that (8.7) is exact when there exists a ring homomorphism g : B → A
such that gf = id. Define k0 : B⊗2 → B by k0(b0 ⊗ b1) = g(b0)b1. We claim that

k0 ◦ d(0) + d(−1) ◦ g = id as maps B → B. (8.8)

Namely, let b ∈ B. Then
(
k0 ◦ d(0) + d(−1) ◦ g

)
(b) =(

k0 ◦ d(0) + f ◦ g
)

(b) = k0 (1⊗ b− b⊗ 1) + f (g(b)) = b− f(g(b)) + f(g(b)) = b.

The existence of a tuple (g, k0) satisfying (8.8) implies that (8.7) is exact. Indeed,
it is clear that d(0)◦d(−1) = 0, which shows that Im(d(−1)) ⊂ Ker(d(0)); conversely,
equation (8.8) implies that Ker(d(0)) ⊂ Im(d(−1)).

(6) To prove that (8.7) is exact without the assumption that a retraction g : B → A
of f exists, let A → A′ be a faithfully flat morphism of rings, and define B′ =
B ⊗A A′. As A→ A′ is faithfully flat, we have that

0→ A′
d(−1)

−−−→ B′
d(0)

−−→ B′ ⊗A′ B′, (8.9)

is exact if and only if (8.7) is exact. Define A′ = B. Then A′ → B′ has a
retraction because B′ = B⊗AB: we may define it as g : B⊗AB → B, g(b⊗b′) =
bb′. Thus, by what we have seen in item (5), the sequence (8.9) - and hence also
(8.7) - is exact. We conclude that Spec B → Spec A is a strict epimorphism in
the category of affine schemes, whenever A→ B is a faithfully flat ring map.

Remark 8.4.3. Let f : A → B be a faithfully flat morphism of rings. Let M be an
A-module. Define d(−1) : A → B and d(0) : B → B ⊗A B as in item (4) of Examples
8.4.2. Then similar arguments show that the sequence of A-modules

0→M
1⊗d(−1)

−−−−→M ⊗A B
1⊗d(0)

−−−→M ⊗A (B ⊗A B)

is exact.
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The goal of Section 8.4 is to prove the following result.

Theorem 8.4.4. Let X and Y be schemes. Let f : Y → X be a faithfully flat morphism
of schemes. Assume that f is quasi-compact, or that f is locally of finite presentation.
Then f : Y → X is a strict epimorphism in the category of schemes.

8.4.1 Preliminary results
To prove Theorem 8.4.4, we need two lemmas and a proposition.

Lemma 8.4.5. Let f : Y → X be a faithfully flat, quasi-compact morphism of schemes.
A subset T ⊂ Y is open (resp. closed) if and only f−1(T ) is open (resp. closed).

Proof. See [SGA1, Exposé VIII, Corollaire 4.3] and [EGAIV, Corollaire 2.3.12].

Lemma 8.4.6. Let A→ B be a faithfully flat morphism of rings. Then the morphism
Spec (B)→ Spec (A) is an epimorphism in the category of schemes.

Proof. Define X = Spec A and Y = Spec B and let f be the morphism Y → X. Let
Z be a scheme and let h : Y → Z be a morphism of schemes. Assume gi : X → Z
(i = 1, 2) are maps such that g1f = g2f . As f : Y → X is surjective, we must have
g1 = g2 as maps |X| → |Z| on the underlying topological spaces. Let x ∈ X and let

U ⊂ Z, U = Spec (C),

be an affine open neighbourhood of g1(x) = g2(x) in Z. Let a ∈ A such that Xa ⊂
g−1

1 (U) ∩ g−1
2 (U) is an affine open neighbourhood of x ∈ g−1

1 (U) ∩ g−1
2 (U) ⊂ X. Then

g1(Xa) = g2(Xa) ⊂ U . Let b ∈ B be the image of a. Note that we are given two maps

gi|Xa : Xa = Spec (Aa)→ U = Spec C

such that g1|Xa ◦ f = g2|Xa ◦ f . By item (4) in Examples 8.4.2, observing that the
morphism Aa → Ba is faithfully flat, it follows that g1|Xa = g2|Xa as morphisms
Xa → Z. As x ∈ X was arbitrary, we conclude that g1 = g2 as morphisms X → Z.

Proposition 8.4.7. Let A→ B be a faithfully flat ring map. Then Spec B → Spec A
is a strict epimorphism in the category of schemes.

Proof of Proposition 8.4.7. Define X = Spec A, Y = Spec B and let f be the mor-
phism Y → X. Let Z be a scheme and let h : Y → Z be a morphism of schemes such
that hp1 = hp2, where pi : Y ×X Y → Y are the two projection maps. We need to
prove the following statement:

There exists a unique morphism g : X → Z such that gf = h. (8.10)

Let A = O(X) and B = O(Y ) so that X = Spec A and Y = Spec B. We claim that
(8.10) holds. To prove this, note that the uniqueness of g follows from Lemma 8.4.6.
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Consider the induced commutative diagram of topological spaces:

|Y | ×|X| |Y |

%%
%%

|Y ×X Y |

77

//
// |Y |
|h|
��

|f |
// |X|

|Z| .

