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These notes are meant to work out the details of some examples provided by Debarre in
his book [Deb01]. In these notes, all schemes are defined over an algebraically closed field k.

Let X be a scheme and let E be a locally free sheaf on X. Consider the contravariant functor

F : Sch/X → Set, (π : T → X) 7→ {(L ∈ Pic(T ), f : π∗E ↠ L)}/ ∼= .

Then F is representable by an X-scheme π : P(E ) → X [Gro61, II, Proposition 4.3.2]. Since

Hom(P(E ),P(E )) = F (P(E )) = {π∗E ↠ L}/ ∼=,

the identity P(E ) → P(E ) gives rise to a quotient Q : π∗E → OX(1), well-defined up to
isomorphism, and the tuple ((OX(1), Q) is universal in the sense that for any T → X, line
bundle L on T and α : ET ↠ L, there is a unique f : T → P(E ) over X such that f ∗(Q) ∼= α.

1 Example I: · a fiber contraction

Let E be a vector bundle of rank r + 1 on a smooth projective variety Y and let X = P(E ),
the bundle of hyperplanes in the fibers of Spec(Sym(E )) → X. Now let t ∈ Y (k), and let
L ↪→ P(E )t = P(Et) be a line in the projective space P(Et) over k. Then L ↪→ Xt ↪→ X is a
curve in X. Let ℓ ∈ N1(X) be its class.

Proposition 1.1. The ray R := R+ · ℓ ⊂ NE(X) is KX-negative and extremal. The morphism

π : X = P(E ) → Y

is the contraction of R, and π is a fiber contraction: X is covered by curves contracted by π.

To prove this, we need two lemmata.

Lemma 1.2. Let ξ ∈ N1(X) be the class of the line bundle OX(1), the universal quotient of
E . Then

KX = −(r + 1)ξ + π∗(KY + det(E )) ∈ N1(X).

Proof. Since the morphism X → Y is smooth, the following sequence of OX-modules

0 → π∗ΩY → ΩX → ΩX/Y → 0 (1)
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is exact (see [Stacks, Tag 02K4]). From (1), we get that

KX = det(ΩX) = π∗(KY )⊗ det(ΩX/Y ).

On the other hand, the (generalized) Euler sequence is an exact sequence

0 → ΩX/Y → π∗E ⊗OX(−1) → OX → 0, (2)

which gives
π∗ det(E )⊗OX(−(r + 1)) = det(ΩX/Y ).

Therefore,

KX = π∗KY + π∗ det(E )− (r + 1) · OX(1) = −(r + 1)ξ + π∗(KY + det(E )).

Corollary 1.3. One has
KX · ℓ = −(r + 1).

Proof. Indeed, if j : Xt → X is the inclusion of Xt in X, then ℓ = j∗([L]) and since the
composition Xt → X → Y factors over Spec(k(t)) ↪→ Y , we have

KX · ℓ = KX · j∗[L] = j∗(KX) · [L] = j∗(−(r + 1)ξ) · [L] = OP(Et)(−r − 1) · [L] = −r − 1.

Lemma 1.4. The class ℓ spans a KX-negative ray R ⊂ NE(X) whose contraction is π : X → Y .
Proof. By Corollary 1.3, the class ℓ is KX-negative. By definition,

NE(π) = NE(X) ∩ Ker (π∗ : NE(X) → NE(Y )) .

So R ⊂ NE(π). To prove that NE(π) = R, we must show that if an irreducible curve C ⊂ X is
contracted by π, then [C] is a multiple of ℓ. But necessarily, such a curve C ⊂ X is contained
in a closed fiber P(Eb) = Xb ⊂ X, b ∈ Y (k). Hence [C] = ι∗([C

′]) for a curve C ′ ⊂ Xb, where
ι : Xb → X is the inclusion. Since

CH1(P(Eb)) = Z · [Lb]

for a line Lb ⊂ P(Eb)), we have [C ′] = n · [Lb] ∈ N1(Xb) for some n ∈ Z≥1 (the degree of C ′).
We claim that ι∗[Lb] = j∗[L] = ℓ ∈ N1(X). Indeed, denote K = OX(1)

r−1 ∈ CHr−1(X)
and choose a smooth irreducible variety C ∈ K. Then Ky = OP(E )y(1)

r−1 for each y ∈ Y ,
and in particular Kt = ℓ and Kb = [Lb]. We have C ⊂ X → Y , a family of curves in the
fibers of π such that Cy is a line in P(E )y for each y ∈ Y (k). Now we simply note that b and
t are algebraically equivalent on Y , since deg(b) = deg(t) = 1, and that π : C → Y is flat.
Consequently, Cb and Ct are algebraically equivalent in C , hence their pushforwards to X are
algebraically equivalent in X.

