
J. reine angew. Math. 807 (2024), 221–255 Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2023-0082 © De Gruyter 2024

On the integral Hodge conjecture for
real abelian threefolds
By Olivier de Gaay Fortman at Hanover

Abstract. We prove the real integral Hodge conjecture for several classes of real abelian
threefolds. For instance, we prove the property for real abelian threefolds whose real locus is
connected, and for real abelian threefolds A which are the product A D B �E of an abelian
surface B and an elliptic curve E with connected real locus E.R/. Moreover, we show that
every real abelian threefold satisfies the real integral Hodge conjecture modulo torsion, and
reduce the principally polarized case to the Jacobian case.

1. Introduction

The Hodge structure on the singular cohomology ring of a smooth projective variety X
over C is a powerful tool to study the algebraic cycles on X . Where the Hodge conjecture pre-
dicts that the space of rational Hodge classes in any degree 2k is spanned by algebraic cycles,
the integral Hodge conjecture asks for something stronger, namely that this is already true with
Z-coefficients. As such, the integral Hodge conjecture is a property rather than a conjecture: it
may hold or fail depending on k and the geometry of X (see [1, 2, 4, 5, 10, 43, 46, 48, 51]).

Recently, the analogue of the integral Hodge conjecture for real algebraic varieties has
been formulated [6, 7]. Let X be a smooth projective variety over R, and let G D Gal.C=R/.
Building on work of Krasnov [30, 31] and Van Hamel [49], Benoist and Wittenberg define
a subgroup Hdg2kG .X.C/;Z.k//0 of the G-equivariant cohomology group H2kG .X.C/;Z.k//
in the sense of Borel, and study the cycle class map

(1.1) CHi .X/! Hdg2kG .X.C/;Z.k//0; i C k D dim.X/:

The real integral Hodge conjecture for i -cycles refers to the property that (1.1) is surjective. As
in the complex situation, this property holds for every X if i 2 ¹dim.X/; dim.X/ � 1; 0º (see
[6, 30, 33, 49]), but may fail for other values of i 2 ¹0; 1; : : : ; dim.X/º.

Complex uniruled threefolds, as well as threefolds X over C with KX D 0, satisfy the
integral Hodge conjecture by work of Grabowski, Voisin and Totaro [19, 48, 51]. In [6, Ques-
tion 2.16], Benoist and Wittenberg ask whether the same is true over R. In fact, in [7] they pro-
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vide positive answers for various classes of uniruled threefolds. For real Calabi–Yau varieties,
however, nothing seems to be known. In particular, one may ask:

Question 1.1. Do real abelian threefolds satisfy the real integral Hodge conjecture?

The goal of this paper is to provide evidence towards a positive answer to Question 1.1.

Let us explain our results. If A is a real abelian variety, then for each k 2 Z�0 the
following sequence is exact (see Lemma 2.2):

0! Hdg2kG .A.C/;Z.k//0Œ2�! Hdg2kG .A.C/;Z.k//0 ! Hdg2k.A.C/;Z.k//G ! 0:

Definition 1.2. A real abelian variety A satisfies the real integral Hodge conjecture for
i -cycles modulo torsion if the following map is surjective:

(1.2) CHi .A/! Hdg2k.A.C/;Z.k//G ; i C k D dim.A/:

We say that A satisfies the real integral Hodge conjecture modulo torsion if A satisfies the real
integral Hodge conjecture for i -cycles modulo torsion for every i 2 ¹0; 1; : : : ; dim.A/º.

Our first main result is as follows.

Theorem 1.3. Every abelian threefold over R satisfies the real integral Hodge conjec-
ture modulo torsion.

By using the Hochschild–Serre spectral sequence (see Section 2.2), one can calculate the
torsion rank of the equivariant cohomology of a real abelian threefold. We obtain:

Corollary 1.4. Let A be an abelian threefold over R such that A.R/ is connected. Then
A satisfies the real integral Hodge conjecture.

Our proof of Theorem 1.3 is inspired by Grabowski’s proof of the integral Hodge con-
jecture for complex abelian threefolds [19]. It consists of two steps:

(i) Reduce the real integral Hodge conjecture for one-cycles modulo torsion for abelian
varieties of dimension g to the algebraicity of the minimal class

� D
�g�1

.g � 1/Š
2 Hdg2g�2.A.C/;Z.g � 1//G

for every principally polarized abelian variety .A; �/ of dimension g over R.

(ii) Reduce the algebraicity of � on a principally polarized real abelian threefold A to the
case where A D J.C / is the Jacobian of a real algebraic curve C of genus three with
non-empty real locus, where this is clear.

An essential ingredient for the first reduction step is the fact that any polarized abelian variety
over R is isogenous to a principally polarized one. Although the analogue of this statement
over any algebraically closed field is classical [36], it fails over general fields [25]. We will
prove this fact in Theorem 4.1.
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As for step (ii), our strategy is to use Hecke orbits. For g � 1, let Ag be the moduli stack
of principally polarized abelian varieties of dimension g, and consider the real-analytic topol-
ogy on its real locus Ag.R/ (cf. [13, Definition 7.5 and Theorem 8.1] or [12, Definition 2.7
and Theorem 2.15]). For integers a and b, define the .a; b/-Hecke orbit of a moduli point
Œ.A; �/� 2 Ag.R/ as the set of Œ.B; �/� 2 Ag.R/ admitting an isogeny A! B preserving the
polarizations up to a product of powers of a and b (see Definition 3.6). Hecke orbits are well
known to be dense in Ag.C/ (see [12, Lemma 7.14]); we obtain the following real analogue.

Theorem 1.5. Let p and q be distinct odd prime numbers. The .p; q/-Hecke orbit of any
point x 2 Ag.R/ is analytically dense in the connected component of Ag.R/ containing x.

Corollary 1.6. Let p and q be as above. Every principally polarized abelian threefold
over R is isogenous, via an isogeny that preserves the polarizations up to a product of powers
of p and q, to the Jacobian of a non-hyperelliptic curve with non-empty real locus.

Reduction step (ii) follows because if an odd multiple of �2

2
is algebraic for a princi-

pally polarized real abelian threefold .A; �/, then �2

2
is algebraic. In the course of proving

Theorem 1.3, we also show that the main theorem of [4] has the following analogue over R:
a principally polarized real abelian variety .A; �/ satisfies the real integral Hodge conjecture
for one-cycles modulo torsion if and only if � is algebraic (see Theorem 5.2).

Corollary 1.6 turns out to be useful for the general principally polarized case as well:

Theorem 1.7. Let A3.R/C be a connected component of the moduli space of prin-
cipally polarized real abelian threefolds. Suppose that the real integral Hodge conjecture
holds for every Jacobian J.C / such that ŒJ.C /� 2 A3.R/C and the real locus C.R/ of C
is non-empty. Then the real integral Hodge conjecture holds for every real abelian variety
in A3.R/C.

In view of Theorems 1.3 and 1.7, Question 1.1 restricted to the principally polarized case
can be rephrased as follows. Let C be a real algebraic curve of genus three with non-empty
real locus. Is the torsion subgroup of Hdg4G.J.C /.C/;Z.2//0 algebraic?

Our next result reduces this question further. The theorem concerns torsion cohomology
classes of degree four on real abelian varietiesA of any dimension g. Let F � be the filtration on
Hdg2kG .A.C/;Z.k//0 � H2kG .A.C/;Z.k// induced by the Hochschild–Serre spectral sequence
(see Section 2.2).

Theorem 1.8. Let A be an abelian variety over R. The group F 3Hdg4G.A.C/;Z.2//0
is zero and the group F 2Hdg4G.A.C/;Z.2//0 is algebraic.

The proof of Theorem 1.8 relies on [4, Proposition 3.11] and an analysis of the Abel–
Jacobi map for zero-cycles.

For an abelian variety A over R, the Hochschild–Serre spectral sequence degenerates
(see [29]). Define H1.G;H3.A.C/;Z.2///0 as the image of the canonical homomorphism

(1.3) F 1Hdg4G.A.C/;Z.2//0 ! H1.G;H3.A.C/;Z.2///:



224 de Gaay Fortman, On the integral Hodge conjecture for real abelian threefolds

In fact, for abelian threefolds A over R, the homomorphism (1.3) is surjective unless one has
j�0.A.R//j D 8 (Corollary 9.2). Combining Theorems 1.3 and 1.8 with the compatibility of
the cycle class map (1.1) and the real Abel–Jacobi map (Theorem 7.2), we obtain:

Corollary 1.9. Let A be an abelian threefold over R. Then A satisfies the real integral
Hodge conjecture if and only if the Abel–Jacobi map

CH1.A/hom ! H1.G;H3.A.C/;Z.2///0

is surjective, where CH1.A/hom denotes the kernel of CH1.A/! H4.A.C/;Z.2//.

See Section 7 for the definition of the real Abel–Jacobi map. One can then use Corol-
lary 1.9 and the Künneth formula to prove the following unconditional result.

Theorem 1.10. Let A D B �E be the product of a real abelian surface B and a real
elliptic curve E with E.R/ connected. Then A satisfies the real integral Hodge conjecture.

It follows that there are no topological obstructions to the real integral Hodge conjec-
ture for those real abelian threefolds A with j�0.A.R//j ¤ 8. In the case A D E3 for a real
elliptic curve E with disconnected E.R/, we reduce the real integral Hodge conjecture to the
algebraicity of one specific class ! 2 H1.G;H3.A.C/;Z.2///0, see Proposition 9.4.

Finally, we establish a connection between the real integral Hodge conjecture and the
Griffiths group of an abelian threefoldA over R. Let C 2.A/ � Griff2.AC/

G ˝ Z=2 be the sub-
group generated by pull-backs of Ceresa cycles Œ„� 2 Griff2.J.C /C/G ˝ Z=2 along isogenies
� W A! J.C / to Jacobians of curves of genus three over R (cf. Section 10).

Theorem 1.11. Let A be a principally polarized real abelian threefold such that A.R/
is not connected. Suppose that the principally polarized complex abelian threefold AC is very
general. If A satisfies the real integral Hodge conjecture, then C 2.A/ ¨ Griff2.AC/

G ˝ Z=2.
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2. The real integral Hodge conjecture

2.1. Generalities. Let X be a smooth projective variety over R. The group

G D Gal.C=R/ D ¹id; �º

acts on X.C/ via the canonical anti-holomorphic involution � W X.C/! X.C/. For k 2 Z,
we denote by Z.k/ the G-module that has Z as underlying Z-module, on which G acts by
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�.1/ D .�1/k . Thus, Z.k/ D Z.q/ for every q 2 Z with k � q mod 2. We also denote by
Z.k/ the constant G-sheaf on X.C/ attached to the G-module Z.k/. For k; q 2 Z�0, the
G-action on the group Hk.X.C/;Z.q// is understood to be the one induced by the involution
Hk.�/ ı F1, where F1 D �� is the pull-back of the anti-holomorphic involution � on X.C/,
and Hk.�/ is the involution on cohomology induced by � W Z.q/! Z.q/.

Let k 2 Z�0. Attached to X is also the so-called degree 2k equivariant cohomology
group with coefficients in Z.k/, see [22]. It is denoted by H2kG .X.C/;Z.k//, and relates to
singular cohomology via a canonical homomorphism

(2.1) ' W H2kG .X.C/;Z.k//! H2k.X.C/;Z.k//G :

A real subvariety Z � X of codimension k induces a class ŒZ� 2 H2kG .X.C/;Z.k// whose
image '.ŒZ�/ in H2k.X.C/;Z.k//G is the class ŒZC� attached to the subvariety ZC � XC .

