A note on descent for algebraic stacks

Olivier de Gaay Fortman

1. Introduction

Let $S' \to S$ be a morphism of affine schemes, faithfully flat and locally of finite presentation. By a theorem of Grothendieck, the functor $X \mapsto X \times_S S'$ defines an equivalence of categories between the category of S-schemes X and the category of pairs (X', ϕ) where X' is an S'-scheme and ϕ a descent datum for X' over S' such that X' admits an open covering by affine schemes which are stable under ϕ . In case S = Spec(k), S' = Spec(k') and the morphism $S' \to S$ corresponds to a finite Galois extension of fields $k \subset k'$, this is known as Galois descent, and due to Weil.

The goal of this note is to prove a similar statement for algebraic stacks. In the case of stacks, the analogue of the aforementioned descent-theory is a notion called 2-descent, which seems to be due to Duskin [Dus89]. It turns out that, with respect to a morphism of schemes $S' \to S$ which is smooth and surjective, every 2-descent datum for an algebraic stack is effective. More precisely, we have the following result. For a scheme S, let $(Sch/S)_{fppf}$ be the big fppf site of S as in [Stacks, Tag 021S]; a stack over S is a stack in groupoids $\mathcal{X} \to (Sch/S)_{fppf}$ over $(Sch/S)_{fppf}$, see [Stacks, Tag 0304].

THEOREM 1.1. Let $S' \to S$ be a faithfully flat morphism of schemes locally of finite presentation, and let X' be a stack over S'. Let (ϕ, ψ) be a 2-descent datum for the stack X' over S', see Definition 3.1. Then (ϕ, ψ) is effective. That is, there exists a stack X over S, an isomorphism of stacks over S'

$$\rho\colon \mathcal{X}\times_S S'\xrightarrow{\sim}\mathcal{X}',$$

and a 2-isomorphism $\chi: p_2^* f \circ \operatorname{can} \Rightarrow \phi \circ p_1^* f$ as in the following diagram:

such that the natural compatibility between χ and ψ is satisfied. Moreover, if $S' \to S$ is smooth, then \mathcal{X}' is an algebraic stack over S' if and only if \mathcal{X} is an algebraic stack over S. Finally, if $S' \to S$ is étale, then \mathcal{X}' is a Deligne–Mumford stack over S' if and only if \mathcal{X} is a Deligne–Mumford stack over S.

December 11, 2024

OLIVIER DE GAAY FORTMAN

Note that even the case where X' is a scheme seems to yield a non-trivial result (cf. Corollary 3.4). Of course, in some sense these results are not surprising: the descended stack X is obtained by defining X(T) as the groupoid of objects of $\mathcal{X}'(T \times_S S')$ equipped with a descent datum relative to the 2-descent datum of \mathcal{X}' , for any scheme T over S. More precisely, the first assertion in the above theorem follows from the fact that the 2-fibred category $Stack_{s}$ over $(\operatorname{Sch}/S)_{fppf}$, whose fibre over $U \in (\operatorname{Sch}/S)_{fppf}$ is the category <u>Stack(U)</u> of stacks over U, is a 2-stack over S (see e.g. [Bre94, Example 1.11.(1)]). The other two assertions follow from the fact that the property of a stack of being algebraic (resp. Deligne–Mumford) is local for the smooth (resp. étale) topology, see Lemma 3.3. For details, see Section 3.

In case $S' \to S$ is a finite faithfully flat morphism of schemes which is a Galois covering with Galois group Γ , then for a stack X' over S', one can reformulate the notion of 2-descent datum for X' over S' in terms of an action of Γ on \mathcal{X}' over the action of Γ on S' over S, as in the classical case. To explain this, for an element $\sigma \in \Gamma$, define ${}^{\sigma}X'$ as the pull-back of X' along $\sigma \colon S' \to S'$.