Therefore,
[C] = ι∗[C

′] = ι∗(n · [Lb]) = n · j∗[L] = n · ℓ.

Proof of Proposition 1.1. Because R = NE(π), the ray R ⊂ NE(X) is extremal [Deb01, Propo-
sition 1.14]. Moreover, π : X → Y is a fiber contraction, X is uniruled, the image of π has
dimension less than X and the general fiber of π is a Fano variety (see [Deb01, §7.42] for why
the latter is true in general).

To see why π is a fiber contraction, let L(R) ⊂ X be the locus of R; we must show that
L(R) = X. But this is clear: for each y ∈ Y (k), the fiber Xy ⊂ X is a projective space, hence
covered by lines; the above shows that all these lines give the same class ℓ ∈ N1(X). Hence X
is covered by curves C ⊂ X whose class [C] ∈ NE(X) lies in R = R+ · ℓ.
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2 Example II: · a divisorial contraction

Now let Y be a smooth projective variety, let Z ⊂ Y be a smooth subvariety of codimension
c ≥ 2, and let π : X → Y be the blow-up of Z. Let E ⊂ X be the exceptional divisor. By
Lemma 2.2 below, we have

KX = π∗(KY ) + (c− 1)E ∈ N1(X). (3)

Let t ∈ Z(k), and F = π−1(t) ⊂ X. Then let L ⊂ F be a line contained in F ∼= Pc−1. Finally,
let ℓ = [L] ∈ NE(X).

Proposition 2.1. 1. The ray R := R+ · ℓ ⊂ NE(X) is KX-negative.

2. The morphism π : X → Y is the contraction of R.

3. The morphism π is a divisorial contraction: the union L(R) ⊂ X of curves C ⊂ X
contracted by π is a divisor (in fact an irreducible divisor by [Deb01, Proposition 6.10]).

Proof. 1. Let j : F ↪→ E ↪→ X be the inclusion of F in X. We have KX ·ℓ = (c−1)E ·j∗[L] =
j∗(KX) · [L] = j∗OX((c − 1)E) · [L] = OF ((c − 1)E) · [L] = (c − 1) · OF (E) · [L]. But
OE(E) = NE/X = OE(−1), hence OF (E) = OF (−1). Therefore, KX · ℓ = −(c− 1).

2. Let C ⊂ X be a curve contracted by π. Then C ⊂ Ez ⊂ E for some z ∈ Z. Therefore
[C] = m · [Lz] ∈ NE(Ez). Consider OE(1)

c−2 and let C ∈ OE(1)
c−2 ∈ CHc−2(E) be

a smooth irreducible variety. Then C ⊂ E → Z is a family of curves in the fibers of
E → Z. Since z and t are algebraically equivalent on z, we have [Lz] = [L] ∈ NE(E).
Consequently, [C] = m · ℓ ∈ NE(X). Hence a curve is contracted by π if and only if it is
numerically equivant to a multiple of ℓ. This proves that NE(π) = Ker(π∗)∩NE(X) = R.

3. It is clear from the above that L(R) = E.

2.1 Divisors on blow-ups
Let X be a smooth projective variety, let Y be a smooth subvariety of Y of codimension r, and
let π : X̃ → X be the blow-up of X along Y . Let Y ′ = π−1(Y ).

Lemma 2.2. 1. The maps π∗ : Pic(X) → Pic(X̃) and Z → Pic(X̃) defined by n 7→ [nY ′]
give rise to an isomorphism Pic(X̃) ∼= Pic(X)⊕ Z.