It turns out that such algebraic cycle classes satisfy an additional condition, discovered by
Kahn and Krasnov [28,31], and defined purely in terms of the structure of X.C/ as topological
G-space. For i 2 ¹0; : : : ; 2kº, define

�i W H2kG .X.C/;Z.k//! Hi .X.R/;Z=2/

as the composition

H2kG .X.C/;Z.k//
mod 2
������! H2kG .X.C/;Z=2/

restriction
������! H2kG .X.R/;Z=2/ D H2k.X.R/ � BG;Z=2/

Künneth
������!
�

H0.X.R/;Z=2/˚ � � � ˚ H2k.X.R/;Z=2/

projection
������! Hi .X.R/;Z=2/:

For ˛ 2 H2kG .X.C/;Z.k//, define ˛i D �i .˛/ 2 Hi .X.R/;Z=2/, and let H2kG .X.C/;Z.k//0
be the group of classes ˛ 2 H2kG .X.C/;Z.k// such that

(2.2) .˛0; ˛1; : : : ; ˛k; : : : ; ˛2k/ D .0; : : : ; 0; ˛k; Sq
1.˛k/; Sq

2.˛k/; : : : ; Sq
k.˛k//:

Here, the Sqi are the Steenrod operations

Sqi W Hp.X.R/;Z=2/! HpCi .X.R/;Z=2/:

Definition 2.1 (Benoist–Wittenberg). The subgroup

Hdg2kG .X.C/;Z.k//0 � H2kG .X.C/;Z.k//

is the group of classes ˛ 2 H2kG .X.C/;Z.k// that satisfy the following conditions:

(i) The class ˛ lies in the subgroup H2kG .X.C/;Z.k//0 of classes satisfying (2.2).

(ii) The image of ˛ in H2k.X.C/;Z.k// under (2.1) is a Hodge class.

By [6, Section 1.6.4], Definition 2.1 is compatible with cup products, pull-backs and
proper push-forwards. Moreover, by [31] (cf. [6, Theorem 1.18]), ŒZ� 2 Hdg2kG .X.C/;Z.k//0
for every algebraic subvariety Z � X . This defines the map (1.1).
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2.2. Hochschild–Serre. For a smooth projective variety X over R, the Hochschild–
Serre spectral sequence

(2.3) E
p;q
2 D Hp.G;Hq.X.C/;Z.k///) HpCqG .X.C/;Z.k//

is obtained by viewing HiG.X.C/;�/ as the right-derived functor of the composition of taking
global sections and G-invariants on the category of G-sheaves on X.C/.

LetA be an abelian variety over R. Then (2.3) degenerates for k D 0 by [29, Section 5.7].
It follows that (2.3) degenerates for every k, as we see using cup-products with the non-trivial
elements in H1.G;Z.1// and H2.G;Z/. Consequently, there are canonical identifications

H2kG .A.C/;Z.k//tors D H2kG .A.C/;Z.k//Œ2�

D Ker.H2kG .A.C/;Z.k//! H2k.A.C/;Z.k///

D F 1H2kG .A.C/;Z.k//:

(2.4)

Moreover, these Z=2-modules are (non-canonically) isomorphic to the Z=2-moduleM
pCqDk
p>0

Hp.G;Hq.A.C/;Z.k///:

2.3. The topological condition. We have the following fundamental:

Lemma 2.2. Let X be a smooth projective variety of dimension n over R, and let
k D n � 1. Suppose that X.C/ has torsion-free degree 2k integral singular cohomology and
that the Hochschild–Serre spectral sequence (2.3) degenerates. Then each row and each col-
umn in the following commutative diagram is exact:

0 // H2kG .X.C/;Z.k//0Œ2�� _

��

// H2kG .X.C/;Z.k//0� _

��

'
// H2k.X.C/;Z.k//G // 0

0 // H2kG .X.C/;Z.k//Œ2�

����

// H2kG .X.C/;Z.k//
'
//

����

H2k.X.C/;Z.k//G // 0

M
p�1

Hk�2p.X.R/;Z=2/
M
p�1

Hk�2p.X.R/;Z=2/.

(2.5)

Proof. By the degeneration of the Hochschild–Serre spectral sequence (2.3), the map

' W H2kG .X.C/;Z.k//! H2k.X.C/;Z.k//G

is a surjective homomorphism between abelian groups of the same rank. The target of ' is
torsion-free, so its kernel is H2k.X.C/;Z.k//Œ2�, which explains the horizontal exact sequence
in the middle of diagram (2.5). It follows from the proof of [6, Proposition 1.8] together with
[6, Equation (1.33) and Remark 1.20 (i)] that the middle vertical sequence in diagram (2.5) is
split exact. This implies that, in diagram (2.5), the vertical arrow on the bottom left and the
horizontal map ' on the top right are both surjective.

Note that the first and second horizontal sequence in diagram (2.5) remain exact after
restricting to Hodge classes.
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2.4. Threefolds. LetX be a smooth projective threefold over R. The topological condi-
tion (2.2) on degree four classes takes a particularly simple form: a class ˛ 2 H4G.X.C/;Z.2//
lies in H4G.X.C/;Z.2//0 if and only if

˛jx D 0 2 H4G.¹xº;Z.2// D Z=2 for any x 2 X.R/:

Moreover, the conditions ˛jx D 0 for x in different connected components of X.R/ are lin-
early independent over Z=2: for n D 3, the middle vertical sequence in (2.5) is the split exact
sequence

0 �! H4G.X.C/;Z.2//0 �! H4G.X.C/;Z.2//
�0
�! H0.X.R/;Z=2/ �! 0:

Finally, since X satisfies the real integral Hodge conjecture for i -cycles whenever i 2 ¹0; 2; 3º
(see [6, Section 2.3.1 and Section 2.3.2]), the real integral Hodge conjecture forX is equivalent
to the surjectivity of the homomorphism CH1.X/! Hdg4G.X.C/;Z.2//0.

3. Density of Hecke orbits

3.1. Polarized real abelian varieties. Let A be a real abelian variety, by which we
mean an abelian variety over R. Here, and in the sequel, the dual abelian variety ofA is denoted
by yA. Defineƒ D H1.A.C/;Z/. Denote by � W A.C/! A.C/ the canonical anti-holomorphic
involution, and by F1 W ƒ! ƒ its push-forward. There is a canonical bijection between:

� Symmetric isogenies � WA! yA such that �C D 'L is the homomorphism 'L WAC! yAC

induced by an ample line bundle L on AC as in [36].
� Alternating forms E W ƒ �ƒ! Z such that F �1.E/ D �E and such that the following

hermitian form is positive definite:

H W ƒR �ƒR ! C; H.x; y/ D E.ix; y/C iE.x; y/:

� Classes of ample line bundles � 2 NS.AC/
G D Hdg2.A.C/;Z.1//G .

In the sequel, a polarization on A will be an element in either one of the three sets above; the
context will make clear which structure is meant.

3.2. Moduli of real abelian varieties. Let .A; �/ be a principally polarized complex
abelian variety of dimension g. By Galois descent [52], to give a model of .A; �/ over R is to
give an anti-holomorphic involution

� W A.C/! A.C/ such that �.0/ D 0 and F �1.E/ D �E:

By [45, Chapter IV, Theorem (4.1)] (or [21, Section 9]), such an anti-holomorphic involution �
exists if and only if the complex principally polarized abelian variety .A; �/ admits a period
matrix of the form

(3.1) .Ig ;
1
2
M C iN/:

Here N is a positive definite real matrix and M is a symmetric g � g-matrix with integral
coefficients such that if r D rank.M/ � g, then M is of the form 

Ir 0

0 0

!
(1)
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or of the form 0BBBBBBBBBBBB@

0 0 : : : 1 0 : : : 0
:::

::: : :
: :::

:::
: : :

:::

0 1 : :
: ::: 0 : : : 0

1 0 : : : 0 0 : : : 0

0 0 : : : 0 0 : : : 0
:::

:::
: : :

:::
:::
: : :

:::

0 0 : : : 0 0 : : : 0

1CCCCCCCCCCCCA
:(2)

Definition 3.1 (Silhol). The type .r; ˛/ 2 Z2 of a principally polarized real abelian vari-
ety .A; �/ is defined as follows. If .Ig ; 12M C iN/ is a period matrix for .AC; �C/ as above,
then r D rank.M/. Define ˛ 2 ¹1; 2º in the following way:
� If r is odd, then ˛ D 1. Thus the type of .A; �/ is .r; 1/.
� If r is zero, then ˛ D 1. Thus the type of .A; �/ is .0; 1/.
� If r is even, but non-zero, then ˛ D 1 if M is of the form (1) and ˛ D 2 if M is of the

form (2).

This definition makes sense, because of the following:

Proposition 3.2 (Silhol). The type .r; ˛/ of a principally polarized real abelian variety
.A; �/ does not depend on the chosen period matrix (3.1) for .AC; �C/ nor on the isomorphism
class of .A; �/. If .A; �/ is of type .r; ˛/, there exists a period matrix .Ig ; 12M C iN/ for .A; �/
such that M is of the form (1) or (2), according to whether ˛ equals 1 or 2.

Proof. See [45, Chapter IV, Corollaries (4.3) and (4.5)].

Definition 3.3. Let T .g/ be the set of types .r; ˛/ of principally polarized abelian
varieties of dimension g over R. For any type � 2 T .g/, define M.�/ to be the integral
g � g-matrix (1) or (2) above, according to whether ˛ equals 1 or 2. Then define GL�g.Z/
to be the subgroup of GLg.Z/ of matrices T 2 GLg.Z/ that satisfy

T t �M.�/ � T �M.�/ mod 2 .T t D transpose of T /:

Finally, let Hg be the set of symmetric positive definite real matrices of rank g.

Theorem 3.4 (Silhol). Let g be a positive integer. For � 2 T .g/, define jAg.R/j� to
be the set of isomorphism classes of real principally polarized abelian varieties of type � . For
each type � 2 T .g/, the period map induces a bijection

jAg.R/j
�
D GL�g.Z/ n Hg ;

where GL�g.Z/ acts on Hg by N 7! T t �N � T . Therefore,

(3.2) jAg.R/j D
G

�2T .g/

GL�g.Z/ n Hg :

Proof. See [45, Chapter IV, Theorem (4.6)].
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Remark 3.5. By [13, Theorem 8.1], the bijection (3.2) is a homeomorphism with re-
spect to the real-analytic topology on jAg.R/j (see [13, Definition 7.5]).

3.3. Density of Hecke orbits over the real numbers. Before we prove Theorem 1.5,
let us properly introduce the notion of Hecke orbits over the real numbers.

Definition 3.6. Let .A; �/ be a principally polarized abelian variety of dimension g
over R, and let x D Œ.A; �/� 2 jAg.R/j the corresponding moduli point. For a tuple of integers
.a; b/, the .a; b/-Hecke orbit of x is the subset Ga;b.x/ � jAg.R/j of isomorphism classes
Œ.B; �/� 2 jAg.R/j of principally polarized abelian varieties .B; �/ of dimension g over R, for
which there exist n;m 2 Z�0 and an isogeny

� W A! B such that ��.�/ D anbm � �:

Proof of Theorem 1.5. Let p and q be distinct odd prime numbers.

Step 1. If x D Œ.A; �/� 2 jAg.R/j and � 2 T .g/ is the type of .A; �/, then one has
Gp;q.x/� jAg.R/j� . Indeed, for any yD Œ.B; �/�2 Gp;q.x/, there exists an isogeny � WA!B

such that ��.�/ D n � � for some odd positive integer n. Such a map � induces an isomorphism

H1.A.C/;Z=2/ Š H1.B.C/;Z=2/

of symplectic spaces with involution. Since x 2 jAg.R/j� , this implies that y 2 jAg.R/j� as
well, see [21, Section 9].