By [Stacks, Tag 01JT], the map |Y ×X Y | → |Y | ×|X| |Y | is surjective. Therefore, the
two compositions

|Y | ×|X| |Y |⇒ |Y | → |Z|
are the same map |Y | ×|X| |Y | → |Z|. As the map |Y | → |X| is surjective, there exists
a function of sets |g| : |X| → |Z| such that |g| ◦ |f | = |h| as maps |Y | → |Z|.

We claim that |g| is continuous. To prove this, let T ⊂ |Z| be an open subset of
|Z|. Then

|f |−1 |g|−1 (T ) = |h|−1 (T ) ⊂ |Y | ,
which is open in |Y | because |h| is continuous. Hence, by Lemma 8.4.5, the set |g|−1 (T )
is open in |X|. This proves that |g| is continuous, as claimed.

We have constructed a continuous map of topological spaces |g| : |X| → |Z| such
that |g| |f | = |h|. Our goal is to construct a morphism of schemes g : X → Z such
that gf = h. By the uniqueness of such a map g, which is something which we have
already proved, it suffices to construct g locally. Let x ∈ X and y ∈ f−1(x), and let

h(y) ∈ U = Spec (C) ⊂ Z

be an affine open neighbourhood of h(y) in Z. Let a ∈ A such that

x ∈ Spec (Aa) = Xa ⊂ |g|−1 (U) ⊂ X.

As |g| |f | = |h| and Xa ⊂ |g|−1 (U), we have

h
(
f−1(Xa)

)
= |g| |f |

(
|f |−1 (Xa)

)
⊂ |g| (Xa) ⊂ |g|

(
|g|−1 (U)

)
⊂ U. (8.11)

Let b ∈ B be the image of a ∈ A, and consider the open Yb = Spec Bb ⊂ Y . Note that
Yb ⊂ f−1(Xa). In view of (8.11), the morphism

h|Yb : Yb → Z

factors through the affine open subscheme U ⊂ Z. Hence, by item (4) in Examples
8.4.2, we conclude that there exists a unique morphism

ga : Xa → U such that ga ◦
(
Yb

f−→ Xa

)
= h|Yb as morphisms Yb → U.

By unicity, see Lemma 8.4.6, these morphisms ga : Xa → Z glue to give a morphism
g : X → Z. We have proven that (8.10) holds. The proposition follows.
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8.4.2 Proof of Theorem 8.4.4
With the results of Section 8.4.1 in place, we can now proceed with the:

Proof of Theorem 8.4.4. Let f : Y → X be a morphism of schemes which is faithfully
flat and quasi-compact. Let Z be a scheme and let h : Y → Z be a morphism of
schemes such that hp1 = hp2, where pi : Y ×X Y → Y are the two projection maps.
We claim:

There exists a unique g : X → Z such that gf = h. (8.12)

Consider the morphism h : Y → Z. Let U ⊂ X be an affine open subscheme. Put
V = f−1(U) ⊂ Y . Then

V ×U V = (Y ×X Y )×X U with projections pi|U : V ×U V → V,

and hp1|U = hp2|U as morphisms V ×U V → Z. If the theorem holds whenever X is
affine, then there exists a unique morphism

gU : U → Z such that gU ◦ f = h|V as morphisms V → Z.

By unicity, these gU glue to a morphism g : X → Z such that g ◦ f = h. This shows
that, in order to prove (8.12), we may and do assume that X is affine. As f is quasi-
compact, it follows that Y is quasi-compact, hence Y = Y1 ∪ · · · ∪ Yn is a finite union
of affine opens Yi ⊂ Y . Define

Y ∗ := Y1

∐
· · ·
∐

Yn.

Then Y ∗ is affine and the obvious morphism Y ∗ → X is faithfully flat and of finite
type. We consider the commutative diagram

Hom(X,Z) // Hom(Y, Z)

��

//
// Hom(Y ×X Y, Z)

��

Hom(X,Z) // Hom(Y ∗, Z) //
// Hom(Y ∗ ×X Y ∗, Z).

The lower horizontal row is exact by Step 3. The middle horizontal arrow is injective.
A diagram chase shows that the top horizontal row is exact, and (8.12) follows.

It remains to show that, for any scheme Z and any faithfully flat locally finitely
presented morphism of schemes f : Y → X, the diagram of sets

Hom(X,Z)→ Hom(Y, Z)⇒ Hom(Y ×X Y, Z)

is exact. In other words, if we define hZ as the contravariant functor

hZ = Hom(−, Z) : Sch→ Set,

then we need to show that hZ satisfies the sheaf property for any {Y → X} with X, Y
schemes and Y → X faithfully flat and locally of finite presentation. Note that hZ
is a sheaf in the Zariski topology (this is classical, see e.g. [GW20, Proposition 3.5]).
Therefore, by Proposition 8.3.7, it suffices to prove that the functor hZ satisfies the
sheaf property for any {Y → X} with X, Y affine schemes and Y → X faithfully flat
and locally of finite presentation. In other words, we may assume that X and Y are
affine. But then the result follows from Proposition 8.4.7.
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8.4.3 Group schemes
For the notion of group scheme, see [SGA3, Exposé I]. A nice introduction to group
schemes is given in [Tat97]. Here, we briefly recall the basic definitions.

