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1. Introduction

The goal of this talk is to discuss the paper [Mum72]. We fix:

Notation 1.1. Let A be an excellent normal noetherian ring with quotient field K. Let
I ⊂ A be an ideal with I =

√
I, and assume A is complete for the I-adic topology. For

instance, A is a complete and normal noetherian local ring with maximal ideal I. We let
S = Spec(A) with generic point η ∈ S, and define S0 = Spec(A/I).

We start with two definition, fundamental in this talk:

Definition 1.2. Let S = Spec(A) as above.

(1) A multiplicative torus over S is a commutative group scheme over S which is étale
locally isomorphic to a product of finitely many copies of Gm.

(2) A semi-abelian scheme is a smooth, separated, finite type commutative group
scheme π : G → S with geometrically connected fibres, such that each fibre Gs is
an extension of an abelian variety As by a multiplicative torus Ts (that is, there
is an exact sequence 0→ Ts → Gs → As → 0).

Remark 1.3. The torus rank is the function S 7→ r(s) = (torus rank of Gs). This
function is upper semi-continuous.

Fact 1.1. Let G be a semi-abelian group schemes G of constant rank on S. Then G is
globally over S an extension of an abelian scheme over S by a torus over S.

Conjecture 1.4 (Mumford–Tate). Let G be a semi-abelian group scheme over S such
that Gη is an abelian variety and G0 has constant rank r over S0. Then G is canonically

represented as the ‘quotient’ of a semi-abelian group scheme G̃ of constant rank r over

the whole of S, by a discrete group Y ⊂ G̃(L) (L a finite extension of K) with Y ∼= Zr.

1.1. Intuition. For τ ∈ H, consider the elliptic curve

Gτ = C/ (Z + τZ) = C∗/qZ, q = e2πiτ ∈ B∗ = {0 < |z| < 1} .
Let F be the standard fundamental domain F for the action of SL2(Z) on H. Let F0 be
F minus the points t ∈ H with |t| = 1 and the points with |<(t)| = 1/2. Let B be S times
F0 plus the point 0 ∈ C. Then S ·B∗ = F0, the interior of F . Define an abelian scheme

G|B∗ = (C×B∗) /Z⊕2 = (C/Z×B∗) /Z = (C∗ ×B∗) /Z.
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This extends to the semi-abelian scheme

G = (C×B) /Z⊕2 = (C/Z×B) /Z = (C∗ ×B) /Z.
Here, Z acts freely on C∗ ×B∗ by n · (x, τ) = (e2πiτnx, τ) = (q(τ)n · x, τ). Notice that the
torus rank is zero on B∗ and one on 0 ∈ B. Let

G̃ = (C×B) /Z = C/Z×B = C∗ ×B,
which is a semi-abelian group scheme of constant toric rank one on B. Then

G̃ −→ G

is a global uniformization of the semi-abelian scheme G by C∗. It maps C∗ × {0} isomor-
phically onto C∗ × {0}.

1.2. Example.

1.3. General idea. Mumford takes the approach to the other direction. The plan is as
follows.

(1) Start with a split torus G̃ ∼= Gr
m × S.

(2) Consider a set of period Y ⊂ G̃(K) satisfying suitable conditions.

(3) Construct a kind of compactification G̃ ⊂ P̃ over S such that the action of Y by

translation extends to P̃ .
(4) Take the I-adic completion P̃ of P̃ , construct P = P̃/Y , algebraize P to a scheme

P projective over S.
(5) Take a suitable open subset G ⊂ P .
(6) Prove that G is a semi-abelian group scheme over S that satisfies:

Condition 1.5. Gη is abelian and G0
∼= G̃0 = Gr

m × S0.

(7) Prove that G is independent of the choice of P̃ .
(8) Prove that G uniquely determines Y .

We also have:

Theorem 1.6 (Mumford–Raynaud). If dim(A) = 1 and A is local, then each semi-abelian
group scheme G/S satisfying Condition (1.5) admits a uniformization.

1.4. Applications. The construction takes as input a split torus G̃ = Gr
m×S and outputs

G

��

� � // P

��

S,

where Gη = Pη is an abelian variety over K, where G0 = Gr
m × S0 is a split torus over

S0, with compactification G0 ⊂ P0. Hence, this gives a degeneration of abelian varieties
in two possible senses:

(1) Degenerate the abelian variety Aη to a group scheme which is no longer compact.
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(2) Degenerate the abelian variety Aη to a proper variety which is no longer smooth.