Step 2. Define S D ZŒ 1
p
; 1
q
�. The ring homomorphism S ! S=2S induces a group

homomorphism GLg.S/! GLg.S=2S/: For � 2 T .g/, we define

GL�g.S/ D ¹T 2 GLg.S/ W T t �M.�/ � T �M.�/ mod 2º:

Fix one such � 2 T .g/. Observe that the action of GL�g.Z/ on Hg extends to a transitive action
of GLg.R/ on Hg . We claim:

Claim. Let x D Œ.Ax; �x/� 2 jAg.R/j� and lift x to a point y 2 Hg . Consider the orbit
GL�g.S/ � y � Hg as well as its image GL�g.Z/ n .GL�g.S/ � y/ in jAg.R/j� D GL�g.Z/ n Hg .
Then

GL�g.Z/ n .GL�g.S/ � y/ D Gp;q.x/:

Indeed, if Hg denotes the genus g Siegel space of symmetric, complex g � g matrices
Z D X C iY whose imaginary part Y is positive definite, then the inclusion

�� W Hg ,! Hg ; N 7!
1

2
�M.�/C iN

is equivariant for the embedding

f� W GLg.R/ ,! Sp2g.R/; T 7!

 
T t 1

2
.M.�/ � T �1 � T t �M.�//

0 T �1

!
:



230 de Gaay Fortman, On the integral Hodge conjecture for real abelian threefolds

Moreover, the action of the group Sp2g.S/ on Hg has the following geometric meaning: if
we consider Hg as a moduli space of g-dimensional, principally polarized complex abel-
ian varieties with symplectic basis, then two points y D ŒAy � and z D ŒAz� 2 Hg are in the
same Sp2g.S/-orbit if and only if there exists an isogeny � W Ay ! Az that preserves the
polarizations up to a product of powers of p and q. Since the intersection

f� .GLg.R// \ Sp2g.S/ D f� .GL�g.S//

equals the subgroup of Sp2g.S/ that preserves the locus

�� .Hg/ D
²
1

2
�M.�/C iN

³
� Hg

of real abelian varieties of type � , this concludes Step 2.

Step 3. For any � 2 T .g/, the subgroup GL�g.S/ � GLg.R/ is dense in the analytic
topology. Define

SL�g.S/ D SLg.S/ \ GL�g.S/ D ¹T 2 SLg.S/ W T t �M.�/ � T �M.�/ mod 2º:

We claim that

SLg.R/ D SLg.S/ D SL�g.S/ � GL�g.S/ � GLg.R/:(3.3)

Indeed, this follows from the following two statements:

(i) The closure of SLg.S/ in GLg.R/ is SLg.R/.

(ii) The subgroup SL�g.S/ � SLg.S/ has finite index.

To prove statement (i), observe that the subgroup SLg.R/ � GLg.R/ is closed, which implies
that the closure of SLg.S/ in GLg.R/ equals the closure of SLg.S/ in SLg.R/. Thus, (i)
follows from the density of SLg.S/ in SLg.R/, which is true by strong approximation; see
[12, Lemma 7.14] for the precise argument. As for (ii), the group SLg.S/ acts on Mg.S=2S/

via N 7! T t �N � T mod 2 for T 2 SLg.S/, so there is an injection

SL�g.S/ n SLg.S/ ,! Mg.S=2S/ D Mg.Z=2/; T 7! T t �M.�/ � T mod 2:

Statement (ii) implies that the index of SL�g.S/� SLg.S/ is finite. We have SLg.S/ D SLg.R/
by (i), thus SL�g.S/ � SLg.R/ is a closed subgroup of finite index, hence open. Therefore, we
get SL�g.S/ D SLg.R/ by connectivity of SLg.R/, proving claim (3.3).

Write G D GL�g.S/. If H � GLg.R/ is any Lie subgroup such that SLg.R/ � H , then
H D det�1.det.H//. Consequently, using (3.3), we obtain

G D det�1.det.G// � GLg.R/:(3.4)

Equality (3.4) implies that Step 3 reduces to the equality det�1.det.G// D GLg.R/. This fol-
lows from the equality det.G/ D R�, which we now prove. The morphism det WGLg.R/! R�

is open because its differential at the identity matrix Ig 2 GLg.R/ is the trace homomorphism
Mg.R/! R. Writing

GLg.R/ D det�1.R�/ D det�1.det.G/ t det.G/c/ D G t det�1.det.G/c/;



de Gaay Fortman, On the integral Hodge conjecture for real abelian threefolds 231

it follows that det.G/ is closed in R�. We conclude that det.G/ � det.G/ D det.G/. Thus, to
show that det.G/ D R�, it suffices to show that det.G/ is dense in R�. The homomorphism
det W GL�g.S/! S� is surjective because it admits the section

S� ! GL�g.S/; x 7!

 
x 0

0 Ig�1

!
:

Therefore,
det.G/ D det.GL�g.S// D S

�
D ¹˙pnqm W n;m 2 Zº;

and it remains to prove that the latter is dense in R�. This holds, since S�>0D¹p
nqm W n;m2Zº

is dense in R>0 because log.S�>0/ D Z log.p/C Z log.q/ is dense in R; the latter follows from
the fact that log.S�>0/ is not a cyclic subgroup of R.

Step 4. Finish the proof. Let x D Œ.A; �/� 2 jAg.R/j, and let � 2 T .g/ be the type
of the principally polarized real abelian variety .A; �/. Lift x to a point y 2 Hg . By Step 3,
we know that the orbit GL�g.S/ � y is dense in GLg.R/ � y D Hg . Consequently, the image of
GL�g.S/ � y under the projection Hg ! jAg.R/j� is dense in jAg.R/j� . By Step 2, this image
is precisely Gp;q.x/. Thus Gp;q.x/ is dense in jAg.R/j� as desired.

4. Principal polarizations in real isogeny classes

The goal of this section is to prove the following:

Theorem 4.1. Let .A; �A/ be a polarized abelian variety over R. Then there exists
a principally polarized abelian variety .B; �B/ over R and an isogeny

� W A! B such that ��.�B/ D �A:

Proof. Let K � A.C/ be the kernel of the analytified polarization �A W A.C/! yA.C/.
Then K is a finite group of order d2, where d2 is the degree of �A, such that the real structure
� W A.C/! A.C/ restricts to an involution

� W K ! K:

We may assume that K ¤ .0/. Let p be any prime number that divides the order of K. We
claim that there exists a subgroup K1 � K of order p such that �.K1/ D K1. To see this, let
HŒp� � K be the p-torsion subgroup of K. Then HŒp� is preserved by � , so that HŒp� is an
Fp-vector space of finite rank equipped with a linear involution � . Therefore, HŒp� contains
a one-dimensional Fp-subspace K1 preserved by � , which proves our claim.

The group K1 � A.C/ descends to a finite subgroup scheme K1 � A over R; define A1
to be the abelian variety A=K1 over R. Let ƒ D H1.A.C/;Z/ and M D H1.A1.C/;Z/; the
projection A! A1 induces an exact sequence

0! ƒ!M ! K1 ! 0:

Let E W ƒ � ƒ ! Z be the alternating form attached to the polarization �A of A. Since
M=ƒ D K1 � K D ƒ

_=ƒ, we have inclusions

ƒ �M � ƒ_; where ƒ_ D ¹x 2 ƒ˝Q W E.x;ƒ/ � ƒº:
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The Z-valued alternating form E on the lattice ƒ gives rise to a bilinear form

E W ƒ_=ƒ �ƒ_=ƒ! Q=Z

which vanishes onM=ƒ becauseM=ƒŠ Z=p and E is alternating. Thus E W ƒ_ �ƒ_!Q
restricts to an integer-valued form E1 on M . The latter induces a polarization �A1

W A1! yA1
that makes the following diagram commute:

A

�A

��

� // A1

�A1
��

yA yA1.y�oo

Here � is the quotient map A! A1 and y� its dual. Since the degree of an isogeny is multi-
plicative in compositions, and deg.�/ D p, we have

p2 � deg.�A1
/ D deg.�/2 � deg.�A1

/ D deg.�A/ D d2:

If d D p, we are finished – otherwise, we repeat the above procedure until the real abelian
variety An D An�1=Kn�1 becomes principally polarized.

5. Integral Hodge classes modulo torsion

5.1. The Fourier transform. Let A be a real abelian variety of dimension g, and
consider the Poincaré bundle PA on A � yA. Let a1; : : : ; a2g be integers. The Chern character

ch.PAC / D exp.c1.PAC // 2 H2�.A.C/ � yA.C/;Z.�//

defines the Fourier transform

FA W

M
i2Z�0

Hi .A.C/;Z.ai //!
M
i2Z�0

Hi . yA.C/;Z.a2g�i � g C i//:(5.1)

It is defined as FA.x/ D �2;�.ch.PA/ � ��1 .x//, where �i is the projection of A � yA onto the
i -th factor. By [3], the map (5.1) is an isomorphism, inducing isomorphisms

FA W Hi .A.C/;Z.ai // ��! H2g�i . yA.C/;Z.ai C g � i//:(5.2)

Since ch.PAC / is fixed by G, these maps are isomorphisms of G-modules.

5.2. Divisors. Let A be an abelian variety over R. Both homomorphisms in the follow-
ing composition are surjective:

CH1.A/! Hdg2G.A.C/;Z.1//! Hdg2.A.C/;Z.1//G :(5.3)

The first map is surjective by the real integral Hodge conjecture for divisors (see [6, Proposi-
tion 2.8]), and the second by the degeneration of the Hochschild–Serre spectral sequence (see
Section 2.2).
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5.3. The real integral Hodge conjecture for one-cycles modulo torsion. The goal of
this subsection is to provide an application of Theorems 1.5 and 4.1 combined: the real integral
Hodge conjecture for one-cycles modulo torsion follows, in some cases, from the real integral
Hodge conjecture for divisors modulo torsion (cf. Section 5.2). For this, we use Fourier trans-
forms on Betti cohomology of real abelian varieties (cf. Section 5.1) and their lifts to integral
Chow groups, see [4,35]. The theory in [4, Section 3] was developed for abelian varieties over
a general field k – to apply it, we take k D R.

Definition 5.1. LetA be a real abelian variety, and k a non-negative integer. An element
˛ 2 Hdg2k.A.C/;Z.k//G is called algebraic if it is in the image of

CHk.A/! Hdg2k.A.C/;Z.k//G :

By the main theorem of [4], the integral Hodge conjecture for one-cycles on a fixed prin-
cipally polarized abelian variety .A; �/ over C is equivalent to the algebraicity of the minimal
class � D �g�1=.g � 1/Š onA (see [4, Theorem 1.1]). Moreover, Grabowski reduced the inte-
gral Hodge conjecture for one-cycles for every complex abelian variety of dimension g to the
algebraicity of � for every principally polarized abelian variety of dimension g, see [19]. We
have the following real analogue of these results:

Theorem 5.2. Fix a positive integer g. Let .A; �/ be a principally polarized abelian
variety of dimension g over R. The following are equivalent:

(i) The real abelian variety A satisfies the real integral Hodge conjecture for one-cycles
modulo torsion.

(ii) The minimal class

� D
�g�1

.g � 1/Š
2 Hdg2g�2.A.C/;Z.g � 1//G

is algebraic.

(iii) The Chern character

ch.PAC / D exp.c1.PAC // 2 Hdg2�.A.C/ � yA.C/;Z.�//G

is algebraic.

Moreover, if the real integral Hodge conjecture for one-cycles modulo torsion holds for every
principally polarized abelian variety of dimension g over R, then it holds for every abelian
variety of dimension g over R.