2. We have KX̃
∼= π∗(KX)⊗OX̃((r − 1)Y ′).

Proof. 1. We know that if I ⊂ OX is the ideal sheaf of Y , then the morphism f : Y ′ → Y
corresponds to the projection

Y ′ = P(I/I2)
f−→ Y.

Let U = X̃ \ Y ′ ⊂ X̃, and let V = X \ Y . Then π|U : U → V is an isomorphism. There
is an exact sequence

CHn−1(Y
′) → Pic(X̃) → Pic(U) → 0.

This fits in the following diagram:

Pic(X)

π∗

��

∼ // Pic(V ) //

∼ π∗

��

0

0 // CH0(Y ) // Pic(X̃) // Pic(U) // 0.
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2. Write
KX̃

∼= π∗(M )⊗OX̃(mY ′)

for some invertible sheaf M on X and some integer m. Then

KU
∼= KX̃ |U ∼= π∗(M |V ).

Since π : U → V is an isomorphism, we have M |V ∼= KV . But Pic(X) → Pic(V ) is also
an isomorphism, so M ∼= KX . Consequently, we obtain

KX̃(Y
′) ∼= π∗(KX)⊗OX̃((m+ 1)Y ′).

Therefore,

KY ′ ∼= KX̃(Y
′)|Y ′ ∼= π∗(KX)|Y ′ ⊗OY ′(Y ′)⊗(m+1) ∼= π∗(KX)|Y ′ ⊗ N ⊗(m+1)

Y ′/X̃
.

But NY ′/X̃
∼= OY ′(−1) under the identification Y ′ ∼= P(I/I2) → Y , so that

KY ′ ∼= π∗(KX)|Y ′ ⊗OY ′(−m− 1).

Let t ∈ Y be a closed point, and let Z ⊂ Y ′ be the fibre of Y ′ over t. Then the codimension
of Z in Y ′ equals n− r, where n = dim(X) = dim(X̃). Hence by the adjunction formula,

KZ
∼= KY ′|Z ⊗

n−r∧
NZ/Y ′ ∼= OZ(−m− 1)⊗ det(NZ/Y ′).

The following lemma shows that det(NZ/Y ′) ∼= OZ :

Lemma 2.3. Let ϕ : X → B be a smooth projective morphism over a smooth variety B.
Let 0 ∈ B(k) and X = ϕ−1(0) ⊂ X . Then

NX/X
∼= ϕ∗(TB)|X ∼= TB,0 ⊗k OX .

Proof. It sufficest to verify the exactness of the sequence

0 → TX → TX |X → ϕ∗(TB)|X → 0.

So let x ∈ X(k); we need to show that the sequence

0 → TX,x → TX ,x → TB,0 → 0

is exact. This follows from the fibre product

X //

��

X

��

Spec(k) // B,

for a tangent vector v : Spec(k)[ε] → X with v(Speck) = x factors through 0: Spec(k)[ε] →
B if and only if v lifts as a tangent vector w : Spec(k)[ε] → X with w(Spec(k)) = x.

On the other hand, Z ∼= Pr−1, so that KZ
∼= OZ(−r). Therefore, r = m+1, i.e. m = r−1,

and we conclude that
KX̃

∼= π∗(KX)⊗OX̃((r − 1)Y ′)

as desired.
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3 Example III: · a small contraction

3.1 The set-up
1. Let r and s be positive integers, and let E = OPs ⊕OPs(1)⊕(r+1). We define Y = Yr,s =

P(E ), and let
π : Y = P(E ) → Ps

be the canonical morphism. The quotient E ↠ OPs corresponds to a section σ : Ps → Y
of π; we define P = σ(Ps) ⊂ Y . We then let

ε1 : Xr,s → Yr,s

be the blow-up of P in Y . In a similar way, define ε2 : Xs,r → Ys,r.

2. Let ℓ ∈ N1(Yr,s) be the class of a line L ⊂ P , and let ℓ′ ∈ N1(Yr,s) be the class of a line
Γ ⊂ Z in a fiber Z ⊂ Yr,s of π : Yr,s → Ps.

