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1. Introduction

Let (′→ ( be a morphism of affine schemes, faithfully flat and locally of
finite presentation. By a theorem of Grothendieck, the functor - ↦→ - ×( (′
defines an equivalence of categories between the category of (-schemes - and
the category of pairs (-′, )) where -′ is an (′-scheme and ) a descent datum
for -′ over (′ such that -′ admits an open covering by affine schemes which
are stable under ). In case ( = Spec(:), (′ = Spec(:′) and the morphism
(′→ ( corresponds to a finite Galois extension of fields : ⊂ :′, this is known
as Galois descent, and due to Weil.

The goal of this note is to prove a similar statement for algebraic stacks.
In the case of stacks, the analogue of the aforementioned descent-theory is a
notion called 2-descent, which seems to be due to Duskin [Dus89]. It turns
out that, with respect to a morphism of schemes (′ → ( which is smooth
and surjective, every 2-descent datum for an algebraic stack is effective. More
precisely, we have the following result. For a scheme (, let (Sch/() 5 ?? 5 be the
big fppf site of ( as in [Stacks, Tag 021S]; a stack over ( is a stack in groupoids
X → (Sch/() 5 ?? 5 over (Sch/() 5 ?? 5 , see [Stacks, Tag 0304].

Theorem 1.1. Let (′→ ( be a faithfully flat morphism of schemes locally
of finite presentation, and let X′ be a stack over (′. Let (),#) be a 2-descent
datum for the stack X′ over (′, see Definition 3.1. Then (),#) is effective.
That is, there exists a stack X over (, an isomorphism of stacks over (′

� : X ×( (′
∼−→ X′,

and a 2-isomorphism " : ?∗2 5 ◦ can⇒ ) ◦ ?∗1 5 as in the following diagram:

?∗1(X ×( (′)
can //

w?∗1�

��

?∗2(X ×( (′)
?∗2�

��

?∗1X′
)

// ?∗2X′,

(1.1)

such that the natural compatibility between " and # is satisfied. Moreover, if
(′ → ( is smooth, then X′ is an algebraic stack over (′ if and only if X is
an algebraic stack over (. Finally, if (′ → ( is étale, then X′ is a Deligne–
Mumford stack over (′ if and only if X is a Deligne–Mumford stack over (.
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Note that even the case where X′ is a scheme seems to yield a non-trivial
result (cf. Corollary 3.4). Of course, in some sense these results are not sur-
prising: the descended stack X is obtained by defining X()) as the groupoid of
objects of X′() ×( (′) equipped with a descent datum relative to the 2-descent
datum of X′, for any scheme ) over (. More precisely, the first assertion in
the above theorem follows from the fact that the 2-fibred category (C02:( over
(Sch/() 5 ?? 5 , whose fibre over * ∈ (Sch/() 5 ?? 5 is the category (C02:(*) of
stacks over *, is a 2-stack over ( (see e.g. [Bre94, Example 1.11.(1)]). The
other two assertions follow from the fact that the property of a stack of be-
ing algebraic (resp. Deligne–Mumford) is local for the smooth (resp. étale)
topology, see Lemma 3.3. For details, see Section 3.

In case (′ → ( is a finite faithfully flat morphism of schemes which is
a Galois covering with Galois group Γ, then for a stack X′ over (′, one can
reformulate the notion of 2-descent datum for X′ over (′ in terms of an action
of Γ on X′ over the action of Γ on (′ over (, as in the classical case. To explain
this, for an element � ∈ Γ, define �X′ as the pull-back of X′ along � : (′→ (′.

Definition 1.2. Let (′→ ( be a finite faithfully flat morphism of schemes
which is a Galois covering with Galois group Γ. Let X′ be a stack over (′. A
Galois 2-descent datum consists of:

(1) a family of 1-isomorphisms 5� : �X′ ∼−→ X′ (� ∈ Γ);
(2) a family of 2-isomorphisms #�,� : 5� ◦ �( 5�) =⇒ 5�� (�, � ∈ Γ);

such that for each �, �, � ∈ Γ, the diagram of 2-morphisms

5� ◦ � 5� ◦ �� 5�
5�∗(�#�,�)
��

(�� 5�)∗(#�,�) +3 5�� ◦ �� 5�
#��,�

��
5� ◦ � 5��

#�,�� +3 5���

is commutative.