Let X be a scheme. Let Sch/X be the category of schemes over X, and let Grp be
the category of groups. Let Set be the category of sets. We let

Forget : Grp→ Set

be the functor that sends a group to its underlying set. For a scheme Y over X, we
let hY denote the contravariant functor

hY : Sch/X → Set, hY (T ) = HomX(T, Y ),

and for any scheme T over X, we define

Y (T ) := hY (T ) = HomX(T, Y ).

Definition 8.4.8. A group scheme over X is a scheme G over X and a contravariant
functor F : Sch/X → Grp such that Forget ◦ F = hG. A morphism of group schemes
G → H over X is a morphism of X-schemes G → H such that G(T ) → H(T ) is a
group homomorphism, for every X-scheme T .

In concrete terms, to give a group scheme G over X is to define a group structure
on the set G(T ) = HomX(T,G) for every scheme T over X, in such a way that if
T ′ → T is a morphism of schemes over X, then the induced map G(T ) → G(T ′) is a
group homomorphism. A third equivalent notion is given by the data of an X-scheme
G and a set of morphisms of X-schemes

m : G×X G→ G, ε : S → G, inv : G→ G, (8.13)

such that the obvious diagrams commute (see [Tat97, (1.1)–(1.4)]).
Theorem 8.4.4 implies:

Corollary 8.4.9. Let X be a scheme. Let G be a commutative group scheme over X.
Then the presheaf hG : (Sch/X)opp → Set that G defines is a sheaf in the fpqc topology
(cf. Definition 8.1.40). A fortiori, hG is a sheaf in the fppf and étale topologies.

Proof. As hG is a sheaf in the Zariski topology (see e.g. [GW20, Proposition 3.5]), in
view of Proposition 8.3.8, it suffices to show that hG satisfies the sheaf property for any
covering {V → U} where V and U are X-schemes which are affine, and where V → U
is a faithfully flat morphism of X-schemes. This follows from Theorem 8.4.4.

Examples 8.4.10. Let X be a scheme. Let t be a variable.

(1) The scheme Ga,X = Spec OX [t] underlies a commutative group scheme over X,
whose functor of points is defined as Ga,X(T ) = OT (T ).
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(2) The scheme Gm,X = Spec OX [t, t−1] underlies a commutative group scheme over
X, whose functor of points is defined as Gm,X(T ) = OT (T )∗.

(3) Let n ∈ Z≥2. The scheme µn,X = Spec OX [t]/(tn − 1) underlies a commutative
group scheme over X, with functor of points µn,X(T ) = {x ∈ OT (T ) | xn = 1}.

(4) Let H be a group. Then the group-valued functor

Sch/Xopp → Grp, T 7→ {locally constant functions T → H}

is representable by a group scheme over X, denoted by HX . It is called the con-
stant group scheme associated to H. Remark that HX(T ) = H if T is connected.

(5) Note that (Z/nZ)X is isomorphic to µn,X if and only if OX(X) contains a prim-
itive n-th root of unity, say ζ ∈ O(X). Namely, in this case, if T is a connected
scheme and if f : T → X is a morphism of schemes, we get a morphism of rings
f# : O(X) → O(T ) and hence a primitive n-th root of unity f#(ζ) ∈ O(T ),
yielding a group homomorphism

µn,X(T ) = {x ∈ O(T ) | xn = 1} → Z/nZ = (Z/nZ)X(T )

defined by sending f#(ζ) to the generator 1 ∈ Z/nZ. One readily checks that
this construction extends to an isomorphism of group schemes µn,X

∼−→ (Z/nZ)X .

Definition 8.4.11. Let X be a scheme and let G be a group scheme over X.

(1) A subgroup scheme of G is a group scheme K over X together with an immersion
of schemes K → G over X which is a morphism of group schemes. In particular,
for every X-scheme T , the map K(T ) → G(T ) is injective and identifies K(T )
with a subgroup of G(T ).

(2) Let φ : G → H be a morphism of group schemes over S. Let ε : S → H be the
morphism corresponding to the identity element e ∈ H(S), see (8.13). We let
Ker(φ) denote the fibre product

Ker(φ) //

��

H

��

S // G

together with its natural structure of a subgroup scheme of H.

Lemma 8.4.12. Let φ : G→ G′ be a morphism of commutative group schemes which
are flat and locally of finite presentation over a scheme X.

(1) φ is étale if and only if Ker(φ) is an étale group scheme over X. If this holds,
then φ defines an epimorphism of sheaves on Xét.

(2) φ is flat if and only if Ker(φ) is a flat group scheme over X. If this holds, then
φ defines an epimorphism of abelian sheaves in the fppf topology.

Proof. Exercise.
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8.5 Lecture 26: Fundamental theorems in étale cohomology

8.5.1 Exactness and stalks
Recall the following. Let I be a directed set. Let (Si, fij) be an inverse system of
schemes over I. If all the schemes Si are affine, then the limit S = lim←−i Si exists in the
category of schemes. Moreover, we have the following result.

Proposition 8.5.1. Let f : X → S be a morphism of schemes. The following are
equivalent.

(1) f is locally of finite presentation.

(2) For any directed set I and any inverse system (Ti, fij) of S-schemes over I with
each Ti affine, we have

HomS(lim←−
i

Ti, X) = lim−→
i

HomS(Ti, X).

Proof. See [EGAIV, Proposition 8.14.2].