Proof. The direction (i)) (ii) is trivial; let us assume that (ii) holds. Let .A; �/ be
a principally polarized abelian variety of dimension g over R, and suppose that � is algebraic.
By [4, Proposition 3.11], the abelian variety A admits a motivic integral Fourier transform up
to homology, see [4, Definition 3.1]. This means the following. Let ` be a prime number. There
exists a cycle

� 2 CH.A � yA/ such that Œ�C� D ch.PAC / 2 H2�ét .AC � yAC;Z`.�//:

As a consequence, Œ�C� D ch.PAC / 2 H2�.A.C/ � yA.C/;Z.�//G , which proves (iii).



234 de Gaay Fortman, On the integral Hodge conjecture for real abelian threefolds

Let us now assume that (iii) holds, and let � 2 CH.A � yA/ be a cycle that induces the
class ch.PAC / in Betti cohomology. The correspondence � defines a group homomorphism
�� W CH�.A/! CH�. yA/ such that the following diagram commutes:

CH1.A/

��

// CH�.A/

��

�� // CH�. yA/

��

// CH1. yA/

��

Hdg2.A.C/;Z.1//G // Hdg2�.A.C/;Z.�//G
�

FA // Hdg2�. yA.C/;Z.�//G // Hdg2k. yA.C/;Z.k//G .

Here k D g � 1, the composition on the bottom row is an isomorphism (see (5.2) in Sec-
tion 5.1), and the left vertical arrow is surjective (see (5.3) in Section 5.2). Therefore, the right
vertical arrow is surjective, which implies (i).

Next, suppose that (i) holds for every principally polarized real abelian variety of dimen-
sion g, and let A be any real abelian variety of dimension g. We would like to show that A
satisfies the real integral Hodge conjecture for one-cycles modulo torsion. The isomorphism
(5.2) induces an isomorphism

FA W Hdg2.A.C/;Z.1//G ��! Hdg2g�2. yA.C/;Z.g � 1//G :

Since Hdg2.A.C/;Z.1//G is algebraic by Section 5.2, it suffices to show that FA.ŒLC�/ is
algebraic for every line bundle L on A. By [24, II, Exercice 7.5], there is an ample line
bundleM on A such that L˝M˝n is ample for n� 0; we may thus assume that L is ample.
By Theorem 4.1, there is a principally polarized abelian variety .B; �/, and an isogeny

� W A! B

such that, if � 2 NS.BC/
G D Hdg2.B.C/;Z.1//G is the class corresponding to the principal

polarization � W B ! yB , then

��.�/ D ŒLC� 2 Hdg2.A.C/;Z.1//G :

On the other hand, the following diagram commutes by [3, Proposition 3]:

Hdg2.A.C/;Z.1//G
FA // Hdg2g�2. yA.C/;Z.g � 1//G

Hdg2.B.C/;Z.1//G
FB //

��

OO

Hdg2g�2. yB.C/;Z.g � 1//G :

y��

OO

Moreover, by [3, Proposition 5], we have

FB.�/ D .�1/
g�1
�

y�g�1

.g � 1/Š
2 H2g�2. yB.C/;Z.g � 1//G ;

where y� 2 Hdg2. yB.C/;Z.1//G denotes the dual polarization class. We conclude that FB.�/

is algebraic, so that FA.ŒLC�/ D y��.FB.�// is algebraic as well.

Corollary 5.3. Let C1; : : : ; Cn be smooth projective geometrically integral curves over
R such that Ci .R/ ¤ ; for each i . The real abelian variety A D J.C1/ � � � � � J.Cn/ satisfies
the real integral Hodge conjecture for one-cycles modulo torsion.
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Proof. The minimal class on a product of principally polarized abelian varieties over R
is the sum of the pull-backs of the minimal classes on the factors, so by Theorem 5.2, it suffices
to treat the case n D 1. For a real algebraic curve C whose real locus is non-empty, any Abel–
Jacobi map gives an embedding of real varieties � W C ,! J.C /. By Poincaré’s formula, one
has

Œ�.C /C� D
�g�1

.g � 1/Š
2 Hdg2g�2.J.C /.C/;Z.g � 1//G ;

where the class on the right-hand side of the equality is the minimal cohomology class �
of J.C /. Thus � is algebraic, so we are done by Theorem 5.2.

5.4. Integral Hodge classes modulo torsion on real abelian threefolds. We define
a real algebraic curve as a smooth projective geometrically connected curve over R. Let
M3.R/ be the moduli space of real algebraic curves of genus three (see [44] and [13, Theo-
rem 8.2]), and consider the Torelli map

t WM3.R/! A3.R/:

Let N3.R/ �M3.R/ be the non-hyperelliptic locus.

Lemma 5.4. The subset t .N3.R// is open in A3.R/.

Proof. On the level of stacks, T WM3 ! A3 is an open immersion when restricted
to the non-hyperelliptic locus N3 �M3. Moreover, for any algebraic stack X of finite type
over R, the set jX .R/j of isomorphism classes of R-points of X admits a real-analytic topol-
ogy (see [13, Definition 7.5]). For this topology, the subset jT .N3/.R/j � jA3.R/j is open by
[12, Corollary 2.8.2]. By Remark 3.5, we are done.

Lemma 5.5. Every connected component of the moduli space A3.R/ contains a non-
empty open subset of non-hyperelliptic curves of genus three with non-empty real locus.

Proof. Let A3.R/� be a connected component of A3.R/. By [21, p. 182], there is
a (unique) connected component M3.R/� of M3.R/ that satisfies the following two conditions:
C.R/ is not empty for each ŒC � 2M3.R/� , and

t .M3.R/
� / � A3.R/

� :

Now M3.R/� contains a component N3.R/� of N3.R/ by [21, Proposition 3.1] and [21, table
on page 174]. Moreover, N3.R/� is open in A3.R/ by Lemma 5.4.

Proof of Corollary 1.6. This follows directly from Theorem 1.5 and Lemma 5.5.

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. By Theorem 5.2, it suffices to show that for any principally polar-
ized abelian threefold .A; �/ over R, the class � D �2=2 2 Hdg4.A.C/;Z.2//G is algebraic.
Let us prove this. Let p and q be two distinct odd prime numbers. By Corollary 1.6, there exists
a real algebraic curve C of genus three such that C.R/ ¤ ; together with an isogeny

� W A! J.C /
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such that ��.�C / D pnqm � �A for some non-negative integers n and m. Here �C denotes
the canonical polarization on J.C /. Let �C 2 Hdg2.J.C /.C/;Z.1//G be the corresponding
cohomology class; then ��.�C / D pnqm � � . Since C.R/ ¤ ;, the minimal class �2C =2 on
J.C / is algebraic; see Corollary 5.3. Therefore, the class

p2nq2m � �2=2 D ��.�2C =2/ 2 Hdg4.A.C/;Z.2//G

is algebraic. We are done because �2 is algebraic and the integer pnqm is odd.

Proof of Corollary 1.4. For each i 2 ¹1; : : : ; 6º, cup-product defines a canonical iso-
morphism of G-modules:

î

H1.A.C/;Z/ ��! Hi .A.C/;Z/:

This allows us to calculate theG-module structure on Hi .A.C/;Z/, for H1.A.C/;Z/ Š ZŒG�3

as G-modules [49, Example 3.1]. It turns out that the group Hp.G;Hq.A.C/;Z// vanishes
whenever p C q D 4 and p > 0. Therefore,

Hdg4G.A.C/;Z.2//0 D Hdg4.A.C/;Z.2//G

by Section 2.2 and Lemma 2.2. By Theorem 1.3, we are done.

6. Torsion cohomology classes on real abelian varieties

6.1. Isogenies and torsion cohomology classes. Let X be a smooth projective variety
over R, and let k be any non-negative integer.

Definition 6.1. For a subgroup K � H2kG .X.C/;Z.k//, let

K0 D K \ H2kG .X.C/;Z.k//0:

In case the Hochschild–Serre spectral sequence (2.3) degenerates, we define, for p > 0,

Hp.G;H2k�p.X.C/;Z.k///0D Im.F pH2kG .X.C/;Z.k//0!Hp.G;H2k�p.X.C/;Z.k////:

A subgroup K � H2kG .X.C/;Z.k// is algebraic if every element of K is in the image of the
cycle class map (1.1). If the Hochschild–Serre spectral sequence (2.3) degenerates, we call
a subgroup L � Hp.G;H2k�p.X.C/;Z.k/// algebraic if L is the image of an algebraic sub-
group K �F pH2kG .X.C/;Z.k// under F pH2kG .X.C/;Z.k//!Hp.G;H2k�p.X.C/;Z.k///.

The following lemma provides the key to our proof of Theorem 1.7.

Lemma 6.2. Let A and B be real abelian varieties, and � an isogeny A! B of odd
degree. For all integers p; k; i with p > 0, the pull-back �� defines an isomorphism

F pHkG.B.C/;Z.i//0
�
�! F pHkG.A.C/;Z.i//0:(6.1)

If k 2 2Z�0 and i D k=2, then �� restricts to an isomorphism between the subgroups of
classes that satisfy the topological condition (2.2). In this case, the left-hand side of (6.1) is
algebraic (in the sense of Definition 6.1) if and only if the right-hand side of (6.1) is algebraic.
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Proof. Let us first prove the lemma in the case A D B and � D Œd � for some inte-
ger d 2 Z with d 6� 0 mod 2. Write H D HkG.A.C/;Z.i//. The Hochschild–Serre spectral
sequence (2.3) degenerates, so F 1H D HŒ2� and for each p 2 ¹0; : : : ; kº there is an exact
sequence

0! F pC1H! F pH! Hp.G;Hk�p.A.C/;Z.i///! 0:

We have F kC1H D .0/, and for each p 2 ¹1; : : : ; kº, the morphism

Œd �� W Hk�p.A.C/;Z.i//! Hk�p.A.C/;Z.i//

induces the identity on Hp.G;Hk�p.A.C/;Z.i///. By the snake lemma and descending induc-
tion on p, we find that Œd �� W H! H restricts to an isomorphism on F pH for each p > 0.

Write M D H2kG .A.C/;Z.k//. By [6, Section 1.6.4], the class Œd ��.˛/ satisfies the topo-
logical condition (2.2) whenever ˛ 2 M the topological condition (2.2), thus Œd �� induces an
embedding F pM0 ! F pM0, which is an isomorphism since F pM0 is finite. For similar rea-
sons, Œd �� W F pMalg ! F pMalg is an isomorphism, where F pMalg � F

pM is the subgroup of
algebraic elements. In the general case, let  W B ! A be an isogeny such that  ı � D Œd �A
and � ı  D Œd �B , where d is the degree of the isogeny �. The equalities

 � ı �� D Œd ��A and  � ı �� D Œd ��B

together with the conclusion of the lemma for Œd �A and Œd �B readily imply the result.

6.2. Reduction to the Jacobian case.

Proof of Theorem 1.7. Let A3.R/C be a connected component of A3.R/, and consider
a point x D Œ.A; �/� 2 A3.R/C. By Corollary 1.6, there is a real algebraic curve C with non-
empty real locus together with an isogeny

� W A! J.C /

that preserves the polarizations up to an odd positive integer. By [21, page 180], we have
ŒJ.C /� 2 A3.R/C for the moduli point ŒJ.C /� of the principally polarized Jacobian J.C /
of C . The following sequence is exact (see Lemma 2.2):

0! H4G.A.C/;Z.2//0Œ2�! Hdg4G.A.C/;Z.2//0 ! Hdg4.A.C/;Z.2//G ! 0:

By Theorem 1.3, we know that Hdg4.A.C/;Z.2//G is generated by classes of one-cycles onA.
Therefore, A satisfies the real integral Hodge conjecture if and only if H4G.A.C/;Z.2//0Œ2� is
algebraic. By Lemma 6.2, this is equivalent to the algebraicity of H4G.J.C /.C/;Z.2//0Œ2�.