3. Let ℓ ∈ NE(Xr,s) be the class of a line l ⊂ E that projects onto L ⊂ P ⊂ Yr,s, but
is contracted by the projection E ∼= Ps × Pr → Pr (see Lemma 3.5 for the fact that
E ∼= Ps × Pr). Let ℓ

′′ be the class of a line in E contracted by ε, and ℓ′ the class of the
strict transform of a line in a fiber of π : Yr,s → Ps that meets P ⊂ Yr,s.

Lemma 3.1. Let D ⊂ Yr,s be the divisor, isomorphic to Pr ×Ps, corresponding to the quotient
E ↠ OPs(1)r+1. Then D is contained in the base-point-free linear system |OYr,s(1)|. Let

cr,s : Yr,s → P(r+1)(s+1)

be the induced morphism. Then the image Ŷr,s of cr,s is the cone over the Segre embedding of
Pr × Ps in P(r+1)(s+1) [Gro61, II §4.3]. In particular, Ŷr,s = Ŷs,r = Ŷ .

Theorem 3.2. • There is a canonical isomorphism Xr,s
∼= Xs,r. Thus, if we define X =

Xr,s, we obtain a commutative diagram

Ys,r

��

Ŷoo // Yr,s

��

X

Ψ

OO

ε2
dd

α

zz

β

$$

f
��

ε1
;;

Pr Pr × Psoo // Ps.

• We have NE(X) = NE(X) = R+ · ℓ+R+ · ℓ′ +R+ · ℓ′′. We have the following equalities:

– NE(ε2) = R+ · ℓ
– NE(f) = R+ · ℓ′

– NE(ε1) = R+ · ℓ′′

– NE(α) = R+ · ℓ+ R+ · ℓ′

– NE(β) = R+ · ℓ′ + R+ · ℓ′′.
– NE(Ψ) = R+ · ℓ+ R+ · ℓ′′.
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Remarks 3.3. • The corresponding flip is the composition

Yr,s 99K X −→ Ys,r.

• It is an isomorphism in codimension one (in fact, it is an isomorphism outside the sub-
varieties Pr,s ⊂ Yr,s and Ps,r ⊂ Ys,r).

• The above remark implies that the Picard numbers of Yr,s and Ys,r are the same.

• The KYr,s-negative extremal ray R = R+ · ℓ on Yr,s becomes a KYs,r -positive extremal ray
R = R+ · ℓ ⊂ NE(Yr,s) (see Lemma 4.4).

The rest of this section is devoted to the proof of Theorem 3.2.

3.2 The cone of curves in Y

The homomorphism π∗ : Pic(Ps) → Pic(Y ) induces an isomorphism

Pic(Y ) = Pic(Ps)⊕ Z · [OY (1)], (4)

see [Har77, Exercice II.7.9]. In particular, if ξ = [OY (1)] ∈ N1(Y ) and h = [π∗(OPs(1))], then

N1(Y ) = Z · ξ ⊕ Z · h.

Lemma 3.4. We have
NE(Y ) = NE(Y ) = R+ · ℓ+ R+ · ℓ′.

Proof. The composition P → Y → Ps is an isomorphism; let q ∈ N1(Ps) be the class of the
line in Ps corresponding to ℓ. Let j : P → Y and ι : Z → Y be the inclusions.

First observe that j∗(ξ) = 0. Indeed, P = P(OPs) ⊂ P(E ) is the moduli space of invertible
quotients of OPs , which are necessarily trivial. In other words: if ϕ : P → Y → Ps is the
composition, then ϕ∗(OY (1)) is the quotient ϕ∗(OPs) = OP of ϕ∗(E ) by construction of P .

We have

h · ℓ = π∗O(1) · ℓ = π∗O(1) · j∗[L] = O(1) · π∗(j∗[L]) = O(1) · q = 1, (5)
h · ℓ′ = π∗O(1) · ℓ′ = π∗O(1) · ι∗[Γ] = O(1) · π∗ι∗[Γ] = 0, (6)

ξ · ℓ = OY (1) · j∗[L] = j∗OY (1) · [L] = 0 · [L] = 0, (7)
ξ · ℓ′ = OY (1) · ι∗Γ = ι∗OY (1) · Γ = OZ(1) · Γ = 1. (8)

Let C ⊂ Y be an irreducible curve. We may write

C = a · ℓ+ b · ℓ′ ∈ NE(Y ).