DEFINITION 1.2. Let $S' \to S$ be a finite faithfully flat morphism of schemes which is a Galois covering with Galois group Γ . Let X' be a stack over S'. A Galois 2-descent datum consists of:

- (1) a family of 1-isomorphisms $f_{\sigma} : {}^{\sigma}X' \xrightarrow{\sim} X'$ ($\sigma \in \Gamma$); (2) a family of 2-isomorphisms $\psi_{\sigma,\tau} : f_{\sigma} \circ {}^{\sigma}(f_{\tau}) \Longrightarrow f_{\sigma\tau}$ ($\sigma, \tau \in \Gamma$);

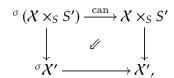
such that for each $\sigma, \tau, \gamma \in \Gamma$, the diagram of 2-morphisms

is commutative.

One can show that to give a Galois 2-descent datum on X' over S' is to give a group action (in the sense of [Rom05]) of Γ on X' as a stack over S, such that for each $\sigma \in \Gamma$, the composition $X' \xrightarrow{\sigma} X' \to S'$ agrees with the composition $\mathcal{X}' \to \mathcal{S}' \xrightarrow{\sigma} \mathcal{S}'$; this is also equivalent to giving 2-descent datum for \mathcal{X}' over \mathcal{S}' , see Lemma 3.5. As a corollary of Theorem 1.1, one therefore obtains:

THEOREM 1.3. Let $S' \to S$ be a finite faithfully flat morphism of schemes which is a Galois covering with Galois group Γ . Let X' be an algebraic stack over S', equipped with a Galois 2-descent datum (f_{σ} ($\sigma \in \Gamma$), $\psi_{\sigma,\tau}$ ($\sigma, \tau \in \Gamma$)). There exists an algebraic stack X over S and an isomorphism $\rho: X \times_S S' \xrightarrow{\sim} X'$ of stacks over S'. The stack X is Deligne–Mumford if and only if X' is.

Observe that the statement in Theorem 1.3 can be made a bit more precise. Namely, with notation and assumptions as in the theorem, there exists an isomorphism of stacks $\rho: \mathcal{X} \times_S S' \xrightarrow{\sim} \mathcal{X}'$ over S' as well as a family of 2isomorphisms $\chi_{\sigma}: \rho \circ \operatorname{can} \implies f_{\sigma} \circ {}^{\sigma}\rho$ for $\sigma \in \Gamma$ as in the following diagram:



such that the obvious compatibility conditions are satisfied.

EXAMPLE 1.4. Let k be a field and let $k \,\subset \, k'$ be a degree two field extension; one may think of $\mathbb{R} \subset \mathbb{C}$ or $\mathbb{F}_q \subset \mathbb{F}_{q^2}$ for a prime power q. Let $\sigma \in \operatorname{Gal}(k'/k)$ be the generator of $\operatorname{Gal}(k'/k)$. Let X' be a stack over k' equipped with a 1-isomorphism $\sigma \colon X' \to X'$ and a 2-isomorphism $F \colon \sigma^2 \implies \operatorname{id}_{X'}$ between σ^2 and the identity functor, such that σ commutes with the functor $(\operatorname{Sch}/k') \to (\operatorname{Sch}/k')$ defined as $T \mapsto {}^{\sigma}T = T \times_{k',\sigma} k'$, and such that for each $x \in X'(T), T \in (\operatorname{Sch}/k')$, the isomorphism $F(x) \colon \sigma^2(x) \to x$ lies over the canonical isomorphism of schemes ${}^{\sigma}({}^{\sigma}T) \to T$. One obtains the descended stack X over k by defining, for $T \in (\operatorname{Sch}/k), X(T)$ as the groupoid of pairs (x, φ) with $x \in X'(T_{k'})$ and $\varphi \colon x \to \sigma(x)$ an isomorphism such that the composition

$$x \xrightarrow{\varphi} \sigma(x) \xrightarrow{\sigma_{\varphi}} \sigma^2(x) \xrightarrow{F} x$$

is the identity. There is a natural isomorphism $X \times_k k' \cong X'$ of stacks over k'.