One can show that to give a Galois 2-descent datum on X′ over (′ is to give
a group action (in the sense of [Rom05]) of Γ on X′ as a stack over (, such that

for each � ∈ Γ, the composition X′ �−→ X′ → (′ agrees with the composition

X′→ (′
�−→ (′; this is also equivalent to giving 2-descent datum for X′ over (′,

see Lemma 3.5. As a corollary of Theorem 1.1, one therefore obtains:

Theorem 1.3. Let (′ → ( be a finite faithfully flat morphism of schemes
which is a Galois covering with Galois group Γ. Let X′ be an algebraic stack
over (′, equipped with a Galois 2-descent datum ( 5� (� ∈ Γ), #�,� (�, � ∈ Γ)).
There exists an algebraic stack X over ( and an isomorphism � : X×( (′

∼−→ X′
of stacks over (′. The stack X is Deligne–Mumford if and only if X′ is.

Observe that the statement in Theorem 1.3 can be made a bit more precise.
Namely, with notation and assumptions as in the theorem, there exists an
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isomorphism of stacks � : X ×( (′
∼−→ X′ over (′ as well as a family of 2-

isomorphisms "� : � ◦ can =⇒ 5� ◦ �� for � ∈ Γ as in the following diagram:

� (X ×( (′) can //

��

X ×( (′

��

w

�X′ // X′,

such that the obvious compatibility conditions are satisfied.

Example 1.4. Let : be a field and let : ⊂ :′ be a degree two field ex-
tension; one may think of R ⊂ C or F@ ⊂ F@2 for a prime power @. Let
� ∈ Gal(:′/:) be the generator of Gal(:′/:). Let X′ be a stack over :′ equipped
with a 1-isomorphism � : X′ → X′ and a 2-isomorphism � : �2 =⇒ idX′
between �2 and the identity functor, such that � commutes with the functor
(Sch/:′) → (Sch/:′) defined as ) ↦→ �) = ) ×:′,� :′, and such that for each
G ∈ X′()), ) ∈ (Sch/:′), the isomorphism �(G) : �2(G) → G lies over the canon-
ical isomorphism of schemes �(�)) → ). One obtains the descended stack X
over : by defining, for ) ∈ (Sch/:), X()) as the groupoid of pairs (G, !) with
G ∈ X′():′) and ! : G → �(G) an isomorphism such that the composition

G
!
−→ �(G)

�!
−−→ �2(G) �−→ G

is the identity. There is a natural isomorphism X ×: :′ � X′ of stacks over :′.

2. Descending schemes

Let

? : (′→ (

be a morphism of schemes which is faithfully flat and locally of finite presen-
tation. We get a diagram

(
′′
B (′ × (′

?1

⇒
?2
(′→ (,

and if (
′′′
= (′ ×( (′ ×( (′, we can extend this to the diagram

(
′′′ →→→ (

′′
⇒ (

′ → (

where the three arrows (
′′′ → (

′′
are ?12, ?13 and ?23.

Let -′ be a scheme over (′. Define

?∗8-
′ = -′ ×(′,?8 (

′′
, ?∗9:?

∗
8-
′ =

(
?∗8-

′) ×(′′ ,? 9: (′′′
and note that

?∗9:?
∗
8-
′ =

(
?∗8-

′) ×(′′ ,? 9: (′′′ = (
?8 ◦ ? 9:

)∗
-′.

Recall that a descent datum for -′/(′ is an (
′′
-isomorphism

) : ?∗1-
′ ∼−→ ?∗2-

′
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such that the following diagram commutes:

?∗12?
∗
1-
′ ?∗12) // ?∗12?

∗
2-
′ ?∗23?

∗
1-
′ ?∗23) // ?∗23?

∗
2-
′

?∗13?
∗
1-
′ ?∗13) // ?∗13?

∗
2-
′.

In other words, one requires that

?∗23) ◦ ?∗12) = ?∗13) as morphisms ?∗12?
∗
1-
′→ ?∗13?