Corollary 8.5.2. Let X be a scheme and x̄ → X a geometric point. Let OX,x̄ =
lim−→x̄→U OX(U) be the étale local ring of X at x̄. Let P be the sheaf on Xét defined by
a commutative group scheme G which is locally of finite presentation over X. Then
Px̄ = lim−→x̄→U G(U) = G(OX,x̄).

Proposition 8.5.3. Let F ′ → F → F ′′ be a sequence of abelian sheaves on Xét. This
sequence is exact if and only F ′x̄ → Fx̄ → F ′′x̄ is exact for all geometric points x̄→ X.

Proof. See [Mil80, Theorem 2.15].

Corollary 8.5.4. Let X be a scheme. Let n be a positive integer coprime to the residue
characteristics char(k(x)) of X. Then the sequence

0→ µn,X → Gm,X
x 7→xn−−−→ Gm,X → 0

of abelian sheaves on Xét is exact.

Proof. Let A := OX,x̄. Let x ∈ X be the image of x̄. We need to show that

0→ {a ∈ A∗ | an = 1} → A∗
x 7→xn−−−→ A∗ → 0

is exact. It suffices to show right-exactness. As char(k(x)) does not divid n, the
polynomial f(T ) = T n − a ∈ A[T ] is monic and f̄(T ) ∈ k[T ] is separable. The ring A
is a strictly henselian local ring [Mil80, p. 38]. Thus f(T ) splits into linear factors of
degree one over A, which gives b ∈ A∗ such that bn = a.
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8.5.2 Higher direct image and cohomology
Notation 8.5.5. In the sequel, we restrict ourselves to sites of the following form.
Consider classes E of morphisms of schemes such that all isomorphisms are in E, and
E is closed under composition and base change. For instance, E can consist of open
immersions, of étale morphisms, or of flat morphisms locally of finite presentation. For
a scheme X, we let (C/X)E denote any full subcategory of Sch/X that is closed under
fibre products and is such that, for any Y → X in XE and any E-morphism U → X,
the composite U → Y → X is in E. An E-covering of an object Y of (C/X)E is a
family {Ui → Y }i∈I of E-morphisms such that Y = ∪gi(Xi). We endow (C/X)E with
its natural structure of a site. If no confuses arises, we write XE instead of (C/X)E.

Let S be any site. Then the category Ab(S) of abelian sheaves on S is abelian
and has enough injectives, see [Stacks, Tag 03CN] and [Stacks, Tag 01DP]. For
any of the sites XE considered above, X is a final object in XE, and the functor
Γ(XE,−) : Ab(XE)→ Set defined as F 7→ F (X) is left exact. We put

H i(XE, F ) = RiΓ(XE, F ).

Lemma 8.5.6. Let X ′ → X be a morphism of schemes inducing a morphism of sites
π : (C′/X ′)E′ → (C/X)E. Let F be an abelian sheaf on (C/X)E. Then Riπ∗F is the
sheaf associated with the presheaf U 7→ H i(U ×X X ′, F |U×XX′).

Proof. See [Mil80, Chapter III, Proposition 1.13].

Lemma 8.5.7. Let I be a filtered category and let ϕ : I → Sch/X be a contravariant
functor. Assume that the scheme Xi := ϕ(i) is quasi-compact for each i ∈ I, and that
the maps Xj → Xi are affine. Let X∞ = lim←−Xi and, for an abelian sheaf F on Xét,
let Fi (resp. F∞) be the inverse image of F on Xi (resp. X∞). Then

lim−→Hp((Xi)ét, Fi) ∼= Hp((X∞)ét, F∞).

Proof. See [Mil80, Chapter III, Lemma 1.6].

Theorem 8.5.8. Let π : Y → X be a quasi-compact morphism of schemes. Let F
be a sheaf on Yét. Let x ∈ X and let k(x̄) be the separable closure of k(x); let
x̄ : Spec k(x̄) → X be the resulting geometric point. Let X̃ = Spec OX,x̄ and let
Ỹ = Y ×X X̃. Let F̃ be the inverse image of F on Ỹ . Then for each p ∈ Z≥0, we have

(Rpπ∗F )x̄ ∼= Hp(Ỹ , F̃ ).

Proof. One can verify that for a presheaf P of abelian groups on Xét, the (étale) stalks
of P and the associated sheaf P# are canonically isomorphic. Hence, by Lemmas 8.5.6
and 8.5.7, we have

(Rpπ∗F )x̄ = lim−→Hp(U ×X Y, F |U×XY ) = Hp(lim←−U ×X Y, F |lim←−U×XY ) = Hp(Ỹ , F̃ ).

The theorem follows.

157

https://stacks.math.columbia.edu/tag/03CN
https://stacks.math.columbia.edu/tag/01DP


Let X and X ′ be schemes. Consider a morphism of sites π : X ′E′ → XE. Then for
any F ∈ Ab(XE), one has, functorially:

HomAb(XE)(F, π∗F
′) = HomAb(X′

E′ )
(π−1F, F ′).

In other words, π−1 is the left adjoint of π∗. Thus, π∗ commutes with inverse limits
(and hence is left exact), and π−1 commutes with direct limits (and hence is right
exact). In particular, for any injective I ∈ Ab(X ′E′), π∗I is injective, see Lemma 8.3.5.