2. Descending schemes

Let

$$p: S' \to S$$

be a morphism of schemes which is faithfully flat and locally of finite presentation. We get a diagram

$$S'' \coloneqq S' \times S' \stackrel{p_1}{\underset{p_2}{\Rightarrow}} S' \to S,$$

and if $S''' = S' \times_S S' \times_S S'$, we can extend this to the diagram

$$S^{'''} \stackrel{\longrightarrow}{\Longrightarrow} S^{''} \stackrel{\longrightarrow}{\Longrightarrow} S^{'} \rightarrow S$$

where the three arrows $S''' \to S''$ are p_{12} , p_{13} and p_{23} .

Let X' be a scheme over S'. Define

$$p_i^* X' = X' \times_{S', p_i} S'', \quad p_{jk}^* p_i^* X' = (p_i^* X') \times_{S'', p_{jk}} S'''$$

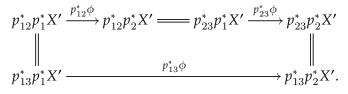
and note that

$$p_{jk}^* p_i^* X' = (p_i^* X') \times_{S'', p_{jk}} S''' = (p_i \circ p_{jk})^* X'.$$

Recall that a *descent datum* for X'/S' is an S''-isomorphism

$$\phi \colon p_1^* X' \to p_2^* X'$$

such that the following diagram commutes:



In other words, one requires that

 $p_{23}^*\phi\circ p_{12}^*\phi=p_{13}^*\phi\quad \text{as morphisms}\quad p_{12}^*p_1^*X'\to p_{13}^*p_2^*X'.$

THEOREM 2.1 (Grothendieck). Let $p: S' \to S$ be a faithfully flat locally finitely presented morphism of affine schemes. The functor $X \mapsto p^*X$ defines an equivalence of categories between the category of S-schemes X and the category of pairs (X', ϕ) where X' is an S'-scheme and ϕ a descent datum for X'/S' such that X' admits an open covering by affine schemes stable under ϕ .

Next, recall how to make this explicit in case $S' \to S$ is a finite faithfully flat morphism of schemes which is a Galois covering with Galois group Γ . For instance, S could be the spectrum of a field k, S' the spectrum of a finite field extension $k' \supset k$, and Γ the Galois group of k'/k. Let X' be a scheme over S'and call a *Galois descent datum* any set of isomorphisms

$$f_{\sigma} \colon {}^{\sigma}X' \xrightarrow{\sim} X$$

of schemes over S', for $\sigma \in \Gamma$, satisfying the condition that

$$f_{\sigma\tau} = f_{\sigma} \circ {}^{\sigma}(f_{\tau})$$
 as isomorphisms ${}^{\sigma\tau}X' \xrightarrow{\sim} {}^{\sigma}X' \xrightarrow{\sim} X'$, $\forall \sigma, \tau \in \Gamma$.

An action of Γ on X' as a scheme over S is said to be *compatible with the action* of Γ on S' over S if for each $\sigma \in \Gamma$, the following diagram commutes:

$$\begin{array}{c} X' \xrightarrow{\sigma} X' \\ \downarrow \\ S' \xrightarrow{\sigma} S'. \end{array}$$

LEMMA 2.2. Let $S' \to S$ be a finite faithfully flat morphism of schemes which is a Galois covering with Galois group Γ , and let X' be a scheme over S'. To give a descent datum for X' over S' is to give a Galois descent datum for X' over S'. These notions are further equivalent to giving an action of Γ on X' compatible with the action of Γ on S' over S.

PROOF. This is well-known; see e.g. [BLR90, Section 6.2, Example B] and [Poo17, Proposition 4.4.4].