We remark that the compactification G ⊂ P is neither unique nor canonical. The fact
that one has some choice in the construction has the advantage that, to quote Mumford,
it allows one “to seek for the most elegant solutions in any particular case”.

Remark 1.7. Let X = Hom(G̃,Gm) be the character group of G̃. For α ∈ X, let

X α ∈ O(G̃)∗ be the corresponding section. Then for any y ∈ G̃(K) we get an element
X α(y) ∈ K∗. If dim(A) = 1 then A is a complete discrete valuation ring. In that case,

there is embedding G̃(K)→ Hom(X,R) sending ξ to the map α 7→ ordX α(ξ). Thus, as

Y ⊂ G̃(K), we get a lattice Y ⊂ Hom(X,R). In particular, any polarization φ : Y → X
gives a quadratic form Qφ : Y → R. It is defined as

Qφ(y) = ordX φ(y)(y), y ∈ Y.

It extends to a positive definite quadratic form Qφ on E = Hom(X,R).

2. The set-up

Let S be as in Notation ... Let G̃ = Gr
m × S be a split torus of rank r over S. Let

X = HomGr-Sch/S(G̃,Gm,S) ∼= HomGr-Sch/S(Gr
m,S,Gm,S) ∼= Zr

be the character group of G̃. For α ∈ X, we let X α be the induced element in O(G̃)∗.
We have

G̃ = SpecA[· · · ,X α, · · · ]α∈X/
(
X α ·X β = X α+β,X 0 = 1

)
∼= SpecA[x1, . . . , xr, y1, . . . , yr]/(xiyi = 1)

∼= SpecA[x1, . . . , xr, x
−1
1 , . . . , x−1

r ].

To see this, recall that

X ⊂ HomSch/S(G̃,Gm,S) = HomA−alg(O(Gm,S),O(G̃)) = O(G̃)∗.

This gives a canonical element X α ∈ O(G̃) for α ∈ X. It is clear that the X α for α ∈ X
satisfy the required relations; it remains to prove that they generate O(G̃) over A. For

this, one may identify G̃ with Gr
m × S, in which case it is obvious.

Notice that there is a natural pairing

G̃(K)×X → K∗, (y, α) 7→X α(y).

In fact, it is given as the composition

G̃(K)×X → G̃(K)× Hom(G̃(K),Gm(K))→ Gm(K)∗ = K∗.

Definition 2.1. A set of periods is a subgroup Y ⊂ G̃(K) isomorphic to Zr.
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Definition 2.2. Let Y be a set of periods. A polarization for the periods Y is a homo-
morphism

φ : Y → X

such that:

(1) X φ(y)(z) = X φ(z)(y) for all y, z ∈ Y ,
(2) X φ(y)(y) ∈ I for all y ∈ Y , y 6= 0.

By (2), the map φ is injective, because if y ∈ Y is non-zero then X φ(y)(y) 6= 1 hence
φ(y) 6= 1. In particular, [X : φY ] <∞.

Definition 2.3. A relatively complete model of G̃ with respect to the periods Y and the
polarization φ consists of the following data:

(1) an integral scheme P̃ , locally of finite type over A,

(2) an open immersion i : G̃→ P̃ ,

(3) an ample invertible sheaf L̃ on P̃ ,

(4) an action of G̃ on P̃ and L̃, denoted by

Ta : P̃ → P̃ , T ∗aL→ L, a ∈ G̃(S ′) for some S-scheme S ′ → S,

(5) an action of Y on P̃ and L̃, denoted by

Sy : P̃ → P̃ , S∗y : L̃→ L̃, y ∈ Y ;

these data must satisfy the following conditions:

(i) There exists an open G̃-invariant subset U ⊂ P̃ of finite type over S such that

P̃ =
⋃
y∈Y

Sy(U),

(ii) for all valuations v on R(G̃), the field of rational functions on G̃, for which v ≥ 0

on A, v has a center on P̃ if and only if

[∀α ∈ X∃y ∈ Y | v(X α(y) ·X α) ≥ 0] ,(1)