∗
2-
′.

Theorem 2.1 (Grothendieck). Let ? : (′ → ( be a faithfully flat locally
finitely presented morphism of affine schemes. The functor - ↦→ ?∗- defines
an equivalence of categories between the category of (-schemes - and the cat-
egory of pairs (-′, )) where -′ is an (′-scheme and ) a descent datum for
-′/(′ such that -′ admits an open covering by affine schemes stable under ).

Next, recall how to make this explicit in case (′ → ( is a finite faithfully
flat morphism of schemes which is a Galois covering with Galois group Γ. For
instance, ( could be the spectrum of a field :, (′ the spectrum of a finite field
extension :′ ⊃ :, and Γ the Galois group of :′/:. Let -′ be a scheme over (′

and call a Galois descent datum any set of isomorphisms

5� : �-′
∼−→ -′

of schemes over (′, for � ∈ Γ, satisfying the condition that

5�� = 5� ◦ �( 5�) as isomorphisms ��-′
∼−→ �-′

∼−→ -′, ∀�, � ∈ Γ.
An action of Γ on -′ as a scheme over ( is said to be compatible with the action
of Γ on (′ over ( if for each � ∈ Γ, the following diagram commutes:

-′
� //

��

-′

��

(′
� // (′.

Lemma 2.2. Let (′ → ( be a finite faithfully flat morphism of schemes
which is a Galois covering with Galois group Γ, and let -′ be a scheme over
(′. To give a descent datum for -′ over (′ is to give a Galois descent datum
for -′ over (′. These notions are further equivalent to giving an action of Γ
on -′ compatible with the action of Γ on (′ over (.

Proof. This is well-known; see e.g. [BLR90, Section 6.2, Example B] and
[Poo17, Proposition 4.4.4]. �

3. Descending algebraic stacks

Let ? : (′ → ( be a faithfully flat locally finitely presented morphism of
schemes. Let X′ be a stack in groupoids on (′, in the sense of [Stacks, Tag
0304]. Let

(
′′′′
= (′ ×( (′ ×( (′ ×( (′;

it is equipped with four projections

A8 : (
′′′′ → (′.(3.1)

https://stacks.math.columbia.edu/tag/0304
https://stacks.math.columbia.edu/tag/0304
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Similarly, (
′′′

is equipped with three projections @8 : (
′′′ → (′. Note that there

are canonical isomorphisms

?∗12?
∗
1X′ = (?1 ◦ ?12)∗X′ = @∗1X′.

Similarly, there are canonical isomorphisms

?∗123?
∗
12?
∗
1 = (?1 ◦ ?12 ◦ ?123)

∗
= A∗1X′,

of algebraic stacks on (′. One has similar isomorphisms relating the other
?∗
8 9:
?∗�?

∗
�X′ with A∗�X′, for 8 , 9 , : ∈ {1, 2, 3, 4}, , � ∈ {1, 2, 3}, � ∈ {1, 2} and

� ∈ {1, 2, 3, 4}.

Consider an isomorphism of (
′′
-stacks (i.e. an equivalence of Sch/(′′-categories):

) : ?∗1X′→ ?∗2X′,
and let # be a 2-morphism

# : ?∗23) ◦ ?∗12)⇒ ?∗13),

which we may picture as the 2-morphism ⇒ in the following diagram:

?∗12?
∗
1X′

?∗12) // ?∗12?
∗
2X′

w #

?∗23?
∗
1X′

?∗23) // ?∗23?
∗
2X′

?∗13?
∗
1X′

?∗13) // ?∗13?
∗
2X′.

(3.2)

Consider the four maps

?123 , ?124 , ?134 , ?234 : (
′′′′ → (

′′′
,

and note that

?∗123
(
?∗23) ◦ ?∗12)

)
= ?∗123?

∗
23) ◦ ?∗123?∗12) = �∗23) ◦ �∗12), and

?∗123?
∗
13) = �∗13),

where

�12 ,�13 ,�14 ,�23 ,�24 ,�34 : (
′′′′ → (

′′

are the canonical morphisms. For 8 , 9 , : ∈ {1, 2, 3, 4} with 8 < 9 < :, define

#8 9: B ?∗8 9:#.