3. Descending algebraic stacks

Let $p: S' \to S$ be a faithfully flat locally finitely presented morphism of schemes. Let X' be a stack in groupoids on S', in the sense of [Stacks, Tag 0304]. Let

$$S^{''''} = S' \times_S S' \times_S S' \times_S S';$$

it is equipped with four projections

$$(3.1) r_i: S'''' \to S'.$$

Similarly, S''' is equipped with three projections $q_i: S''' \to S'$. Note that there are canonical isomorphisms

$$p_{12}^*p_1^*\mathcal{X}' = (p_1 \circ p_{12})^*\mathcal{X}' = q_1^*\mathcal{X}'.$$

Similarly, there are canonical isomorphisms

$$p_{123}^*p_{12}^*p_1^* = (p_1 \circ p_{12} \circ p_{123})^* = r_1^* \mathcal{X}',$$

of algebraic stacks on S'. One has similar isomorphisms relating the other $p_{ijk}^* p_{\alpha\beta}^* p_{\nu}^* X'$ with $r_{\mu}^* X'$, for $i, j, k \in \{1, 2, 3, 4\}$, $\alpha, \beta \in \{1, 2, 3\}$, $\nu \in \{1, 2\}$ and $\mu \in \{1, 2, 3, 4\}.$

Consider an isomorphism of S''-stacks (i.e. an equivalence of Sch/S'' -categories):

$$\phi\colon p_1^*\mathcal{X}'\to p_2^*\mathcal{X}',$$

and let ψ be a 2-morphism

$$\psi \colon p_{23}^* \phi \circ p_{12}^* \phi \Rightarrow p_{13}^* \phi,$$

which we may picture as the 2-morphism \Rightarrow in the following diagram:

Consider the four maps

$$p_{123}, p_{124}, p_{134}, p_{234} \colon S^{'''} \to S^{'''},$$

and note that

$$p_{123}^* \left(p_{23}^* \phi \circ p_{12}^* \phi \right) = p_{123}^* p_{23}^* \phi \circ p_{123}^* p_{12}^* \phi = \pi_{23}^* \phi \circ \pi_{12}^* \phi, \quad \text{and} \\ p_{123}^* p_{13}^* \phi = \pi_{13}^* \phi,$$

where

$$\pi_{12}, \pi_{13}, \pi_{14}, \pi_{23}, \pi_{24}, \pi_{34} \colon S^{'''} \to S^{''}$$

....

are the canonical morphisms. For $i, j, k \in \{1, 2, 3, 4\}$ with i < j < k, define

$$\psi_{ijk} \coloneqq p_{iik}^* \psi.$$

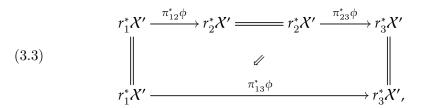
For instance, pulling back ψ along p_{123} gives a 2-morphism

$$\psi_{123} = p_{123}^* \psi \colon \pi_{23}^* \circ \pi_{12}^* \phi \Rightarrow \pi_{13}^* \phi.$$

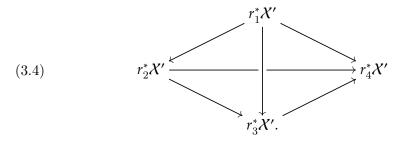
Similarly, we obtain 2-morphisms

$$\begin{split} \psi_{124} &: \pi_{24}^* \phi \circ \pi_{12}^* \phi \Rightarrow \pi_{14}^* \phi, \\ \psi_{134} &: \pi_{34}^* \phi \circ \pi_{13}^* \phi \Rightarrow \pi_{14}^* \phi, \\ \psi_{234} &: \pi_{34}^* \phi \circ \pi_{23}^* \phi \Rightarrow \pi_{24}^* \phi. \end{split}$$

Moreover, observe that under p_{123} , diagram (3.2) pulls back to the diagram



in which the 2-morphism \Rightarrow is the 2-morphism ψ_{123} defined above (and with r_i is as in (3.1)). Using pull-backs by the other three $p_{ijk}: S^{'''} \rightarrow S^{'''}$, we thus obtain four triangles, that we may put together to form the following tetrahedron:



DEFINITION 3.1. Let $p: S' \to S$ be a faithfully flat locally finitely presented morphism of schemes. Let X' be a stack in groupoids over S'. A 2-descent datum for X' over S' consists of:

(1) an isomorphism of stacks (i.e. an equivalence of categories)