6.3. Analysis of the Hochschild–Serre filtration. Let A be an abelian variety over R,
define H D H4G.A.C/;Z.2//, and consider the Hochschild–Serre filtration (cf. Section 2.2):

0 � H4.G;H0.A.C/;Z.2/// D F 4H � F 3H � F 2H � F 1H D HŒ2� � H:(6.2)

The pull-back �� along the structural morphism � W A! Spec.R/ defines a section

Z=2 D H4G.¹xº;Z.2// D H4.G;H0.¹xº;Z.2///! H4.G;H0.A.C/;Z.2/// � H
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of the restriction H! H4G.¹xº;Z.2// D Z=2 to the equivariant cohomology of any R-point
x 2 X.R/. By Section 2.4, this implies that F 4H0 D .0/, so that the intersection of (6.2) with
the group of classes satisfying the topological condition (2.2) becomes

0 � F 3H0 � F 2H0 � F 1H0 � H0:(6.3)

Continue to consider our abelian variety A over R. Assume that there exists a cycle

� 2 CH.A � yA/ such that Œ�C� D ch.PAC / 2 H2�.A.C/ � yA.C/;Z.�//G :

Under this assumption, we may define a homomorphism �� as in the following diagram:

H2�G .A.C/;Z.�//

��
��

��1 // H2�G .A.C/ � yA.C/;Z.�//

.Œ�� � �/
��

H2�G . yA.C/;Z.�// H2�G .A.C/ � yA.C/;Z.�//.�2;�

oo

(6.4)

Then �� preserves the classes that satisfy the topological condition (2.2) by [6, Theorem 1.21].
Define

�
i;j
� W H

2i
G .A.C/;Z.i//! H2jG . yA.C/;Z.j // .i; j 2 Z�0/(6.5)

as the composition of �� with the natural inclusion and projection morphisms.

With these definitions in place, we are in a position to prove:

Proposition 6.3. Let A be an abelian variety over R. Then

F 3H4G.A.C/;Z.2//0 D .0/:

Proof. Let g D dim.A/. By [49, Chapter IV, Example 3.1], A.C/ is G-equivariantly
homeomorphic to the g-fold product of copies of the torus S � S, where S � C� is the unit cir-
cle and whereG acts on each copy S � S in one of the following ways: either �.x; y/ D .x; Ny/
for .x; y/ 2 S � S, or �.x; y/ D .y; x/ for .x; y/ 2 S � S. In particular, there exist g elliptic
curves Ei over R and a G-equivariant homeomorphism

A.C/ Š E1.C/ � � � � �Eg.C/:(6.6)

Since the conclusion of Proposition 6.3 is a statement that only depends on the structure of
A.C/ as a topological G-space, we may therefore assume that A is principally polarized by
� 2 Hdg2.A.C/;Z.1//G and that the following class is algebraic:

�g�1

.g � 1/Š
2 Hdg2g�2.A.C/;Z.g � 1//G :

By Theorem 5.2, this means that the Chern character ch.PAC / is algebraic, which allows us to
define a homomorphism

�� W H2�G .A.C/;Z.�//! H2�G . yA.C/;Z.�//
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as in (6.4), and homomorphisms � ij� as in (6.5). We have a commutative diagram:

H4G.A.C/;Z.2//
�

4;2gC2
� // H2gC2G . yA.C/;Z.g C 1//

�
2gC2;4
� // H4G.A.C/;Z.2//

F 3H4G.A.C/;Z.2//
�

4;2gC2
� //

?�

OO

��

F 3H2gC2G . yA.C/;Z.g C 1//
?�

OO

��

�
2gC2;4
� // F 3H4G.A.C/;Z.2//

?�

OO

��

H3.G;H1.A.C/;Z.2///
H3.G;FA/ // H3.G;H2g�1. yA.C/;Z.g C 1///

H3.G;F yA/ // H3.G;H1.A.C/;Z.2///.

Here FA W H1.A.C/;Z.2//! H2g�1. yA.C/;Z.g C 1// is the Fourier transform considered
in Section 5.1. This map is an isomorphism, with inverse

.�1/1Cg �F yA
W H2g�1. yA.C/;Z.g C 1//! H1.A.C/;Z.2//;

see [26, Corollary 9.24]. Thus, H3.G;FA/ is an isomorphism, with inverse H3.G;F yA
/. By

the compatibility of �� with the topological condition (2.2), we obtain an isomorphism

H3.G;FA/ W H3.G;H1.A.C/;Z.2///0 ��! H3.G;H2g�1. yA.C/;Z.g C 1///0:(6.7)

Because H2gC2G . yA.C/;Z.g C 1//0 D .0/ by [6, Section 2.3.2], the group on the right of equa-
tion (6.7) vanishes. Therefore, the group on the left must be zero as well.

In fact, the argument used in the above proposition can be generalized to prove the
following lemma, which we record for later use:

Lemma 6.4. Let A be an abelian variety of dimension g over R. Let p and q be non-
negative integers such that p C q D 2k 2 2Z�0. The isomorphism on group cohomology

Hp.G;FA/ W Hp.G;Hq.A.C/;Z.k///! Hp.G;H2g�q. yA.C/;Z.g C k � q///

identifies Hp.G;Hq.A.C/;Z.k///0 with Hp.G;H2g�q. yA.C/;Z.g C k � q///0.

Proof. This is a topological statement, so we may and do assume that A is a product of
elliptic curves (see (6.6)). In this case, we may lift Hp.G;FA/ to an algebraic homomorphism

�
2k;2gC2k�2q
� W F pH2kG .A.C/;Z.k//! F pH2gC2k�2qG . yA.C/;Z.g C k � q//

as above (see Section 6.3). We can do the same thing for Hp.G;F yA
/; the lemma follows from

arguments similar to those used to prove Proposition 6.3.

7. Abel–Jacobi maps over the real numbers

Let X be a smooth projective variety over R. The goal of this section is to prove that
the equivariant cycle class map and the real Abel–Jacobi map for X are compatible; see
Theorem 7.2 below for the precise statement. To prove this, we need Deligne cohomology
and Deligne cycle class maps in the equivariant setting. Recall that Jannsen introduced G-
equivariant Deligne cycle class maps for varieties over R in [27]. Since his results do not seem
to directly imply Theorem 7.2, we will take a somewhat different approach.
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Let � W X.C/! X.C/ be the canonical anti-holomorphic involution. Fix an integer k
with 0 � k � dim.X/, and consider the k-th intermediate Jacobian of XC (see [40, 50]):

J 2k�1.XC/ D H2k�1.X.C/;C/=.ƒC F kH2k�1.X.C/;C//;

ƒ D H2k�1.X.C/;Z.k//=.torsion/:

(7.1)

Observe that � induces an anti-holomorphic involution J 2k�1.XC/! J 2k�1.XC/. Consider
the Abel–Jacobi map AJC W CHk.XC/hom ! J 2k�1.XC/ introduced by Griffiths [20]. By
[14, Section 7], the Abel–Jacobi map fits naturally in the following commutative diagram:

0 // Zk.XC/hom //

AJC
��

Zk.XC/ //

clC;D

��

Zk.XC/=Z
k.XC/hom //

clC
��

0

0 // J 2k�1.XC/ // H2kD .X.C/;Z.k// // Hdg2k.X.C/;Z.k// // 0.

(7.2)

Lemma 7.1. With respect to the canonical G-actions, each arrow in diagram (7.2) is
G-equivariant.

Proof. The G-equivariance of the horizontal homomorphisms in (7.2) is straightfor-
ward, and the fact that the vertical cycle class map on the right is G-equivariant is classical. To
prove the lemma, it suffices to show that Deligne cycle class map clC;D is G-equivariant. For
this, consider a codimension k subvariety Y � XC . By [40, p. 172], Deligne cohomology with
supports in Y.C/ can be expressed as a fibre product

H2kY.C/.X.C/;ZD.k// D H2kY.C/.X.C/;Z.k// �H2k
Y.C/

.X.C/;C/ H2kY.C/.X.C/; F
k��X.C//:

There is a unique class �Del.Y / 2 H2k
Y.C/.X.C/;ZD.k// that lifts both the Thom class �.Y /

in H2k
Y.C/.X.C/;Z.k// and the Thom–Hodge class �Hdg.Y / 2 H2k

Y.C/.X.C/; F
k��

X.C//, see
[40, Proposition 7.19]. The equality

��.�.Y // D �.Y � /

is classical. It is also clear that

��.�Hdg.Y // D �Hdg.Y
� /I

see the construction of �Hdg.Y / in [40, proof of Theorem 2.38]. The lemma follows.

By Lemma 7.1, we obtain a real Abel–Jacobi map

AJ W CHk.X/hom ! J 2k�1.XC/
G :(7.3)

The boundary map in group cohomology induced by the exact sequence of G-modules

0! ƒ! H2k�1.X.C/;R.k//! J 2k�1.XC/! 0(7.4)

induces an isomorphism between �0.J 2k�1.XC/
G/, the group of connected components of

the real locus of J 2k�1.XC/, and H1.G;ƒ/. The spectral sequence (2.3) gives a filtration F �

on H2kG .X.C/;Z.k//, together with natural maps

F 1H2kG .X.C/;Z.k//! H1.G;ƒ/ and H2kG .X.C/;Z.k//! H2k.X.C/;Z.k//G ;
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such that
cl W CHk.X/hom ! H2kG .X.C/;Z.k//

factors through F 1H2kG .X.C/;Z.k// � H2kG .X.C/;Z.k//.

Theorem 7.2. Let X be a smooth projective variety over R. Let k be an integer with
0 � k � dim.X/, andƒ D H2k�1.X.C/;Z.k//=.torsion/. The following diagram commutes:

CHk.X/hom

AJ
��

cl // F 1H2kG .X.C/;Z.k//

��

J 2k�1.XC/
G // H1.G;ƒ/.

To prove Theorem 7.2, we need some notation. For a subring R � R and an integer
d 2 Z�0, define RD.d/ as the complex

0! R.d/! OX.C/ ! �1X.C/ ! � � � ! �d�1X.C/ ! 0:(7.5)

By definition, HmD.X.C/; R.d// WD Hm.X.C/; RD.d// is the degree m Deligne cohomology
group with coefficients in R.d/ (see [40, 50]). Note that G acts on the complex (7.5).