For instance, pulling back # along ?123 gives a 2-morphism

#123 = ?
∗
123# : �∗23 ◦ �∗12)⇒ �∗13).

Similarly, we obtain 2-morphisms

#124 : �∗24) ◦ �∗12)⇒ �∗14),

#134 : �∗34) ◦ �∗13)⇒ �∗14),

#234 : �∗34) ◦ �∗23)⇒ �∗24).

Moreover, observe that under ?123, diagram (3.2) pulls back to the diagram
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A∗1X′
�∗12) // A∗2X′

w

A∗2X′
�∗23) // A∗3X′

A∗1X′
�∗13) // A∗3X′,

(3.3)

in which the 2-morphism ⇒ is the 2-morphism #123 defined above (and with

A8 is as in (3.1)). Using pull-backs by the other three ?8 9: : (
′′′′ → (

′′′
, we

thus obtain four triangles, that we may put together to form the following
tetrahedron:

A∗1X′

��

ww ''

A∗2X′ //

''

A∗4X′

A∗3X′.

77
(3.4)

Definition 3.1. Let ? : (′→ ( be a faithfully flat locally finitely presented
morphism of schemes. Let X′ be a stack in groupoids over (′. A 2-descent
datum for X′ over (′ consists of:

(1) an isomorphism of stacks (i.e. an equivalence of categories)

) : ?∗1X′→ ?∗2X′

over (
′′
;

(2) a 2-isomorphism

# : ?∗23) ◦ ?∗12)⇒ ?∗13)

as in diagram (3.2);

such that the following condition is satisfied: the 2-morphisms #8 9: between
the several compositions in diagram (3.4) are compatible, in the sense that the
following diagram of 2-morphisms commutes:

�∗34) ◦ �∗23) ◦ �∗12)
(�∗34))∗(#123) +3

(�∗12))∗(#234)

��

?∗34) ◦ ?∗13)

#134

��
?∗24) ◦ ?∗12)

#124 +3 ?∗14).

This gives the following result.

Proposition 3.2 (Breen). Let (),#) be a 2-descent datum for the stack
X′ over (′. Then there exists a stack X over (, an isomorphism

� : X ×( (′
∼−→ X′
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of stacks over (′, and a 2-isomorphism " : ?∗2� ◦ can⇒ ) ◦ ?∗1� as in diagram

?∗1(X ×( (′)
can //

w?∗1�

��

?∗2(X ×( (′)
?∗2�

��

?∗1X′
)

// ?∗2X′,

(3.5)

such that the natural compatibility condition between " and # is satisfied.

Proof. This follows from [Bre94, Example 1.11.(i)]. �

To prove Theorem 1.1, we recall that any stack which is smooth locally
algebraic, is algebraic. More precisely, we recall the following well-lemma,
which should be well-known but which we include for convenience of the reader.

Lemma 3.3. Let ( be a scheme. The following assertions are true.

(1) Let � : X′→X be a representable, smooth and surjective morphism of
stacks in groupoids over (. If X′ is algebraic, then X is algebraic. If
in addition � is étale and X′ is Deligne–Mumford, then X is Deligne–
Mumford.

(2) Let (′ → ( be a smooth surjective morphism of schemes, let X be a
stack in groupoids over ( and define X′ = X ×( (′. Suppose that X′
is an algebraic stack over (′. Then X is an algebraic stack over (. If
in addition (′→ ( is étale and X′ is a Deligne–Mumford stack, then
X is a Deligne–Mumford stack.