(iii) the action of G̃ on P̃ extends the action of G̃ on itself by translation, and similarly,

the action of Y on P̃η extends the action of Y on G̃η by translation (Y ⊂ G̃(K)),

(iv) the actions of Y and G̃ on L̃ satisfy the identity

T ∗aS
∗
y = X φ(y)(a) · S∗yT ∗a

for all y ∈ Y and all S ′-valued points a of G̃, for any S-scheme S ′.
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3. The existence of relative complete models

Let θ be an indeterminate and consider the graded ring

R =
∞⊕
k=0

(
O(G̃)⊗A K

)
· θk =

(
O(G̃)⊗A K

)
[θ] = O(G̃η)[θ].

Let Y act on R via operators S∗y , y ∈ Y :

S∗y(c) = c, c ∈ K,
S∗y(X

α) = X α(y), α ∈ X,
S∗y(θ) = X φ(y)(y) ·X 2φ(y) · θ.

Definition 3.1. A star Σ is a finite subset of X such that 0 ∈ Σ, −Σ = Σ, and Σ contains
a basis of X.

Definition 3.2. Let φ be a polarization and Σ a star. Let Rφ,Σ be the subring of R
generated over A by the elements S∗y(X

αθ) for y ∈ Y, α ∈ Σ. That is,

Rφ,Σ = A
[
· · · ,X φ(y)+α(y) ·X 2φ(y)+α · θ, · · ·

]
y∈Y,α∈Σ

.

We have:

Lemma 3.3. If we replace φ by nφ for sufficiently large n ∈ Z, then

Rφ,Σ ⊂ A [· · · ,X α · θ, · · · ] = O(G̃)[θ].

Proof. It suffices to show X φ(y)+α(y) ∈ A for all y ∈ Y and α ∈ Σ. �

Theorem 3.4. Let G̃ be a split torus over S, let Y ⊂ G̃(K) be a set of periods and let
φ : Y → X be a polarization. Then if φ is replaced by nφ for n ∈ Z≥0 sufficiently large,

then Proj(Rφ,Σ) is a relatively complete model of G̃ over S relative to Y and 2φ.

Proof. We proceed in steps.

(1) Since Proj(Rφ,Σ) is the Proj of a graded ring generated by elements of degree one,
it carries a canonical ample invertible sheaf O(1).

(2) The automorphisms S∗y of Rφ,Σ induce automorphisms Sy of Proj(Rφ,Σ) and a
compatible automorphism S∗y of O(1).

(3) Define the action of G̃ on Proj(Rφ,Σ) as follows. Let B be an A-algebra and let

a ∈ G̃(B). We define an automorphism T ∗a of B ⊗A Rφ,Σ as follows. Let

T ∗a (c) = c, c ∈ A
T ∗a (X α) = X α(a) ·X α, α ∈ X,
T ∗a (θ) = θ.

(4) Notice that Proj(Rφ,Σ) is covered by the affine open sets

Uα,y = SpecA

[
· · · , X

φ(z)+β(z)

X φ(y)+α(y)
·X 2φ(z−y)+β−α, · · ·

]
β∈Σ,z∈Y

.
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There are only finitely many Y -orbits of the Uα,y. The O(Uα,y) are integral do-

mains, contained in K(· · · ,X α, · · · ) = R(G̃).
(5) We have

U0,0 = SpecA
[
· · · ,X φ(z)+β(z) ·X 2φ(z)+β, · · ·

]
β∈Σ,z∈Y

= SpecA
[
· · · ,X β, · · ·

]
β∈Σ

= SpecA
[
· · · ,X β, · · ·

]
β∈X = G̃.

(6) Show that Uα,y is of finite type over A.
(7) It follows that if U = ∪α∈ΣUα,0, then U is an open subset of Proj(Rφ,Σ) of finite

type over A, such that ⋃
y∈Y

Sy(U) = Proj(Rφ,Σ).

(8) Finally, check the completeness property for Proj(Rφ,Σ).

�

4. First properties of relative complete models

Notation 4.1. Let G̃→ S be a split torus of rank r as before, with S as in Notation ...

Let Y ⊂ G̃(K) be a set of periods and let φ : Y → X be a polarization. Moreover, let P̃

be a relative complete model of G̃ with respect to Y and φ.