Theorem 8.5.9 (Leray spectral sequence). Let X ′ and X be schemes. Let π be a
morphism of sites X ′E′ → XE. Then for any F ∈ Ab(X ′E′), there is a spectral sequence

Ep,q
2 = Hp(XE, R

qπ∗F ) =⇒ Hp+q(X ′E′ , F ). (8.14)

Proof. This spectral sequence is constructed as a Grothendieck spectral sequence.
We have Γ(X ′E′ , F ) = Γ(XE, π∗F ) functorially in F ; in other words, Γ(X ′E′ ,−) =
Γ(XE,−)◦π∗ as functors Ab(X ′E′)→ Ab. It suffices to show that π∗ sends injectives to
injectives (see [Gro57, Théorème 2.4.1]). This follows from the above discussion.

Corollary 8.5.10. Consider the notation of Theorem 8.5.9. Let p ≥ 0 be an integer.
There is a canonical morphism of abelian groups

Hp(XE, π∗F )→ Hp(X ′E′ , F ).

Proof. Let (F •Hp) be the filtration on Hp(X ′E′ , F ) induced by the spectral sequence
(8.14). We get canonical morphisms

Hp(XE, π∗F ) = Ep,0
2 → Ep,0

3 → · · · → Ep,0
p+1 = · · · = Ep,0

∞ = F pHp ⊂ Hp(X ′E′ , F ),

proving the corollary.

Let X be a scheme. Let E1 ⊃ E2 be classes of morphisms satisfying the conditions
in Notation 8.5.5. Let C2/X be a subcategory of C1/X, and let f : (C1/X)E1 →
(C2/X)E2 be the morphism induced by id : X → X. Assume that for every U in C2/X
and every covering of U in the E1-topology, there is a covering of U in the E2-topology
that refines it (see Definition 8.5.14). Then the functor

f∗ : Ab(XE1)→ Ab(XE2)

is exact, see [Mil80, Chapter III, Proposition 3.3]. In particular, for any abelian sheaf
F on XE1 , the canonical morphism

H i(XE2 , f∗F )→ H i(XE1 , F )

(see Corollary 8.5.10) is an isomorphism.

Example 8.5.11. LetX be a scheme. We have a morphism f : Xsmooth → Xét induced
by the functor that sends an étale covering to the associated smooth covering. Let U be
a quasi-compact scheme and U → X an étale morphism. Let {V → U} be a covering
of U in the smooth topology, consisting of a single surjective smooth morphism of
schemes V → U . Then there exists an affine scheme V ′ and a morphism V ′ → V such
that the composition V ′ → V → U is surjective étale [EGAIV, Prop/Thm. 17.16.3].
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Definition 8.5.12. Consider the small étale site Xét of a scheme X. Let U ⊂ X be
an open subscheme, with open immersion j : U → X. For a sheaf F on Uét, we define
j!F as the sheafification of the contravariant functor

(j!F )pre : Xét → Set,

(j!F )pre(V ) =

{
F (V ) if V → X factors through a morphism V → U ,
0 else.

Lemma 8.5.13. Let j : U → X be an open immersion of schemes. Then the functor
j! : Ab(Uét)→ Ab(Xét) is left adjoint to j∗ : Ab(Xét)→ Ab(Uét), the restriction functor.

Proof. Let F ∈ Ab(Uét) and G ∈ Ab(Xét). To give a map (j!F )pre(V ) → G(V ) for
every V → X étale is to give a map F (V )→ G(V ) for every V → U étale. We get

HomSh(j!F,G) = HomPreSh((j!F )pre, G) = HomPreSh(F, j
∗G) = HomSh(F, j

∗G).

This proves the lemma.

8.5.3 Čech cohomology
Let X be a scheme. Let U = {Ui → X}i∈I be a covering of X in the étale topology.
For any (p+ 1)-tuple (i0, . . . , ip) with the ij ∈ I, we write

Ui0···ip = Ui0 ×X · · · ×X Uip .

Let F be a sheaf on Xét. The canonical projection

Ui0···ip → Ui0···̂ij ···ip

induces a restriction morphism

resj : F (Ui0···̂ij ···ip)→ F (Ui0···ip).

Let

Cp(U , F ) =
∏
Ip+1

F (Ui0···Ip);

dp : Cp(U , F )→ Cp+1(U , F ), dp(si0···ip)i0···ip+1 =

p+1∑
j=0

(−1)jresj(si0···̂ij ···ip+1
).

One easily verifies that this is a complex. We define the Čech cohomology groups,
denoted Ȟp(U , F ), as the cohomology groups of this complex. Note that the canonical
map

F (X)→ Ȟ0(U , F )

is an isomorphism, since F is a sheaf.
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Definition 8.5.14. A second covering V = {Vj → X}j∈J is a refinement of U if there
is a map τ : J → I and a map ηj : Vj → Uτ(j) such that the diagram

Vj

!!

ηj
// Uτ(j)

��

X

commutes.

One can show that the map τ and the maps ηj induce maps τ p : CP (U , F ) →
Cp(V , F ) which commute with the differentials, and hence induce maps on cohomol-
ogy:

ρ(V ,U , τ) : Ȟp(U , F )→ Ȟp(V , F ).

One can also show that ρ(V ,U , τ) does not depend on τ nor on the maps ηj.

