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These notes are meant to work out the details of some examples provided by Debarre in
his book [Deb01]. In these notes, all schemes are defined over an algebraically closed field k.

Let X be a scheme and let & be a locally free sheaf on X. Consider the contravariant functor
F:Sch/X —Set, (m:T — X)—{(LePic(T), f: "8 - L)} =.
Then F is representable by an X-scheme 7: P(&) — X |Gro61, II, Proposition 4.3.2|. Since
Hom(P(€),P(€)) = F(P(&)) = {n"¢ - L}/ =,

the identity P(&) — P(&) gives rise to a quotient Q: 78 — Ox(1), well-defined up to
isomorphism, and the tuple ((Ox(1), @) is universal in the sense that for any 7" — X, line
bundle £ on T and a: & — L, there is a unique f: T'— P(&) over X such that f*(Q) = «.

1 Example I: - a fiber contraction

Let & be a vector bundle of rank 7 4+ 1 on a smooth projective variety Y and let X = P(&),
the bundle of hyperplanes in the fibers of Spec(Sym(&)) — X. Now let ¢ € Y (k), and let
L — P(&); = P(&;) be a line in the projective space P(&;) over k. Then L — X; — X is a
curve in X. Let £ € N{(X) be its class.

Proposition 1.1. The ray R :=R*"-¢ C NE(X) is Kx-negative and extremal. The morphism
T X=P&) =Y
1s the contraction of R, and 7 s a fiber contraction: X s covered by curves contracted by .

To prove this, we need two lemmata.

Lemma 1.2. Let £ € NY(X) be the class of the line bundle Ox(1), the universal quotient of
&. Then
Kx = —(r + 1)¢ + 7" (Ky +det(&)) € NY(X).

Proof. Since the morphism X — Y is smooth, the following sequence of Ox-modules

0= 7" Qy = Qx = Qx/y =0 (1)



is exact (see |Stacks, Tag 02K4|). From (1), we get that
Kx = det(Q2x) = m"(Ky) ® det(Q2x/y).
On the other hand, the (generalized) Euler sequence is an exact sequence
0= Qx;y = 78 ®0x(—1) = Ox — 0, (2)
which gives
" det(&) ® Ox(—(r + 1)) = det(Qx/v).
Therefore,

Ky =m"Ky + 7" det(&) — (r+1) - Ox(1) = —(r + 1) + 7" (Ky + det(&)).

Corollary 1.3. One has

KX'EZ —(T+1).
Proof. Indeed, if j: X; — X is the inclusion of X; in X, then ¢ = j,([L]) and since the
composition X; — X — Y factors over Spec(k(t)) < Y, we have

K €= Ky Ju[L) = (x)  [£] = (= + 1)8)  [L] = Opqay(=r = 1) [£] = =r — 1.

m
Lemma 1.4. The class ¢ spans a Kx-negative ray R C NE(X) whose contractionism: X — Y.
Proof. By Corollary 1.3, the class ¢ is Kx-negative. By definition,

NE(r) = NE(X) N Ker (7, : NE(X) = NE(Y)).

So R C NE(m). To prove that NE(7) = R, we must show that if an irreducible curve C' C X is
contracted by m, then [C] is a multiple of £. But necessarily, such a curve C' C X is contained
in a closed fiber P(&;) = X, C X, b € Y (k). Hence [C] = 1.([C"]) for a curve C" C X, where
t: Xp — X is the inclusion. Since

CH, (P(&)) = Z - L)

for a line L, C P(&};)), we have [C'] = n - [Ly] € N1(X}) for some n € Zsy (the degree of C”).

We claim that ¢,[Ly] = j,[L] = ¢ € Ni(X). Indeed, denote K = Ox(1)""! € CH"*(X)
and choose a smooth irreducible variety ¢ € K. Then K, = Ops), (1)"" for each y € Y,
and in particular K, = ¢ and K, = [L;]. We have ¥ C X — Y, a family of curves in the
fibers of 7 such that €, is a line in P(&), for each y € Y (k). Now we simply note that b and
t are algebraically equivalent on Y, since deg(b) = deg(t) = 1, and that 7: € — Y is flat.
Consequently, C, and C; are algebraically equivalent in %, hence their pushforwards to X are
algebraically equivalent in X.