Proof. Let us first prove item (1). If *′ is a scheme and *′ → X′ a
surjective and smooth morphism, then*′→X′→X is surjective and smooth,
and moreover étale if � and *′→ X′ are étale. Therefore, it suffices to prove
that the diagonal Δ : X → X×X is representable by algebraic spaces. For this,
it suffices to consider to schemes * and +, equipped with morphisms * → X
and + → X, and prove that the fibre product * ×X + is representable by
an algebraic space, see [LMB00, Corollary 3.13]. Define *′ = X′ ×X * and
+′ = X′ ×X +. We obtain the following cartesian diagram:

*′ ×X′ +′

��

yy **

+′

��

**

* ×X +
zz

��

*′

xx **

+

��

X′

**

*.

yyX
The morphism X′→X is representable, hence *′ and +′ are representable by
algebraic spaces. Since X′ is an algebraic stack, the morphism +′→X′ is rep-
resentable by algebraic spaces, which implies that its base change *′×X′+′→
*′ is representable by algebraic spaces. Finally, the morphism of algebraic
spaces *′→ * is étale and surjective, hence an epimorphism. Using [LMB00,
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Lemme 4.3.3], we conclude that the morphism * ×X + → * is representable.
As * is scheme, * ×X + is an algebraic space, and we are done.

Next, we prove item (2). Via the composition X′→ (′→ (, we may view
X′ as an algebraic stack over (, see [LMB00, Proposition 4.5]. In this way, we
obtain a cartesian diagram of algebraic stacks over (:

X′ //

��

X

��

(′ // (.

As (′ → ( is representable, surjective and étale, the same holds for X′ → X.
The stack X′ is algebraic, hence X is algebraic as well, see item (1). �

Proof of Theorem 1.1. Proposition 3.2 yields the stack X over ( to-

gether with 1-isomorphism � : X ×( (′
∼−→ X′ and the 2-isomorphism " : ?∗2� ◦

can⇒ ) ◦ ?∗1� that have the right compatibility properties with respect to #,
so that we only need to prove that X is algebraic (resp. Deligne–Mumford if
(′→ ( is surjective étale). This follows from Lemma 3.3. �

Even the case where X′ is a scheme seems to yield a non-trivial result:

Corollary 3.4. Let (′ → ( be a surjective étale morphism of schemes,
and let -′ be a scheme over (′ equipped with a descent datum ) as in Section 2.
Then there exists an algebraic space - over ( and an (-morphism � : -′→ -
such that the diagram

-′
� //

��

-

��

(′ // (

is cartesian. The tuple (-,� : -′ → -) is compatible with the descent datum
) in an appropriate sense, and this makes (-,�) unique up to isomorphism.

Proof. Theorem 1.1 implies the existence of - as a Deligne–Mumford
stack, hence we only need to prove that - is an algebraic space. For this, it
suffices to show that the inertia group stack �- → - is an equivalence, and
hence to show that, for each scheme ) over ( and each object G ∈ -()), the
map �DC-(G) → ) is an isomorphism of algebraic spaces, where �DC-(G) is
the algebraic space over ) with �DC-(G)()′) the group of automorphisms of
the object G)′ that lie over the identity on )′. We may prove this locally; let
)′ = ) ×( (′ and G′ = G)′ ∈ -′()′). For each scheme )′′ over )′, we have
�DC-(G))′()′′) = �DC-′(G′))′()′′) which is trivial since -′ is a scheme. �

For a scheme ( and a stack X, and a finite group Γ, a group action of Γ on
X over ( is an action of the functor in groups over ( associated to Γ on the
stack X over (, see [Rom05, Definition 1.3].

Lemma 3.5. Let (′ → ( be a finite faithfully flat morphism of schemes
which is a Galois covering with Galois group Γ, and let X′ be a stack over (′.
Then the following sets are in canonical bijection:

(1) The set of 2-descent data (),#) for X′ over (′.
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(2) The set of group actions of Γ on X′ as a stack over (, such that for

each � ∈ Γ, the composition X′ �−→ X′ → (′ agrees with the composi-

tion X′→ (′
�−→ (′.

(3) The set of Galois 2-descent data for X′ over (′.

Proof. See [BLR90, Section 6.2, Example B] and [Poo17, Proposition
4.4.4] a the proof in the case of schemes. The stacky case is requires some
straightforward generalizations; we leave the details to the reader. �

Proof of Theorem 1.3. See Theorem 1.1 and Lemma 3.5. �
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models. Vol. 21. Ergebnisse der Mathematik und ihrer Grenzgebiete
(3). Springer-Verlag, Berlin, 1990, pp. x+325.

[Bre94] Lawrence Breen. “On the classification of 2-gerbes and 2-stacks”.
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