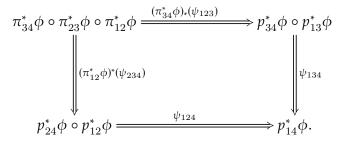
$$\phi \colon p_1^* \mathcal{X}' \to p_2^* \mathcal{X}'$$

over S"; (2) a 2-isomorphism

$$\psi \colon p_{23}^* \phi \circ p_{12}^* \phi \Rightarrow p_{13}^* \phi$$

as in diagram (3.2);

such that the following condition is satisfied: the 2-morphisms ψ_{ijk} between the several compositions in diagram (3.4) are compatible, in the sense that the following diagram of 2-morphisms commutes:



This gives the following result.

PROPOSITION 3.2 (Breen). Let (ϕ, ψ) be a 2-descent datum for the stack X' over S'. Then there exists a stack X over S, an isomorphism

$$\rho \colon \mathcal{X} \times_S S' \to \mathcal{X}'$$

of stacks over S', and a 2-isomorphism $\chi: p_2^* \rho \circ \operatorname{can} \Rightarrow \phi \circ p_1^* \rho$ as in diagram

such that the natural compatibility condition between χ and ψ is satisfied.

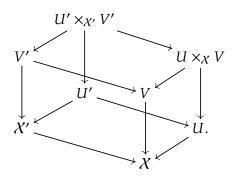
PROOF. This follows from [Bre94, Example 1.11.(i)].

To prove Theorem 1.1, we recall that any stack which is smooth locally algebraic, is algebraic. More precisely, we recall the following well-lemma, which should be well-known but which we include for convenience of the reader.

LEMMA 3.3. Let S be a scheme. The following assertions are true.

- (1) Let $\pi: X' \to X$ be a representable, smooth and surjective morphism of stacks in groupoids over S. If X' is algebraic, then X is algebraic. If in addition π is étale and X' is Deligne–Mumford, then X is Deligne–Mumford.
- (2) Let S' → S be a smooth surjective morphism of schemes, let X be a stack in groupoids over S and define X' = X ×_S S'. Suppose that X' is an algebraic stack over S'. Then X is an algebraic stack over S. If in addition S' → S is étale and X' is a Deligne–Mumford stack, then X is a Deligne–Mumford stack.

PROOF. Let us first prove item (1). If U' is a scheme and $U' \to X'$ a surjective and smooth morphism, then $U' \to X' \to X$ is surjective and smooth, and moreover étale if π and $U' \to X'$ are étale. Therefore, it suffices to prove that the diagonal $\Delta: X \to X \times X$ is representable by algebraic spaces. For this, it suffices to consider to schemes U and V, equipped with morphisms $U \to X$ and $V \to X$, and prove that the fibre product $U \times_X V$ is representable by an algebraic space, see [LMB00, Corollary 3.13]. Define $U' = X' \times_X U$ and $V' = X' \times_X V$. We obtain the following cartesian diagram:



The morphism $\mathcal{X}' \to \mathcal{X}$ is representable, hence U' and V' are representable by algebraic spaces. Since \mathcal{X}' is an algebraic stack, the morphism $V' \to \mathcal{X}'$ is representable by algebraic spaces, which implies that its base change $U' \times_{\mathcal{X}'} V' \to U'$ is representable by algebraic spaces. Finally, the morphism of algebraic spaces $U' \to U$ is étale and surjective, hence an epimorphism. Using [LMB00,

Lemme 4.3.3], we conclude that the morphism $U \times_X V \to U$ is representable. As U is scheme, $U \times_X V$ is an algebraic space, and we are done.

Next, we prove item (2). Via the composition $\mathcal{X}' \to S' \to S$, we may view \mathcal{X}' as an algebraic stack over S, see [LMB00, Proposition 4.5]. In this way, we obtain a cartesian diagram of algebraic stacks over S:

As $S' \to S$ is representable, surjective and étale, the same holds for $X' \to X$. The stack X' is algebraic, hence X is algebraic as well, see item (1).