Proposition 4.2. We have G̃η = P̃η.

Proposition 4.3. Every irreducible component of P̃0 is proper over S0 = Spec(A/I).

Proof. Let Z be an irreducible component of P̃0. Let v be a valuation of R(Z) with v ≥ 0
on A/I. Let V ⊂ R(Z) be the corresponding valuation ring. We first show that there
exists x ∈ Z with OZ,x ⊂ V ⊂ R(Z). Let z = ηZ be the generic point of Z. Choose a

valuation ring V1 with OP̃ ,z ⊂ V1 ⊂ R(P̃ ) = R(G̃). Let pz ⊂ OP̃ ,z be the maximal ideal;
then pz = m ∩ OP̃ ,z for the maximal ideal m ⊂ V1.

Let V2 ⊂ R(G̃) be the valuation ring of the composition v2 of the valuations v and v1.
Then there is a prime ideal q ⊂ V2 such that V2,q = V1 and V2/q = V . One shows, using

the completeness condition, that v2 has a center on P̃ . Thus, there exists x ∈ P̃ such that
OP̃ ,x ⊂ V2. The composition

Spec(V2)→ Spec(V )→ Z → P̃

factors as Spec(V2) → Spec(OP̃ ,x) → P̃ . Hence the closed point of Spec(V2) is sent to

x ∈ P̃ , which must therefore lie on Z. We get x ∈ Z ⊂ P̃ . Moreover, OP̃ ,x ⊂ V2 implies
OZ,x ⊂ V .

It remains to show that P̃0 is of finite type over S0. Write X = Z and Y = S0. Let
f : X → Y be the canonical map. To prove that f is of finite type, we may assume
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that Y = Spec(B) is integral and that f is dominant. Hence B ⊂ R(X). Let X be the
Zariski Riemann Surface of R(X) over B. Set-theoretically, X is the set of valuations v
on R(X) which are ≥ 0 on B. For x1, . . . , xn ∈ R(X), we define U(x1, . . . , xn) ⊂ X as
the set of valuation rings B ⊂ V ⊂ R(X) with xi ∈ V for all i. Then the U(x1, . . . , xn)
form a basis of a topology on X . Moreover, by what we have just shown, for each v ∈ X
there is a unique x ∈ X such that OX,x ⊂ Rv ⊂ R(X). This defines a continuous map
X → X. This map is surjective, as any OX,x is contained in a valuation ring. As X is
quasi-compact, the same holds for X. �

Corollary 4.4. The closure Ū0 of U0 in P̃0 is proper over S0. �

Proposition 4.5. There is a finite subset S ⊂ Y such that

Sy(Ū0) ∩ Sz(Ū0) = ∅

for all y − z 6∈ S. In other words, Ū0 ∩ Sy(Ū0) = ∅ whenever y 6∈ S.

Corollary 4.6. The group Y acts freely on P̃0.

Proof. Let x ∈ P̃0 such that Sy(x) 6= x for some y ∈ Y with y 6= 0. There exists z ∈ Y
such that Sz(x) ∈ U0. Moreover, SySz(x) = (SzSy−z)Sz(x) = SzSy(x) = Sz(x). Thus, we
may assume that x ∈ U0. But, as there is an infinite subgroup G ⊂ Y that fixes x, this
contradicts the proposition above. �

Theorem 4.7. The scheme P̃0 is connected.

Proof. Since A is complete in the I-adic topology and has no non-trivial idempotents,
then A/I has no non-trivial idempotents either. Indeed, if e2 = e + y for some e ∈ A
and y ∈ I, then, as the topological spaces Spec(A/I) and Spec(A/In) are the same for all
n ≥ 1, we get a compatible system of idempotents en ∈ A/In. Thus, we get an idempotent
in A = lim←−A/I

n, which must be one.

So S0 is connected. Thus, G̃0 is a connected open subset of P̃0, and the claim is that

G̃0 is dense in P̃0. �

5. Construction of the quotient

Theorem 5.1. For every n ≥ 1, there exists a scheme Pn, projective over Sn = Spec(A/In),
an ample sheaf O(1) on Pn, an an étale surjective morphism

π : P̃ ×S Sn −→ Pn,

such that set-theoretically, π(x) = π(y) if and only if x and y are in the same Y -orbit,

and such that O(1) on P̃ ×S Sn is the pull-back of O(1) on Pn.