Definition 7.3. For an integerm 2 Z�0, define the G-equivariant Deligne cohomology
group of degree m with coefficients in R.d/ as

HmG;D.X.C/; R.d// D HmG.X.C/; RD.d//:

Define the k-th equivariant intermediate Jacobian as

J 2k�1G .X/ D H2k�1G .X.C/;R=Z.k//:

The exact sequence of G-complexes

0! �
�k�1
X.C/ Œ�1�! ZD.k/! Z.k/! 0

induces a natural homomorphism

H2kG;D.X.C/;Z.k//! H2kG .X.C/;Z.k//;

and we have:

Proposition 7.4. There is a natural cycle class map ' W Zk.X/! H2kG;D.X.C/;Z.k//
such that the following diagram commutes:

Zk.X/

cl

))

��

'
// H2kG;D.X.C/;Z.k// //

��

H2kG .X.C/;Z.k//

��

Zk.XC/ //

clC

55
H2kD .X.C/;Z.k// // H2k.X.C/;Z.k//.
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Proof. We adapt the proof of [40, Proposition 7.19]. One has a canonical quasi-isomor-
phism

RD.k/ ' Cone�.�k � �k W R.k/˚ F k��X.C/ ! ��X.C//Œ�1�

for any ring R � R, see [40, Lemma-Definition 7.13]. Thus, by [40, (A-12)], there is an exact
sequence

��X.C/ ! ZD.k/Œ1�! Z.k/Œ1�˚ F k��X.C/Œ1�:(7.6)

The complexes and morphisms in (7.6) are all G-equivariant. Let Y � X be a codimension k
subvariety over R. Taking G-equivariant cohomology with supports in Y of the sequence (7.6)
gives a long exact sequence

� � � ! H2k�1G;Y.C/.X.C/;�
�
X.C//! H2kG;Y.C/.X.C/;ZD.k//

! H2kG;Y.C/.X.C/;Z.k//˚ H2kG;Y.C/.X.C/; F
k��X.C//

! H2kG;Y.C/.X.C/;�
�
X.C//! � � �

which is canonically isomorphic to the long exact sequence

� � � ! H2k�1Y.C/ .X.C/;C/
G
! H2kG;Y.C/.X.C/;ZD.k//

! H2kG;Y.C/.X.C/;Z.k//˚ H2kY.C/.X.C/; F
k��X.C//

G

! H2kY.C/.X.C/;C/
G
! � � � :

The group H2k�1
Y.C/ .X.C/;C/ vanishes because by Poincaré-Lefschetz duality (see [15, Sec-

tion 19.1] or [40, Theorem B.28]), one has

H2k�1Y.C/ .X.C/;C/ Š HBM
2n�.2k�1/.Y.C/;C/ D .0/:

We conclude that H2k
G;Y.C/.X.C/;ZD.k// can be expressed as a fibre product

H2kG;Y.C/.X.C/;ZD.k//

D H2kG;Y.C/.X.C/;Z.k// �H2k
Y.C/

.X.C/;C/G H2kY.C/.X.C/; F
k��X.C//

G :

Let ŒY � 2 H2k
G;Y.C/.X.C/;Z.k// be the image of 1 2 Z under the canonical isomorphism

H2kG;Y.C/.X.C/;Z.k// D Z;

see [6, equation (1.54)]. Then ŒY � maps to the Thom class �.Y / under

H2kG;Y.C/.X.C/;Z.k//! H2kG;Y.C/.X.C/;C/ D H2kY.C/.X.C/;C/
G :

It follows that there is a unique class ŒY �D 2 H2k
G;Y.C/.X.C/;ZD.k// that maps to

� ŒY � in the group H2k
G;Y.C/.X.C/;Z.k//, and

� �Hdg.Y / in the group H2k
Y.C/.X.C/; F

k��
X.C//.

Upon forgetting the support, we obtain an equivariant Deligne cycle class

ŒY �D 2 H2kG;D.X.C/;Z.k/:
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The natural isomorphism J 2k�1.XC/ D H2k�1.X.C/;R=Z.k// of G-modules gives
a homomorphism

J 2k�1G .X/! J 2k�1.XC/
G :

Consider the short exact sequence of G-complexes

0! ZD.k/! RD.k/! R=Z! 0:(7.7)

Lemma 7.5. Sequence (7.7) induces the following commutative diagram with exact
rows:

0 // J 2k�1G .X/ //

{{

��

H2kG;D.X.C/;Z.k//

yy

//

��

H2kG;D.X.C/;R.k//

o

��

F 1H2kG .X.C/;Z.k// //

��

Hdg2kG .X.C/;Z.k// // Hdg2k.X.C/;Z.k//G
s�

&&

0 // J 2k�1.XC/
G

{{

// H2kD .X.C/;Z.k//
G

99

// H2kD .X.C/;R.k//
G

H1.G;ƒ/.

(7.8)

Proof. The morphism

H2kD .X.C/;Z.k//! H2kD .X.C/;R.k//

factors through an embedding Hdg2k.X.C/;Z.k// ,! H2kD .X.C/;R.k//, which gives the tri-
angle on the bottom right of (7.8). Moreover, the vertical arrow on the right of (7.8) is an
isomorphism because RD.k/ is a G-complex of R-vector spaces.

Next, we show that the boundary map J 2k�1G .X/! H2kG;D.X.C/;Z.k// induced by
(7.7) is injective. This follows from the fact that the canonical homomorphism

f W H2k�1G;D .X.C/;R.k//! J 2k�1G .X/

is zero. To prove this, note that f factors as

H2k�1G;D .X.C/;R.k//

f

++
//

o

��

H2k�1G .X.C/;R.k//

o

��

// H2k�1G .X.C/;R=Z.k// J 2k�1G .X/

H2k�1D .X.C/;R.k//G
g
// H2k�1.X.C/;R.k//G ,

so that it suffices to show that the map g W H2k�1D .X.C/;R.k//! H2k�1.X.C/;R.k// is zero.
This holds, because the exact sequence

0! �
�k�1
X.C/ Œ�1�! RD.k/! R.k/! 0

induces an exact sequence

� � � ! H2k�1D .X.C/;R.k//
g
�! H2k�1.X.C/;R.k//! H2k�1.X.C/;��k�1

X.C/ /! � � �
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in which

H2k�1.X.C/;R.k// D H2k�1.X.C/;C/=F kH2k�1.X.C/;C/(7.9)

D H2k�1.X.C/;��k�1
X.C/ /:

See [50, proof of Proposition 12.26] for the second isomorphism in (7.9).
Finally, the map J 2k�1G .X/! H2kG;D.X.C/;Z.k// is the boundary map in cohomology

induced by an exact sequence of G-complexes, thus shifts the Hochschild–Serre filtrations on
both sides by one degree. This gives a diagram in which both squares commute:

J 2k�1G .X/ //

��

F 1H2kG;D.X.C/;Z.k// //

��

F 1H2kG .X.C/;Z.k//

��

J 2k�1.XC/
G // H1.G;H2k�1.X.C/;ZD.k/// // H1.G;ƒ/.

Consequently, the outer square commutes as well, and we are done.

By Proposition 7.4 and Lemma 7.5, we obtain a commutative diagram with exact rows:

0 // Zk.X/hom

��

// Zk.X/

��

// Zk.X/=Zk.X/hom //

��

0

0 // J 2k�1G .X/

��

// H2kG;D.X.C/;Z.k// //

��

H2k.X.C/;Z.k//G

0 // F 1H2kG .X.C/;Z.k// // H2kG .X.C/;Z.k// // H2k.X.C/;Z.k//G // 0.

(7.10)

Lemma 7.6. The composition of the induced morphism Zk.X/hom ! J 2k�1G .X/ with
J 2k�1G .X/! J 2k�1.XC/ coincides with Zk.X/hom ! Zk.XC/hom ! J 2k�1.XC/.

Proof. Consider the following diagram:

Zk.X/hom

ww

��

� � // Zk.X/

��

uu

Zk.XC/hom
� � //

AJC

��

Zk.XC/

��

J 2k�1G .X/

xx

� � // H2kG;D.X.C/;Z.k//

uu

J 2k�1.XC/
� � // H2kD .X.C/;Z.k//.

By Proposition 7.4 and Lemma 7.5, each square in this diagram, except possibly the square on
the left, commutes. By injectivity of the two horizontal arrows in the bottom square, the square
on the left commutes as well.
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Proof of Theorem 7.2. The vertical composition on the left of diagram (7.10) coincides
with the cycle class map cl W Zk.X/hom ! F 1H2kG .X.C/;Z.k// because the analogous state-
ment for the vertical composition in the middle of (7.10) holds, see Proposition 7.4. Since by
Lemmas 7.5 and 7.6, each square in the following diagram commutes:

Zk.X/hom

��

// J 2k�1G .X/ //

��

F 1H2kG .X.C/;Z.k//

��

Zk.XC/
G
hom

// J 2k�1.XC/
G // H1.G;ƒ/,

we are done.

8. Codimension-two cycles on real abelian varieties

We begin with the proof of Theorem 1.8. The proof consists of two steps: first we prove
the theorem for the Jacobian of a real algebraic curve with non-empty real locus, and then we
reduce the general case to this particular case.

Proof of Theorem 1.8 (Jacobian case). Let us prove Theorem 1.8 in the case where A
is the Jacobian J D J.C / of a real algebraic curve C of genus g 2 Z�1 such that C.R/ ¤ ;.
By Proposition 6.3, one needs to show that F 2H4G.J.C/;Z.2//0 is algebraic. By Theorem 5.2,
the Chern character of the Poincaré bundle of J in cohomology H2�.J.C/ � yJ .C/;Z.�//G is
algebraic. By Section 6.3 and [26, Corollary 9.24], we obtain a commutative diagram

F 2H4G.J.C/;Z.2//0
� � �

4;2g
� // F 2H2gG . yJ .C/;Z.g//0

��

�
2g;4
� // // F 2H4G.J.C/;Z.2//0

H2.G;H2.J.C/;Z.2///0
� // H2.G;H2g�2. yJ .C/;Z.g///0

� // H2.G;H2.J.C/;Z.2///0

such that the composition on the bottom row of the diagram is the identity. Therefore, the
composition on the top row of the diagram is the identity. Since J satisfies the real integral
Hodge conjecture for zero-cycles by [6, Proposition 2.10], the group F 2H2gG .J.C/;Z.g//0 –
and hence also the group F 2H4G.J.C/;Z.2//0 – is algebraic.

The following notation will be used throughout the remaining part of Section 8.

Definition 8.1. For a smooth projective variety X of dimension n over R, let CH0.X/0
be the group of zero-cycles of degree zero. Observe that CH0.X/0 D CH0.X/hom.

Lemma 8.2. Let f W J ! A be a surjective homomorphism of real abelian varieties.

(i) The induced homomorphism f 0R W J.R/
0 ! A.R/0 is surjective.

(ii) If fR W J.R/! A.R/ is surjective, then � D f� W CH0.J /0 ! CH0.A/0 is surjective.

Proof. (i) Let NmX W X.C/! X.R/0; x 7! x C �.x/ be the norm homomorphism of
a real abelian variety X . One has that f 0R ı NmJ D NmA ı fC . By [21, Proposition 1.1], the
homomorphism NmA is surjective. Thus f 0R is surjective.
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(ii) Indeed, for an abelian variety X over a field k, the group CH0.X/0 is generated by
zero-cycles of the form Œx� � deg.k.xi /=k/ � Œ0� for closed points x on X .

Proof of Theorem 1.8 (general case). To prove that F 2H4G.A.C/;Z.2//0 is algebraic
for a real abelian variety A, we would like to reduce to the Jacobian case. The fact that this can
be done rests on the following proposition in combination with Lemma 8.5 below.

Proposition 8.3. Let 0! B ! J
f
�! A! 0 be an exact sequence of abelian varieties

over R such that fR W J.R/! A.R/ is surjective. Let d D dim.J / and g D dim.A/. Then

f� W F
2H2dG .J.C /.C/;Z.d//0 ! F 2H2gG .A.C/;Z.g//0;

yf � W F 2H4G. yJ .C /.C/;Z.2//0 ! F 2H4G. yA.C/;Z.2//0

are surjective, where yf W yA! yJ is the dual homomorphism of f W J ! A.

Proof of Proposition 8.3. We will need some notation.

Definition 8.4. For an abelian variety A of dimension g over R, define

F 2CH0.A/0 D Ker.CH0.A/0 ! H1.G;H2g�1.A.C/;Z.g////

D ¹˛ 2 CH0.A/0 W AJ.˛/ 2 A.R/0º:

For the second equality in Definition 8.4, see Theorem 7.2. For an abelian variety X of
dimension n over R, define ƒX D H2n�1.X.C/;Z.n//. Poincaré duality identifies ƒX with
H1.X.C/;Z/ (see [32, Corollaire 3.1.9]), and we have �0.X.R// D H1.G;ƒX / (see (7.4)).