PROOF OF THEOREM 1.1. Proposition 3.2 yields the stack \mathcal{X} over S together with 1-isomorphism $\rho: \mathcal{X} \times_S S' \xrightarrow{\sim} \mathcal{X}'$ and the 2-isomorphism $\chi: p_2^* \rho \circ \operatorname{can} \Rightarrow \phi \circ p_1^* \rho$ that have the right compatibility properties with respect to ψ , so that we only need to prove that \mathcal{X} is algebraic (resp. Deligne–Mumford if $S' \to S$ is surjective étale). This follows from Lemma 3.3.

Even the case where \mathcal{X}' is a scheme seems to yield a non-trivial result:

COROLLARY 3.4. Let $S' \to S$ be a surjective étale morphism of schemes, and let X' be a scheme over S' equipped with a descent datum ϕ as in Section 2. Then there exists an algebraic space X over S and an S-morphism $\pi: X' \to X$ such that the diagram

is cartesian. The tuple $(X, \pi: X' \to X)$ is compatible with the descent datum ϕ in an appropriate sense, and this makes (X, π) unique up to isomorphism.

PROOF. Theorem 1.1 implies the existence of X as a Deligne–Mumford stack, hence we only need to prove that X is an algebraic space. For this, it suffices to show that the inertia group stack $I_X \to X$ is an equivalence, and hence to show that, for each scheme T over S and each object $x \in X(T)$, the map $Aut_X(x) \to T$ is an isomorphism of algebraic spaces, where $Aut_X(x)$ is the algebraic space over T with $Aut_X(x)(T')$ the group of automorphisms of the object $x_{T'}$ that lie over the identity on T'. We may prove this locally; let $T' = T \times_S S'$ and $x' = x_{T'} \in X'(T')$. For each scheme T'' over T', we have $Aut_X(x)_{T'}(T'') = Aut_{X'}(x')_{T'}(T'')$ which is trivial since X' is a scheme.

For a scheme S and a stack X, and a finite group Γ , a group action of Γ on X over S is an action of the functor in groups over S associated to Γ on the stack X over S, see [Rom05, Definition 1.3].

LEMMA 3.5. Let $S' \to S$ be a finite faithfully flat morphism of schemes which is a Galois covering with Galois group Γ , and let X' be a stack over S'. Then the following sets are in canonical bijection:

(1) The set of 2-descent data (ϕ, ψ) for X' over S'.

- (2) The set of group actions of Γ on X' as a stack over S, such that for each σ ∈ Γ, the composition X' → X' → S' agrees with the composition X' → S' → S'.
- (3) The set of Galois 2-descent data for X' over S'.

PROOF. See [BLR90, Section 6.2, Example B] and [Poo17, Proposition 4.4.4] a the proof in the case of schemes. The stacky case is requires some straightforward generalizations; we leave the details to the reader. \Box

PROOF OF THEOREM 1.3. See Theorem 1.1 and Lemma 3.5. \Box

References

- [BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. Néron models. Vol. 21. Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1990, pp. x+325.
- [Bre94] Lawrence Breen. "On the classification of 2-gerbes and 2-stacks". In: Astérisque 225 (1994), p. 160.
- [Dus89] John Duskin. "An outline of a theory of higher-dimensional descent". In: Bulletin de la Société Mathématique de Belgique. Série A 41.2 (1989), pp. 249–277.
- [LMB00] Gérard Laumon and Laurent Moret-Bailly. Champs algébriques. Vol. 39. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 2000, pp. xii+208.
- [Poo17] Bjorn Poonen. *Rational points on varieties*. Graduate Studies in Mathematics; 186. American Mathematical Society, 2017.
- [Rom05] Matthieu Romagny. "Group actions on stacks and applications". In: Michigan Mathematical Journal 53.1 (2005), pp. 209–236.
- [Stacks] The Stacks Project Authors. *Stacks Project*. https://stacks.math.columbia.edu. 2018.

Department of Mathematics, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands

Email address: a.o.d.degaayfortman@uu.nl