Proof. First, let k ≥ 1 be an integer such that under the action of kY ⊂ Y , no two points
of any open sset

Sy(U)×S Sn ⊂ P̃ ×S Sn
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are identified. Then we can form the quotient:

π′ : P̃ ×S Sn −→ P ′n

of P̃ ×S Sn by the group kY . It is easily checked that P ′n is proper over Sn, and that O(1)
descends to an ample line bundle O(1) on P ′n. Thus, P ′n is projective over Sn.

Then the finite group Y/kY acts freely on the projective scheme P ′n and on the ample
sheaf O(1), so the quotient Pn = P ′n/(Y/kY ) exists, and O(1) descends to an ample line
bundle O(1) on Pn. �

Now, define a formal scheme as follows:

P = lim−→Pn.

The sheaves O(1) fit together to form an ample sheaf L on P.

Proposition 5.2. There exists a unique scheme P , proper over S, such that P̂ = lim−→P×S
Sn = P over Ŝ. Moreover, L = L̂ for an S-relatively ample line bundle L on P .

Proof. This follows by applying Grothendieck’s algebraization theorem. �

Next, define

Gn =
⋃
y∈Y

(
Sy(G̃)×S Sn

)
/Y ⊂ Pn,

lim−→Gn = G ⊂ P,

B̃ = P̃ −
⋃
y∈Y

Sy(G̃) ⊂ P̃ ,

Bn =
(
B̃ ×S Sn

)
/Y ⊂ Pn,

lim−→Bn = B ⊂ P.

Then B = B̂ for a reduced closed subscheme B ⊂ P . Define

G = P −B.

Lemma 5.3. We have Ĝ =
̂̃
G as formal schemes over Ŝ = Spf(A).

Proof. Indeed, we have on the one hand, that

Ĝ = P̂ − B̂ = P−B = lim−→(Pn −Bn) = lim−→Gn = G.

On the other hand, Gn
∼= G̃×S Sn, so that

G = lim−→Gn = lim−→ G̃×S Sn =
̂̃
G.

This proves the lemma. �
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6. Properties of the quotient

Proposition 6.1. We have:

(1) G is smooth over S.
(2) P is irreducible.

Theorem 6.2. Let (G̃i, Yi, φi, P̃i) be two tori plus periods, polarizations and relatively
complete models (i = 1, 2). Let Gi be the two schemes constructed as above. Then, for all
S-homomorphisms

f̃ : G̃1 → G̃2

such that f̃(Y1) ⊂ Y2, there exists a unique S-morphism

f : G1 → G2

such that, under the canonical isomorphisms Ĝi =
̂̃
Gi, we have that f and f̃ are formally

identical.

Corollary 6.3. The scheme G depends only on the torus G̃ and the periods Y , and is

independent of the polarization φ and the relatively complete model P̃ . �

Corollary 6.4. The S-scheme G is a naturally group scheme over S.

Proof. Apply the theorem to (G̃×S G̃, Y × Y, φ× φ, P̃ ×S P̂ ) and (G̃, Y, φ, P̃ ). This gives
µ : G×S G→ G. Similarly, get i : G→ G. �

Corollary 6.5. Gη is an abelian variety.

Proof. We have G̃η = P̃η. Hence B̃η = ∅. Thus OB̃ ⊗A Aτ = 0 for some τ ∈ A, non-zero.
This implies that τn · OB = 0 for some n. Hence Bη = ∅. Hence Gη = Pη is proper over
K. Since G is irreducible, Gη is irreducible. Hence, it is an abelian variety. �

Proposition 6.6. Gs is connected for s ∈ S, and G is a semi-abelian scheme over S.

References

[Mum72] David Mumford. “An analytic construction of degenerating abelian varieties
over complete rings”. In: Compositio Mathematica 24 (1972), pp. 239–272.

9


	1. Introduction
	1.1. Intuition
	1.2. Example
	1.3. General idea
	1.4. Applications

	2. The set-up
	3. The existence of relative complete models
	4. First properties of relative complete models
	5. Construction of the quotient
	6. Properties of the quotient
	References