Step 1. We show that the kernel of the push-forward � W CH0.J /0 ! CH0.A/0 surjects
onto the kernel of the homomorphism f W �0.J.R//! �0.A.R//. It suffices to show that the
composition

CH0.B/0 ! Ker.�/! Ker.f /(8.1)

is surjective. Now (8.1) coincides with the composition CH0.B/0 ! �0.B.R//! Ker.f / of
surjections; the map �0.B.R//! Ker.f / is surjective by the exact sequence

0! ƒGB ! ƒGJ ! ƒGA ! H1.G;ƒB/! H1.G;ƒJ /! H1.G;ƒA/! 0

arising from the short exact sequence of G-modules 0! ƒB ! ƒJ ! ƒA ! 0.

Step 2. Surjectivity of f�. Consider the following commutative diagram:

F 2CH0.J /0
�j

F 2
//

��

F 2CH0.A/0

��

F 2H2dG .J.C/;Z.d//0
f� // F 2H2gG .A.C/;Z.g//0.

Its vertical arrows are surjective by the real integral Hodge conjecture for zero-cycles and
Definition 8.4. To prove the surjectivity of f� on the bottom row, it thus suffices to prove the
surjectivity of �jF 2 on the top row. By Definition 8.4, the rows in the following commutative
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diagram are exact:

0 // F 2CH0.J /0 //

�j
F 2

��

CH0.J /0 //

�

��

H1.G;ƒJ / //

f
��

0

0 // F 2CH0.A/0 // CH0.A/0 // H1.G;ƒA/ // 0.

Note that � is surjective by Lemma 8.2. Since J.R/! A.R/ is surjective we have that the map
f W �0.J.R//! �0.A.R// is surjective. By the snake lemma, to prove that �jF 2 is surjective,
it suffices to show that Ker.�/! Ker.f / is surjective, which is Step 1.

Step 3. We show that the maps f� and yf � fit into the following commutative diagram,
where the arrows� are surjective and the arrows ��! are isomorphisms:

F 2H2dG .J.C/;Z.d//0

f�

����

(( ((

F 2H4G. yJ .C/;Z.2//0

yf �

��

�

''

H2.G;H2d�2.J.C/;Z.d///0

H2.G;f�/

��

H2.G;FJ /

� // H2.G;H2. yJ .C/;Z.2///0

H2.G; yf �/

��

F 2H2gG .A.C/;Z.g//0

(( ((

F 2H4. yA.C/;Z.2//0
�

''

H2.G;H2g�2.A.C/;Z.g///0
�

H2.G;FA/

// H2.G;H2. yA.C/;Z.2///0.

(8.2)

Indeed, this follows from the functoriality of Fourier transforms (see [35, (3.7.1)]), together
with Proposition 6.3 and Lemma 6.4.

Step 4. We show that yf � is surjective. The surjectivity of f� on the left of (8.2) was
shown in Step 2. By the commutativity on the left of diagram (8.2), the morphism H2.G; f�/
is surjective. By the commutativity of the square on the front, this implies that H2.G; yf �/ is
surjective which, by the commutativity on the right-hand side of the diagram, implies that the
morphism

yf � W F 2H4G. yJ .C/;Z.2//0 ! F 2H4. yA.C/;Z.2//0

is surjective.

This finishes the proof of Proposition 8.3.

Lemma 8.5. Let A be an abelian variety over R. Then A contains a smooth, proper,
geometrically connected curve C over R that passes through 0 2 A.R/ in such a way that the
following two conditions hold: the induced homomorphism f W J.C /! A is surjective with
connected kernel, and the homomorphism fR W J.C /.R/! A.R/ is surjective.

Proof. Let S � A.R/ be a finite set of points containing 0 2 A.R/ and at least one
point of each connected component of A.R/. Since R is infinite, Bertini’s theorem can be
applied: there exists a smooth and geometrically connected hyperplane section Z � A passing
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through S (see [24, II, Theorem 8.18], [11, footnote 12, p. 32]). Let g D dim.A/. By taking
g � 1 general such hyperplane sections, we get a smooth, geometrically connected curve C
in A that contains S . We claim that C satisfies the requirements stated in the proposition.
Write J D J.C / and consider the map f W J ! A arising from the inclusion .C; 0/ ,! .A; 0/.
By [34, proof of Theorem 10.1], the homomorphism f is surjective. Moreover, the kernel
of the map f W JC ! AC is connected. Indeed, this is a consequence of the fact that the
map H1.C.C/;Z/! H1.A.C/;Z/ is surjective by the Lefschetz hyperplane theorem; alterna-
tively, see [17, Proposition 2.4] for an algebraic argument. The morphism f 0R W J.R/

0!A.R/0

is surjective by Lemma 8.2. Since S is contained in the image of fR, we conclude that fR is
surjective and we are done.

We can now finish the proof of Theorem 1.8. Let A be an abelian variety over R. By
Proposition 6.3, it remains to prove that F 2H4G.A.C/;Z.2//0 is algebraic. Let C � yA be a real
algebraic curve that satisfies the conditions of Lemma 8.5. By Proposition 8.3, the pull-back

yf � W F 2H4G. yJ .C /.C/;Z.2//0 ! F 2H4G.A.C/;Z.2//0

is surjective, where f W J.C /! yA is the homomorphism induced by the inclusion of .C; 0/
in . yA; 0/. By the proof of Theorem 1.8 in the Jacobian case, F 2H4G. yJ .C /.C/;Z.2//0 is alge-
braic. Therefore F 2H4G.A.C/;Z.2//0 is algebraic.

Proof of Corollary 1.9. Consider the filtration (6.3). By Lemma 2.2, A satisfies the real
integral Hodge conjecture if and only if F 1H4G.A.C/;Z.2//0 and Hdg4.A.C/;Z.2//G are
algebraic. Thus, the corollary follows from Theorems 1.3, 1.8 and 7.2.

9. One-cycles on real abelian threefolds that split as a product

9.1. An elliptic curve with connected real locus times an abelian surface. We have:

Proposition 9.1. Let B be a real abelian surface, and let E be a real elliptic curve
whose real locus E.R/ is connected. The Abel–Jacobi homomorphism

AJ W CH2.B �E/hom ! H1.G;H3.B.C/ �E.C/;Z.2///:(9.1)

is surjective. In particular, Theorem 1.10 holds.

Proof. We have

H1.G;H2.B.C/;Z/˝ H1.E.C/;Z// D .0/

because H1.E.C/;Z/ Š ZŒG�; the latter follows from the fact that the real locus E.R/ of E
is connected [49, Chapter IV, Example 3.1]. By the Künneth formula, the canonical morphism

H1.G;H3.B.C/;Z.2//˚ H1.G;H1.B.C/;Z.1//˝ H2.E.C/;Z.1///

! H1.G;H3.B.C/ �E.C/;Z.2///

(9.2)

is therefore an isomorphism. Since H2.E.C/;Z.1// Š Z as G-modules, the canonical map

H1.G;H1.B.C/;Z.1///˝ H0.G;H2.E.C/;Z.1///

! H1.G;H1.B.C/;Z.1//˝ H2.E.C/;Z.1///

(9.3)
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is an isomorphism as well. To simplify notation, for any abelian variety X over R, define

HiX .j / D Hi .X.C/;Z.j //:(9.4)

Consider the following commutative diagram:

CH2.B/0 ˚ .CH1.B/hom ˝ CH1.E// //

��

CH2.B �E/hom

��

F 1H4G.B.C/;Z.2//˚ .F
1H2G.B.C/;Z.1//˝ H2G.E.C/;Z.1/// //

��

F 1H4G.B.C/ �E.C/;Z.2//

��

H1.G;H3B.2//˚ .H
1.G;H1B.1//˝ H0.G;H2E .1///

o
��

H1.G;H3B.2//˚ H1.G;H1B.1/˝ H2E .1//
� // H1.G;H3B�E .2//.

The indicated isomorphisms ��! in this diagram arise from (9.2) and (9.3) above. The map
CH2.B/0 ! H1.G;H3B.2// is surjective because by Theorem 7.2 it factors as

CH2.B/0 D CH0.B/0� B.R/� H1.G;H3.B.C/;Z.2///:

The map CH1.B/hom ! H1.G;H1B.1// is surjective by the real integral Hodge conjecture for
divisors (see Section 5.2) and the fact that the topological condition for degree two cohomology
classes is trivial [6, Section 2.3.1]. It follows that (9.1) is surjective. By Corollary 1.9, the
abelian variety A D B �E satisfies the real integral Hodge conjecture.

The topological condition (2.2) does not appear on the right-hand side of (9.1). This
has the following corollary. For a real abelian variety A, one has j�0.A.R//j � 2dim.A/ (see
[21, Section 1]). Moreover, for every non-negative pair of integers .i; g/ with i � g, there is
a real abelian variety A of dimension g such that j�0.A.R//j D 2i (take a suitable product
of elliptic curves). In particular, the map A3.R/! Z, ŒA� 7! j�0.A.R//j induces a bijection
�0.A3.R// Š ¹1; 2; 4; 8º.

Corollary 9.2. Let A be a real abelian threefold, and suppose that j�0.A.R//j ¤ 8.
The canonical map

F 1H4G.A.C/;Z.2//0 ! H1.G;H3.A.C/;Z.2///(9.5)

is surjective. Thus, A satisfies the real integral Hodge conjecture if and only if the real Abel–
Jacobi map CH1.A/hom ! H1.G;H3.A.C/;Z.2/// is surjective.

Proof. To prove the surjectivity of (9.5), we may replace A.C/ by any differentiable
G-manifold which is G-equivariantly diffeomorphic to A.C/. In particular, we may assume
that A D B �E, where B is an abelian surface and E an elliptic curve whose real locus
is connected (see (6.6)). The surjectivity of (9.5) follows then from the fact that the group
H1.G;H3.B.C/ �E.C/;Z.2/// is algebraic by Proposition 9.1.

9.2. The product of three real elliptic curves. Recall that j�0.A.R//j 2 ¹1; 2; 4; 8º
for an abelian threefold A over R. It follows from Theorem 1.10 that for each m 2 ¹1; 2; 4º,
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there is a real abelian threefold A with j�0.A.R//j D m such that A satisfies the real integral
Hodge conjecture.

Question 9.3. Does there exist an abelian threefold A over R with j�0.A.R//j D 8
such that A satisfies the real integral Hodge conjecture?

In this subsection, we consider this question for the third self-product of a real elliptic
curve.

Let E be an elliptic curve over R with disconnected real locus. Choose a symplectic
basis ¹x; yº of H1.E.C/;Z/ with ��.x/ D x and ��.y/ D �y (see e.g. [21, Section 9]). Let
A D E3, and define �i W A.C/! E.C/ as the projection onto the i -th factor. We consider the
basis element

 WD ��1 .x/ � �
�
2 .y/ � �

�
3 .x/ 2 H3.A.C/;Z/;

as well as the Galois cohomology class Œ� D Œ��1 .x/ � �
�
2 .y/ � �

�
3 .x/� 2 H1.G;H3.A.C/;Z//

that  defines. Let ˇ 2 F 1H2G.E.C/;Z/ be any element that lifts Œy�. Let ˛ 2 H1G.E.C/;Z/
be the unique element that maps to x 2 H1.E.C/;Z/G . Finally, consider the canonical map

c W H1G.E.C/;Z/˝ F
1H2G.E.C/;Z/˝ H1G.E.C/;Z/! F 1H4G.A.C/;Z/:

Proposition 9.4. The element ! D c.˛ ˝ ˇ ˝ ˛/ 2 F 1H4G.A.C/;Z.2// satisfies the
topological condition (2.2), and every class in F 1H4G.A.C/;Z.2//0 is a Z=2-linear combina-
tion of ! and algebraic elements. In particular, A satisfies the real integral Hodge conjecture
if and only if ! is algebraic if and only if Œ� 2 H1.G;H3.A.C/;Z.2/// is algebraic.