Definition 8.5.15. Let X be a scheme. We define the p-th Čech cohomology groups
of X with values in a sheaf F to be the group

Ȟp(Xét, F ) := lim−→ Ȟp(U , F ),

where the limit is taken over all coverings U of X.

Theorem 8.5.16. Let X be a quasi-compact scheme such that every finite subset of
X is contained in an affine open set (for example, X is quasi-projective over an affine
scheme). Let F be an abelian sheaf on Xét. Then Ȟp(Xét, F ) ∼= Hp(Xét, F ) for all p.

Proof. See [Mil80, Chapter III, Theorem 2.17]

8.5.4 Hochschild–Serre spectral sequence
Theorem 8.5.17. Let π : X ′ → X be a finite Galois covering with Galois group G.
Let F be an abelian sheaf on Xét. There is a spectral sequence

Hp(G,Hq(Xét, π
−1(F ))) =⇒ Hp+q(Xét, F ).

Proof. See [Mil80, Chapter III, Theorem 2.20].

Corollary 8.5.18. Let X be a scheme. Let π : X ′ → X be an infinite Galois covering
of X with Galois group G (see e.g. [VW11, Definition 4]). Let F ∈ Ab(Xét). For each
finite quotient Gi of G corresponding to a Galois covering πi : Xi → X of X, define
Fi = π−1

i (F ), and define F ′ = π−1(F ). Then there is a spectral sequence

Hp(G,Hq(X ′ét, F
′)) =⇒ Hp+q(Xét, F ). (8.15)

Proof. Theorem 8.5.17 yields spectral sequences

Hp(Gi, H
q((Xi)ét, Fi)) =⇒ Hp+1(Xét, F ).

Passing to the direct limit over these spectral sequences, we can form (8.15).
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Example 8.5.19. Let k be a field and let ks be a separable closure of k. Define
X = Spec k and X = Spec ks. Let

π : X → X

be the canonical map. Note that to give a abelian sheaf on X is to give an abelian
group. Hence Ab(Xét) = Ab. Let F ∈ Ab(Xét) and let M be the abelian group
associated to the inverse image π−1(F ) ∈ Ab(Xét). We get a spectral sequence

Hp(G,Hq(Xét, π
−1(F ))) =⇒ Hp+q(Xét, F ). (8.16)

Via the identification Ab(Xét) = Ab, the functor Γ(Xét,−) : Ab(Xét) → Ab is the
identity Ab → Ab. Hence Γ(Xét,−) is exact, so that Hq(X̄ét, π

−1(F )) = 0 for q > 0.
Hence (8.16) degenerates at the second page, and for each p ≥ 0, the canonical map

Hp(G,H0(Xét, π
−1(F )))→ Hp(Xét, F )

is an isomorphism. As H0(Xét, π
−1(F )) = M , we get canonical isomorphisms

Hp((Spec k)ét, F ) = Hp(G,M) (p ∈ Z≥0).

8.5.5 Cohomology of quasi-coherent sheaves
Definition 8.5.20. For a scheme X and a quasi-coherent OX-module F , we define
W (F ) as the presheaf Sch/X → Set with W (F )(U) = Γ(U, F |U).

Proposition 8.5.21. If F is a quasi-coherent sheaf on a scheme X, W (F ) is a sheaf
for the fpqc topology. A fortiori, W (F ) is a sheaf for the fppf and étale topologies.

Proof. This follows from Proposition 8.3.8 and Remark 8.4.3.

Theorem 8.5.22. Let X be a separated scheme. Let F be a quasi-coherent OX-module.
There are canonical isomorphisms Ȟp(Xét,W (F )) ∼= Hp(Xét,W (F )).

Proof. See [Mil80, Chapter III, Proposition 2.14 and Remark 2.16]

Theorem 8.5.23. Let X be a scheme. Let F be a quasi-coherent OX-module on X.
Then the canonical morphism

H i(XZar, F )→ H i(Xét,W (F ))

(see Corollary 8.5.10) is an isomorphism.

Proof. See [Mil80, Chapter III, Proposition 3.7 and Remark 3.8]

Remark 8.5.24. A similar result holds true for the sheaf Gm. Namely, for a scheme
X, the canonical map H1(XZar,Gm) → H1(Xét,Gm) is an isomorphism (see [Mil80,
Chapter III, Proposition 4.9]]). In particular, H1(Xét,Gm) = Pic(X) (see Exercise
1.1.16). This shows that

H1(Gal(k̄/k), (k̄)∗) = H1(Spec k,Gm) = 0

for any field k, where the first canonical isomorphism is the one provided by Exam-
ple 8.5.19. The vanishing of H1(Gal(L/k), L∗) for any (not necessarily finite) Galois
extension L/k is a classical fact, known as Hilbert’s Theorem 90.
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8.6 Lecture 27: Comparison theorem & weak Mordell–Weil

8.6.1 Comparison of étale cohomology and singular cohomology
Proposition 8.6.1. Let n ∈ Z≥2. Let X be a scheme over Z[1/n] such that OX
contains a primitive n-th root of unity. Then there is an exact sequence

0→ OX(X)∗/OX(X)∗n → H1(Xét,Z/nZ)→ Pic(X)[n]→ 0,

where Pic(X)[n] ⊂ Pic(X) denotes the n-torsion subgroup of Pic(X).