Therefore,

[C] = wu[C] = w(n-[L]) =n-j[L] =n-L
L]

Proof of Proposition 1.1. Because R = NE(7), the ray R C NE(X) is extremal [Deb01, Propo-
sition 1.14|. Moreover, m: X — Y is a fiber contraction, X is uniruled, the image of 7 has
dimension less than X and the general fiber of 7 is a Fano variety (see [Deb01, §7.42| for why
the latter is true in general).

To see why 7 is a fiber contraction, let L(R) C X be the locus of R; we must show that
L(R) = X. But this is clear: for each y € Y (k), the fiber X, C X is a projective space, hence
covered by lines; the above shows that all these lines give the same class ¢ € Ny (X). Hence X
is covered by curves C' C X whose class [C] € NE(X) lies in R =R™* - £. O


https://stacks.math.columbia.edu/tag/02K4

2 Example II: - a divisorial contraction

Now let Y be a smooth projective variety, let Z C Y be a smooth subvariety of codimension
¢ > 2 and let m: X — Y be the blow-up of Z. Let £ C X be the exceptional divisor. By
Lemma 2.2 below, we have

Ky =m"(Ky)+(c—1)E € NY(X). (3)
Let t € Z(k), and F = n7(t) C X. Then let L C F be a line contained in F' = P*~!. Finally,
let ¢ = [L] € NE(X).
Proposition 2.1. 1. The ray R :=R* -{ C NE(X) is Kx-negative.
2. The morphism mw: X — Y 1s the contraction of R.

3. The morphism m is a divisorial contraction: the union L(R) C X of curves C C X
contracted by m is a divisor (in fact an irreducible divisor by [Deb01, Proposition 6.10]).

Proof. 1. Let j: F — E — X be the inclusion of F'in X. We have Kx-{ = (¢c—1)E-j.[L] =
J(Kx) - [L] = j"Ox((c = DE) - [L] = Op((c = 1)E) - [L] = (¢ — 1) - Op(E) - [L]. But
Op(E) = Ng/x = Og(—1), hence Op(E) = Op(—1). Therefore, Kx - { = —(c — 1).

2. Let C' C X be a curve contracted by w. Then C' C E, C E for some z € Z. Therefore
[C] = m - [L,] € NE(E,). Consider Og(1)*"2 and let ¥ € Og(1)°%2 € CH?(E) be
a smooth irreducible variety. Then ¢ C F — Z is a family of curves in the fibers of
E — Z. Since z and t are algebraically equivalent on z, we have [L,] = [L] € NE(E).

Consequently, [C] = m - ¢ € NE(X). Hence a curve is contracted by 7 if and only if it is
numerically equivant to a multiple of £. This proves that NE(7) = Ker(7,)NNE(X) = R.

3. It is clear from the above that L(R) = E.
[l

2.1 Dwvisors on blow-ups

Let X be a smooth projective variety, let Y be a smooth subvariety of Y of codimension r, and
let m7: X — X be the blow-up of X along Y. Let Y’ = 7= 1(Y).

Lemma 2.2. 1. The maps 7 Pic(X) — Pic(X) and Z — Pic(X) defined by n +— [nY”]

give rise to an isomorphism Pic(X) = Pic(X) & Z.
2. We have K¢ = 7" (Kx) @ Oz ((r —1)Y’).

Proof. 1. We know that if Z C Ox is the ideal sheaf of Y, then the morphism f: Y’ — Y
corresponds to the projection

Y =P(Z/1%) LY.
Let U=X\Y' C X,andlet V=X \Y. Then 7|y: U — V is an isomorphism. There
is an exact sequence

CH,,_1(Y") = Pic(X) — Pic(U) — 0.
This fits in the following diagram:
Pic(X) ——Pic(V) ——0

lﬂ* Nlﬂ*

0 —— CH%(Y) — Pic(X) — Pic(U) —— 0.