Lemma 9.5. Let X be a paracompact Hausdorff topologicalG-space and F aG-sheaf
on X . If m > dim.X/, the canonical map HmG.X; F /! HmG.X

G ; F jXG / is an isomorphism.

Proof. DefineZ D XG and denote by j W U D X nZ ! X and � W Z ! X the canon-
ical inclusions. Write

FU D jŠ.F jU / and FZ D ��.F jZ/:

The canonical homomorphism HiG.Z; F jZ/!HiG.X; FZ/ is an isomorphism, see [22, Propo-
sitions 2.2.1 and 3.1.4], which gives an exact sequence

HmG.X; FU /! HmG.X; F /! HmG.Z; F jZ/! HmC1G .X; FU /:

By [22, Theorems 5.2.1 and 5.3.1], Hi .X=G;H 0.G; FU // D HiG.X; FU / for each positive
integer i . Moreover, dim.X=G/ � dim.X/ by [38, Chapter 6, Proposition 4.11]. On paracom-
pact Hausdorff spaces, sheaf cohomology coincides with Čech cohomology, see [18, Théo-
rème 5.10.1]. In particular, we have Hi .X=G;H 0.G; FU // D .0/ for i > dim.X/.

Proof of Proposition 9.4. Let p D .p1; p2; p3/ 2 A.R/. Since H1G.¹piº;Z/ D .0/, we
have !jp D 0, hence ! satisfies the topological condition. By Theorem 1.8, it suffices to show
that H1.G;H3.A.C/;Z.2///0 is generated by Œ� and algebraic elements. We have

H1.G;H3.A.C/;Z// Š
M

iCjCkD3

H1.G;Hi .E.C/;Z/˝ Hj .E.C/;Z/˝ Hk.E.C/;Z//:
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Define HiE .j / as in (9.4). The map

H2E .1/
G
˝ H1.G;H1E .1//! H1.G;H2E .1/˝ H1E .1//

is an isomorphism, and lifts to

F 0H2G.E.C/;Z.1//˝ F
1H2G.E.C/;Z.1//! F 1H4G.A.C/;Z.2//:

Consequently, the group H1.G;HiE ˝HjE ˝HkE / � H1.G;H3.A.C/;Z// is algebraic for each
distinct i; j; k such that i C j C k D 3.

Claim 9.6. Let � D Œ��1 .y/ ��
�
2 .y/ ��

�
3 .y/� 2 H1.G;H3.A.C/;Z.2///. There exists no

lift � 2 F 1H4G.A.C/;Z.2// of � that satisfies topological condition (2.2).

Let S D ¹z 2 C W jzj D 1º � C. Define SC to be the differentiable G-manifold S with
trivial G-action, and let S� be the differentiable G-manifold S such that �.z/ D z. Define
Y D S� � S� � S�. Any point p 2 SC defines a section s W Y ! A.C/ of the projection
q W A.C/! Y . For a generator � 2 H3.Y;Z/, one has

q�.Œ��/ D �

with respect to q� WH1.G;H3.Y;Z//!H1.G;H3.A.C/;Z//. We have dimZ=2 H4G.Y;Z/D 8
because the Hochschild–Serre spectral sequence for Y degenerates (since Y is a direct fac-
tor of an abelian variety). The map H4G.Y;Z/! H0.Y G ;Z=2/ is surjective by Lemma 9.5
and [6, Section 1.2.2]; because the Z=2-ranks on both sides agree, it is an isomorphism.
If � 2 F 1H4G.A.C/;Z/0 lifts � D q�.Œ��/, then s�./ is a lift of s�q�.Œ��/ D Œ�� such that
s�./jp D 0 2 H4G.¹pº;Z/ for p 2 Y G . This is absurd, and Claim 9.6 follows.

Let ƒ D H1.E.C/;Z/, and consider the basis

¹Œx ˝ x ˝ y�; Œx ˝ y ˝ x�; Œy ˝ x ˝ x�; Œy ˝ y ˝ y�º � H1.G;ƒ˝ƒ˝ƒ/:

To finish the proof of the proposition, it suffices to show that Œx ˝ x ˝ y� � Œx ˝ y ˝ x� and
Œy ˝ x ˝ x� � Œx ˝ y ˝ x� are algebraic. Since these two elements are in the same orbit under
the action of Aut.A/, it suffices to show that one of them is algebraic. This holds, because on
the one hand

x ˝ y � y ˝ x D c1.PE / 2 H1.E.C/;Z/˝ H1.E.C/;Z/ � H2.E2.C/;Z/;

where PE is the Poincaré bundle of E, viewed as a line bundle on E �E via the principal
polarization E ��! E_, and on the other hand Œx� 2 H1.G;H1.E.C/;Z.1/// is algebraic.

10. Connections with the Griffiths group of an abelian threefold

For a smooth projective variety X over C, let Griff2.X/ D CH2.X/hom=CH2.X/alg be
the group of homologically trivial codimension-two cycles on X modulo the algebraically
trivial ones. Non-zero elements in Griff2.X/ are difficult to find. For a very general com-
plex abelian threefold A, the groups Griff2.A/˝Q and Griff2.A/˝ Z=` are infinite for every
prime number ` (see [37,41,42,47]). These statements rely on non-vanishing of Ceresa cycles
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on Jacobians of very general curves of genus three [8,23,41,47]. In this section, we use differ-
ent methods to study the subgroup Griff2.A/G � Griff2.A/ when A is defined over R, relating
this group to the real integral Hodge conjecture.

For the Jacobian J.C / of a smooth genus three curve C over R with p 2 C.R/, one can
consider the Ceresa cycle„p D �p.C / � Œ�1���p.C /. Here, �p WC ! J.C / is the Abel–Jacobi
embedding induced by p. The resulting class Œ„� 2 Griff2.J.C /C/G is independent of p.

Proof of Theorem 1.11. Let A be a real abelian threefold, and consider the second inter-
mediate Jacobian J 2.AC/ of AC (see Section 7). Let J 2.AC/alg be the algebraic part of
J 2.AC/ and J 2.AC/tr D J

2.AC/=J
2.AC/alg its transcendental part [50, Section 2.2.2]. We

get an exact sequence of weight �1 Hodge structures 0! ƒalg ! ƒ! ƒtr ! 0; by Theo-
rem 7.2 and [50, Corollaire 12.19], we obtain a commutative diagram with exact rows:

.CH2.AC/alg/
G //

��

.CH2.AC/hom/
G

��

// Griff2.AC/
G

��

H1.G;ƒalg/ // H1.G;ƒ/ // H1.G;ƒtr/.

(10.1)

Define H1.G;ƒ/0 � H1.G;ƒ/ as in Definition 6.1. The real integral Hodge conjecture for A
would imply that Griff2.AC/

G ˝ Z=2! H1.G;ƒtr/ surjects onto the image of

H1.G;ƒ/0 ! H1.G;ƒtr/:(10.2)

Our goal is to show that if A is an abelian threefold as in the statement of the theorem, then
(10.2) is non-zero, whereas if A D J.C / is the Jacobian of a real genus three curve with
p 2 C.R/, then the Ceresa cycle Œ„p� 2 CH2.J.C //hom maps to zero in H4G.J.C /.C/;Z.2//.

Let us first prove the latter statement. Assume that C is hyperelliptic and let p 2 C.R/ be
a real Weierstrass point. We have Œ„p� D 0 2 CH2.A/, and for arbitrary q 2 C.R/ there exists
Q 2 J.C /.R/ such that the translation by Q map �Q W J.C /! J.C / satisfies �Q ı �p D �q .
For any abelian threefold B over R, any cycle � 2 CH2.B/ and any Q 2 B.R/0, the cycle
��Q.�/ � � 2 CH2.B/ is real algebraically equivalent to zero (see [49, Definition 1.5]). In
particular, Œ��Q.�/� D Œ�� 2 H4G.B.C/;Z.2// by [49, Lemma 1.2]. In our case, this gives

.�Q/�Œ„p� D .�q/�.C / � .�2Q/�.�1/
�.�q/�.C / D Œ„q� 2 H4G.A.C/;Z.2//:

Suppose thatC is a non-hyperelliptic curve of genus three over R equipped with p 2 C.R/. Let
K �M3.R/ be the connected component containing ŒC � 2M3.R/ (see Section 5.4). Curves
in K have non-empty real locus, and K contains hyperelliptic curves by [9, Proposition 3.4].
In particular (see [44], [13, Proof of Theorem 1.3(B)]), there exists a contractible complex
manifold B 0, a family of genus three curves C 0 ! B 0 with a real structure, and two points
a; b 2 B 0.R/ such that B 0.R/ is connected, C 0a Š C and C 0

b
DW C2 is hyperelliptic.

Consider the family of genus three curves � W C 0 �B 0 C 0 DW C ! B WD C 0. This family
� has a canonical real structure and equivariant section � W B ! C . By [13, Lemma 5.1], the
real structure on � extends to a real structure on the relative Jacobian J.C / of C over B;
moreover, � induces a G-equivariant map ‰ W C ! J.C / over B .

Note that C 0.R/ D B.R/ ¤ ; since C.R/ ¤ ;. Let f W Œ0; 1�! B.R/ be a path whose
image in B 0.R/ connects a and b, and let q D f .1/ 2 B.R/. Then p and q 2 B.R/ lie in the
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same component K � B.R/. The family of Abel–Jacobi maps ‰jK W C jK ! J.C /jK ! K

is locally trivial over K, so there are G-equivariant Lie group diffeomorphisms

� W J.C / Š J.Cp/ Š J.Cq/ Š J.C2/

with
0 D ��Œ�q.C2/� D Œ�p.C /� 2 H4G.J.C /.C/;Z.2//:

We conclude that Ceresa cycles map to zero in equivariant cohomology as desired.
Let .A; �/ be any principally polarized complex abelian threefold. The embedding of

weight �1 Hodge structures H1.A.C/;Z.1//! H3.A.C/;Z.2// induced by � has saturated
image, thus gives an embedding of complex tori yA.C/ D Pic0.A/.C/! J 2.A/.

Lemma 10.1. If .A; �/ is very general, then J 2.A/alg D yA.

Proof. By [39, Theorem 17], it suffices to show that the representation of GSp6.Q/ on
H3.A.C/;Q/prim is irreducible. This follows from [16, Theorem 17.5].

Let A3 be the moduli stack of principally polarized abelian threefolds, with coarse mod-
uli space � W A3 ! A3. In view of Lemma 10.1, there is a countable union

S
i Zi ¨ A3.C/ of

complex analytic subvarieties Zi � A3.C/ with the following property: if the image of a point
Œ.A; �/� 2 A3.R/ under the map �R W A3.R/! A3.R/ � A3.C/ does not lie in

S
i Zi , then

J 2.AC/alg D yA.C/. Let .A; �/ be such a principally polarized abelian threefold over R, and
assume A.R/ is not connected. Via the spectral sequence (2.3), Corollary 9.2 and Claim 9.6
imply that the rank of H1.G;H1.A.C/;Z.1/// is smaller than that of H1.G;H3.A.C/;Z.2///0.
Thus, there are elements in H1.G;ƒ/0 which are not in the image of H1.G;ƒalg/! H1.G;ƒ/,
see diagram (10.1). In particular, the map (10.2) is non-zero, and Theorem 1.11 follows.
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