The above equations show that
C · h = a, C · ξ = b.

We claim that ξ and h are nef. Indeed, ξ is ample and h is the pull-back of a nef line bundle,
hence nef (projection formula).

Therefore, C ·h = a ≥ 0 and similarly, b ≥ 0. This proves that [C] = a·ℓ+b·ℓ′ ∈ R+·ℓ+R+·ℓ′.
Since C was arbitrary, this proves that NE(Y ) ⊂ R+ · ℓ+ R+ · ℓ′. Consequently,

R+ · ℓ+ R+ · ℓ′ ⊂ NE(Y ) ⊂ NE(Y ) ⊂ R+ · ℓ+ R+ · ℓ′

because the cone R+ · ℓ+ R+ · ℓ′ ⊂ N1(Y )R is closed.
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3.3 The multiplication table of X
Lemma 3.5. 1. The normal bundle NP/Y is isomorphic to OP (−1)⊕(r+1).

2. The exceptional divisor E ⊂ X is isomorphic to Pr × Ps.

3. The line bundle OE(E) is of type (−1,−1).

Proof. 1.

2. Let I ⊂ OY be the ideal sheaf of P . We know [Har77, Theorem II.8.24] that

E = P(I/I2) = P(N ∨
P/Y ) = P(OP (1)

⊕(r+1)) ∼= P(OPs(1)⊕(r+1)) ∼= P(O⊕(r+1)
Ps ) ∼= Pr ⊕ Ps.

3. Define W = P(OPs(1)⊕(r+1)). Then under the above isomorphism, we have

NE/X
∼= OW (−1).

Moreover, let π′ : V = Pr ⊕ Ps = P(O⊕(r+1)
Ps ) → Ps be the projection. Then under the

isomorphism
φ : P(O⊕(r+1)

Ps ) = V
∼−→ W,

we have (see [Gro61, II, Proposition 4.1.4] or [Har77, Lemma II.7.9]):

π∗
r(OPr(1)) = OV (1) ∼= φ∗OW (1)⊗(π′)∗OPs(−1) =⇒ OW (1) ∼= π∗

rOPr(1)⊗π∗
sOPs(1).

In other words, for the irreducible divisor E = Pr × Ps ↪→ X, we have

OE(E) ∼= NE/X
∼= OW (−1) ∼= π∗

rOPr(−1)⊗ π∗
sOPs(−1).

Lemma 3.6. Denote by ξ and h the pull-backs of the classes ξ, h ∈ Pic(Y ) to X. The vector
space N1(X)R has dimension 3, generated by [E] and the nef classes ξ and h.

Proof. Indeed, by Lemma 2.2 the morphism π : X → Y induces an isomorphism

Pic(X) ∼= Pic(Y )⊕ Z · OX(E).

By Equation (4), this implies that

Pic(X) = Z · ξ ⊕ Z · h⊕ Z · [E].

Lemma 3.7. We have the following multiplication table:

h · ℓ = 1, h · ℓ′ = 0, h · ℓ′′ = 0, (9)

ξ · ℓ = 0, ξ · ℓ′ = 1, ξ · ℓ′′ = 0, (10)

[E] · ℓ = −1, [E] · ℓ′ = 1, [E] · ℓ′′ = −1. (11)
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Proof. Indeed, let L ⊂ P be the line that gives ℓ ∈ NE(Y ) such that ε∗(ℓ) = ℓ. Recall
that j : P → Y was the inclusion. Let L′ ⊂ Ps be the line that corresponds to L under the
isomorphism P ∼= Ps. Then

h · ℓ = ε∗(h) · ℓ = h · ε∗(ℓ) = π∗O(1) · j∗([L]) = O(1) · [L′] = 1.

h · ℓ′ = h · ε∗(ℓ′) = 0, h · ℓ′′ = h · ε∗(ℓ
′′
) = 0.