2. Write
K; = (M) @ OX(mY’)

for some invertible sheaf .# on X and some integer m. Then
Ky = Kl =" (Aly).

Since 7: U — V is an isomorphism, we have .Z|y = Ky . But Pic(X) — Pic(V) is also
an isomorphism, so .Z = Kx. Consequently, we obtain

K{(V) =2 (Kx) @ Ox((m+1)Y").
Therefore,
Ky & Ky (V)| 2 7 (Kx)ly © Oy (V)5 2 1 (K @ A0,
But Ay ¢ = Oy/(—1) under the identification Y’ = P(Z/Z?) — Y, so that
Ky/ = W*(Kx)|y/ X Oy/(—m — 1)

Let t € Y be a closed point, and let Z C Y’ be the fibre of Y’ over t. Then the codimension

of Z in Y equals n — r, where n = dim(X) = dim(X). Hence by the adjunction formula,

n—r

K; = Ky/‘z ® /\ f/’/Z/Y/ = Oz<—m - 1) ® det(J/Z/y/).
The following lemma shows that det(.A47/y/) = Oz:

Lemma 2.3. Let ¢: 2 — B be a smooth projective morphism over a smooth variety B.
Let 0 € B(k) and X = ¢~ %(0) C 2. Then

Ny =2 0" (Tg)|x = Tro @ Ox.

Proof. 1t sufficest to verify the exactness of the sequence
0—=Tx = Tylx = ¢"(Ts)|x — 0.
So let # € X (k); we need to show that the sequence
0—=Txy =Ty, —>Tpo—0
is exact. This follows from the fibre product

X—Z

| ]

Spec(k) — B,

for a tangent vector v: Spec(k)[e] — 2 with v(Speck) = x factors through 0: Spec(k)[e] —
B if and only if v lifts as a tangent vector w: Spec(k)[e] — X with w(Spec(k)) =x. O

On the other hand, Z = P"! so that Kz = Oz(—r). Therefore, r = m+1,i.e. m =r—1,
and we conclude that
Kiy 271"(Kx)®O%((r—1)Y)

as desired.



3 Example III: - a small contraction

3.1

The set-up

1. Let r and s be positive integers, and let & = Ops ® Ops(1)2C+D. We define Y =Y, , =

P(&£), and let
7Y =P(&) — P?

be the canonical morphism. The quotient & —» Ops corresponds to a section o: P* — Y
of m; we define P = ¢(P*) C Y. We then let

€1 Xr,s — Yr,s

be the blow-up of P in Y. In a similar way, define e9: X, — Y.

. Let ¢ € Nl(Ym) be the class of a line L C P, and let ¢ € NI(Y;,S) be the class of a line

'cZinafiber ZCY,,ofm: Y, — P

. Let ¢ € NE(X, ;) be the class of a line [ C E that projects onto L C P C Y, 4, but

is contracted by the prOJeCtIOIl E = P xP" — P (see Lemma 3.5 for the fact that
E =P xP). Let £ be the class of a line in E contracted by ¢, and ¢ the class of the
strict transform of a line in a fiber of 7: Y, ; — P that meets P C Y, .

Lemma 3.1. Let D C Y, be the divisor, isomorphic to P x IP*, corresponding to the quotient
& — Ops(1)"*1. Then D is contained in the base-point-free linear system |Oy, (1)|. Let

Crst Yy — PUHDEHY

be the induced morphism. Then the image Y,,S of ¢, s 15 the cone over the Segre embedding of

P x P in PUHVEHY [Gro61, IT §4.3]. In particular, Y}s = Y;T —-Y.

Theorem 3.2. o There is a canonical isomorphism X, = X, .. Thus, if we define X =

X,s, we obtain a commutative diagram

Vi, Y Y,
\\
X

Pre—7mP" x P5 —— Ps.