Proof. The sequence
0→ µn → Gm

x 7→xn−−−→ Gm → 0

is exact in the étale topology, see Corollary 8.5.4. Hence it induces a long exact
sequence of abelian groups

0→ µn(X)→ OX(X)∗
x 7→xn−−−→ OX(X)∗ → H1(X,µn)→ Pic(X)

n−→ Pic(X).

As OX(X) contains a primitive n-th root of unity, the group schemes Z/nX and µn,X
are isomorphic as X-group schemes, see item (5) in Examples 8.4.10.

Corollary 8.6.2. Let X be a smooth projective curve of genus g over an algebraically
closed field. Let n > 1 be an integer coprime to char(k). Let JX be the principally
polarized abelian variety of dimension g which is the Jacobian of X (cf. [Mil86]). Then

H1(Xét,Z/nZ) ∼= JX[n](k) ∼= (Z/nZ)2g.

Proof. Recall that JX(k) = Pic0(X), the line bundles on X which are algebraically
trivial. Moreover, any torsion line bundle is algebraically trivial. Hence Pic(X)[n] =
Pic0(X)[n] = JX[n](k). Now JX[n](k) ∼= (Z/nZ)2g by [Mum08, p. 64].

Note that, when k = C, this is in agreement with the singular cohomology of the
analytification X(C) of X. In fact, we have:

Theorem 8.6.3. Let X be a smooth scheme over C. For any finite abelian group M ,
we have H i(X(C),M) ∼= H i(Xét,M).

Proof. For i = 0, the theorem says that the number of connected components of X
(in the Zariski topology) and X(C) (in the analytic topology) is the same, which is
classical. For i = 1, the theorem is a consequence of:

Theorem 8.6.4 (Riemann existence theorem). Let X be a scheme which is locally of
finite type over C. Let X(C) be the associated complex analytic space. The functor

(Y → X) 7→ (Y (C)→ X(C))

defines an equivalence between the category of finite étale coverings Y → X and the
category of finite topological coverings T → X(C).
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Proof of Theorem 8.6.4. See [SGA1, Exposé XII].

We proceed with the proof of Theorem 8.6.3. Before we continue with the i > 1
case, let us explain why the isomorphism H1(X(C),M) ∼= H1(Xét,M) follows from
Theorem 8.6.4. This holds, because H1(Xét,M) = Ȟ1(Xét,M) (see [Mil80, Chapter
III, Corollary 2.10]); the latter classifies isomorphism classes of Galois coverings Y →
X with Galois group M (see [Mil80, Chapter III, Proposition 4.6 & Theorem 4.3]).

For i > 1, we proceed as follows. Let F be the sheaf on Xét that M defines. Let
Xcx denote the small site whose underlying category is the category of all morphisms
of analytic spaces U → X(C) which are local isomorphisms and whose coverings
{Ui → U}i∈U are surjective families of morphisms with fixed target which are local
isomorphisms. We have a morphism of sites Xcx → X(C)Zar induced by the func-
tor X(C)Zar → Xcx that sends an open subset U ⊂ X(C) to the associated local
isomorphism U → X(C). On the one hand, this morphism induces isomorphisms
H i(Xcx,M) ∼= H i(X(C),M). On the other hand, there is a morphism of sites

f : Xcx → Xét

induced by the functor that sends an étale morphism of schemes U → X to the
morphism of complex manifolds U(C)→ X(C) which is a local isomorphism (because
it induces an isomorphism on tangent spaces). By (a suitable adaption of) Theorem
8.5.9, this yields a Leray spectral sequence

H i(Xét, R
jf∗F ) =⇒ H i+j(Xcx, F ).

Consequently, it suffices to show that Rjf∗F = 0 for j > 0. To prove this, it suffices
to that (Rjf∗F )x = 0 for every x ∈ X(C) and j > 0. We have

(Rjf∗F )x = lim−→
x→U→X

Hj(Ucx,M). (8.17)

To prove that (8.17) vanishes, it suffices to show that for any étale morphism U → X
and any y ∈ U(C) that maps to x, and any γ ∈ H i(Ucx,M) (i > 0), there exists an
étale morphism V → U whose image contains y with γ|Vcx = 0. For i = 1, this follows
from Theorem 8.6.4. For i > 1, see [Mil80, Chapter III, Lemma 3.15].

8.6.2 Weak Mordell–Weil theorem
It is interesting to see that with relatively little additional effort, the theory of étale
cohomology allows us to prove the following result.

Theorem 8.6.5. Let A be an abelian variety over a number field K. For any integer
n > 1, the group A(K)/nA(K) is finite.