Moreover,

ξ · ℓ = ξ · ε∗(ℓ) = 0, ξ · ℓ′ = ξ · ε∗(ℓ′) = 1, ξ · ℓ′′ = ξ · ε∗(ℓ
′′
) = 0,

and if ϕ : E = Pr × Ps ↪→ X is the inclusion, then (because πr,∗(ℓ) = 0) we have

[E] · ℓ = OE(E) · ϕ∗(ℓ) = (π∗
r(O(−1)) + π∗

s(O(−1))) · [l] =
OPr(−1) · πr,∗[l] +OPs(−1) · πs,∗[l] = (OPr(−1) · πr,∗[l])− 1 = −1.

In a similar way, one proves that [E] · ℓ′ = 1. Finally,

[E] · ℓ′′ = OE(E) · ϕ∗(ℓ
′′
) = −1

because the projection E → P corresponds to the projection Ps × Pr → Ps, and since this
contracts the line ℓ

′′ , ℓ′′ = [L
′′
] for some line L

′′ contained in a fiber {x} × Pr ⊂ E → Ps.

3.4 The cone of curves in X

The goal of this subsection is to prove the following:

Proposition 3.8. We have

NE(X) = NE(X) = R+ · ℓ+ R+ · ℓ′ + R+ · ℓ′′ .

Proof. Let C ⊂ X be an irreducible curve, and let

[C] = aℓ+ a′ℓ′ + a
′′
ℓ
′′

be its class in NE(X).

• The subvariety P is defined as the complete intersection of r+1 divisors with class ξ−h.

• This implies that if C is not contained in E, the class ξ − h− [E] on X has nonnegative
intersection with C.

We conclude that

h · C = a ≥ 0, a′ = ξ · C ≥ 0, a
′′
= (ξ − h− [E]) · C ≥ 0.

• If C ⊂ E, then a′ = 0. Moreover, a and a
′′ are nonnegative in this case.

The conclusion is that [C] ∈ R+ · ℓ+ R+ · ℓ′ + R+ · ℓ′′ , which proves the proposition.

Lemma 3.9. We have X = Xr,s
∼= P(OPr×Ps ⊕OPr×Ps(1, 1)).
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4 Example III: · a flip

Let us prove the statements made in Remark 3.3. We begin with a

Lemma 4.1. Let Y be a Fano variety and let D1, . . . , Dr be nef divisors on Y such that
−KY −D1 . . .−Dr is ample. Then X = P(

⊕r
i=1 OY (Di)) is a Fano variety.

Proof. Indeed,

det

(
r⊕

i=1

OY (Di)

)
= OY (

∑
i

Di),

thus by Lemma 1.2, we have KX = (r + 1) · OX(1) + π∗(−KY −D1 · · · −Dr) ∈ N1(X).

Corollary 4.2. Assume that r < s. The variety Yr,s is a Fano variety.

Proof. It suffices to observe that E = OPs ⊕ OPs(1)⊕(r+1) is a direct sum of nef divisors, and
that

−KPs −OPs(r + 1) = OPs(s+ 1)−OPs(r + 1) = OPs(s− r)

is ample because s > r.

Proposition 4.3. Let R = R+ · ℓ.
1. The contraction

cR : Yr,s → Ŷr,s

of the KYr,s-negative extremal ray R is the morphism associated with the base-point-free
linear system |OYr,s(1)|.

2. One has L(R) = P ⊂ Yr,s.

3. The morphism cR is a small contraction.

Lemma 4.4. Continue to assume that r < s and consider the variety Ys,r. Let R = R+ · ℓ ⊂
NE(Ys,r). Then KYs,r ·R > 0.

Proof. By Lemma 1.2, we have KYs,r = −(r + 1) · OYs,r(1) + π∗(KPr +OPs(s+ 1)). Therefore,

KYs,r · ℓ = π∗(KPr +OPs(s+ 1)) · ℓ = π∗(OPr(s− r)) · ℓ = OPs(s− r) · π∗(ℓ) = s− r > 0.

In other words, where Yr,s was Fano and ℓ ∈ NE(Yr,s) was KYr,s-negative, the variety Ys,r is
not a Fano variety, and the class ℓ ∈ NE(Yr,s) is KYs,r -positive.
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