Proof. There is a non-empty open subset U ⊂ Spec OK such that A = Aη for an
abelian scheme A → U , where η ∈ Spec OK is the generic point (see [BLR90, Theorem
3, page 19]). We may assume that n is invertible on U . In particular, n is not divisible
by any of the residue characteristics of U .
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Let n : A → A be the multiplication by n homomorphism. Define N = Ker(n) ⊂ A
and let g = dim(A). It is classical that, since n is coprime to the residue characteristics
of U , the geometric fibres of the group scheme N = Ker(n)→ U are isomorphic to the
constant group scheme associated to the finite group (Z/nZ)2g (see [Mum08, p. 64]).
Therefore, the morphism N → U is unramified (see Theorem 8.1.14). By Lemma
8.4.12, for each x ∈ U , the morphism of abelian varieties n : Ax → Ax over k(x) is
flat because its kernel is flat. Therefore, n : A → A is flat by the fibral criterion (see
Lemma 8.6.6 below). In particular, the group scheme N = Ker(φ) is flat over U , see
Lemma 8.4.12. Consequently, the group scheme N → U is flat and unramified, hence
étale. This implies in turn that the morphism n : A→ A is an epimorphism of abelian
sheaves in the étale topology, see Lemma 8.4.12 again. To conclude, the sequence

0→ N → A n−→ A → 0

is exact in the étale topology. The cohomology sequence of this reads

· · · → A(U)
n−→ A(U)→ H1(Uét, N)→ H1(Ut,A)→ · · · .

We have A(K) = A(K) and by [BLR90, Proposition 8, page 15], we have A(K) =
A(U). Thus, we are reduced to showing that H1(Uét, N) is finite, and in fact that
H1(Vét, N) is finite for some non-empty open subscheme V ⊂ U , because one will still
have A(K)/nA(K) ⊂ H1(Vét, N) by the above argument.

We have seen that N → U is étale; it is finite because quasi-finite and proper (being
a composition of the closed immersion N → A and the proper morphism A → U).
Thus, N is finite étale over U . Up to shrinking U , there exists a finite surjective Galois
covering U ′ → U so that N |U ′ ∼= (Z/nZ)2g

U . Let G be the Galois group of this covering.
Then the Hochschild–Serre spectral sequence (see Theorem 8.5.17) reads

Ep,q
2 = Hp(G,Hq(U ′ét, N |U ′)) =⇒ Hp+q(Uét, N).

In particular, there is a filtration

0 ⊂ F 1 := F 1H1(Uét, N) ⊂ F 0 := F 0H1(Uét, N) = H1(Uét, N)

such that F 0/F 1 = E0,1
∞ is a sub-quotient of

E0,1
2 = H0(G,H1(U ′ét, N |U ′)) = H1(U ′ét, N |U ′)G.

Note that
F 1 ∼= F 1/F 2 ∼= E1,0

∞

is a subquotient of E1,0
2 = H1(G,H0(U ′ét, N |U ′)), and this latter group is finite. Hence,

the exact sequence
0→ F 1 → F 0 → F 0/F 1 → 0

shows that F 0 = H1(Uét, N) is finite if and only if F 0/F 1 is finite. Consequently,
it suffices to prove H1(U ′ét, N |U ′) is finite. As N |U ′ ∼= (Z/nZ)2g

U and as taking étale
cohomology of an abelian sheaf commutes with finite direct sums, it suffices to prove
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H1(U ′ét,Z/nZ) is finite, for some dense open subscheme U ′ ⊂ Spec OL on which n
is invertible, where L is a finite Galois extension of K. Replacing L by K, we are
reduced to the claim that H1(Uét,Z/nZ) is finite for any number field K and any open
subscheme U = Spec OK [f−1] ⊂ Spec OK defined by some f ∈ OK for which n is
invertible in R := OK [f−1]. Consider the exact sequence (cf. Proposition 8.6.1)

0→ R∗/R∗n → H1(Uét,Z/nZ)→ Pic(U)[n]→ 0.

The abelian group R∗ is finitely generated by the Dirichlet–Chevalley–Hasse unit the-
orem, see [Nar04, Chapter 3, Theorem 3.12, p. 98]. Therefore, R∗/R∗n is finite. More-
over, Pic(OK) = Cl(OK) is the ideal class group of the number field K; this group is
finite, see [Neu99, Chapter I, Theorem 6.3, p. 36]. The map Pic(OK)→ Pic(U) is sur-
jective (see [Har77, Chapter II, §6, Proposition 6.5(c)], hence Pic(U) is finite (compare
[Lan94, Chapter VI, Theorem 1]). This concludes the proof of Theorem 8.6.5.

Lemma 8.6.6 (Critère de platitude par fibres). Let S be a locally noetherian scheme
and f : X → Y a map between flat and locally finite type S-schemes. For s ∈ S and
x ∈ Xs, the map fs : Xs → Ys is flat at x if and only if f : X → Y is flat at x.

Proof. Suppose that f : X → Y is flat at x. Then there is an open neighbourhood U of
x in X such that f |U : U → Y is flat [EGAIV, Thm/Prop 11.1.1]. Hence (f |U)s : Us →
Ys is flat (flatness is preserved under base change) and as Us = U ∩ Xs is an open
neighourhood of x in Xs, we see that fs : Xs → Ys is flat at x ∈ Xs.

For the converse, assume fs is flat at x ∈ Xs. We claim f is flat at x ∈ X. By
choosing suitable affine opens around s ∈ S, x ∈ X, f(x) ∈ Y , this claim reduces the
following claim. Let R → A → B be local homomorphisms of noetherian local rings.
Let m ⊂ R be the maximal ideal. Assume A/m → B/m is flat, and B is flat over R.
Then A→ B is flat. See e.g. [GW20, Lemma 14.26] or [Stacks, Tag 00MP].
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Part II

Algebraic cycles
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Chapter 9

Algebraic cycles on cubic
hypersurfaces

To be continued.
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