We have NE(X) = NE(X) = R* - £ + R* - ¢/ + R* - {". We have the following equalities:

— NE(gg) =RT -/

— NE(f) =Rt - ¢

— NE(g;) =R* - ("

— NE(a) =Rt - £ +R* ./
— NE(B) =R* . ¢ + R+ - ¢,
~ NE(¥) =Rt - ¢+ R*- /",



Remarks 3.3. e The corresponding flip is the composition
Y;",s - X — Y:e,r-
e It is an isomorphism in codimension one (in fact, it is an isomorphism outside the sub-
varieties P, s C Y, s and Ps, C Y;,).
e The above remark implies that the Picard numbers of Y, ; and Y, are the same.

e The Ky, -negative extremal ray R = R™ - £ on Y, ; becomes a Ky,  -positive extremal ray
R =R"-¢ C NE(Y,;) (see Lemma 4.4).

The rest of this section is devoted to the proof of Theorem 3.2.

3.2 The cone of curves in'Y
The homomorphism 7*: Pic(P*) — Pic(Y') induces an isomorphism
Pic(Y) = Pic(P*) ® Z - [Oy (1)], (4)
see [Har77, Exercice 11.7.9]. In particular, if £ = [Oy(1)] € N'(Y) and h = [7*(Ops(1))], then
N'Y)=Z -£ERZ-h.

Lemma 3.4. We have o
NE(Y) = NE(Y) = RT-/+R". /7.

Proof. The composition P — Y — P*® is an isomorphism; let ¢ € N'(IP*) be the class of the
line in P® corresponding to ¢. Let j: P — Y and ¢: Z — Y be the inclusions.

First observe that j*(£) = 0. Indeed, P = P(Ops) C P(&) is the moduli space of invertible
quotients of Ops, which are necessarily trivial. In other words: if ¢: P — Y — P* is the
composition, then ¢*(Oy (1)) is the quotient ¢*(Ops) = Op of ¢*(&) by construction of P.

We have

het=700) -0 = 7°0() - ,[L] = O(1) - m(l1]) = O(1) -4 = 1 Q
h-t' =7*01) - 0'=7"0(1) - 1,[I] = O(1) - m.[T] = 0 (6)
€-0=Oy(1) - 1lL] = j"Ox (1) - [L] = 0- [£] =0, 7

1 (8)

Let C' C Y be an irreducible curve. We may write
C=a-L+b-{' e NEY).

The above equations show that
C-h=a, C-£=0b.

We claim that £ and h are nef. Indeed, ¢ is ample and h is the pull-back of a nef line bundle,
hence nef (projection formula).

Therefore, C-h = a > 0 and similarly, b > 0. This proves that [C]| = a-¢+b-¢' € RT-(+R*-{'.
Since C' was arbitrary, this proves that NE(Y) C Rt - £+ R" - /'. Consequently,

RT-¢+R"- ¢ CNE(Y)CNE(Y)CR" - (+R". ¢
because the cone Rt - £+ Rt - ¢/ C Ny(Y)g is closed. O



3.8 The multiplication table of X

Lemma 3.5. 1. The normal bundle Npy is isomorphic to Op(—1)80+1),

2. The exceptional divisor & C X is isomorphic to P" x P°.
3. The line bundle Og(FE) is of type (—1,—1).
Proof. 1.

2. Let Z C Oy be the ideal sheaf of P. We know |Har77, Theorem I1.8.24| that

E =P(Z/T%) = P(Ap)y) = P(Op(1)®0 D) = P(Op. (1)°0 D) = P(OET V) 2 P g P2,

3. Define W = P(Ops(1)®0*V). Then under the above isomorphism, we have
Neyx = Ow(—1).

Moreover, let 7': V =P @ P* = ]P’((’);‘?S(TH)) — P* be the projection. Then under the
isomorphism

o P(OR) =V S W,
we have (see |Gro61, II, Proposition 4.1.4] or [Har77, Lemma I1.7.9]):
T (Opr (1)) = Oy (1) Z o Ow(1)@(n") Ops(—1) =  Ow(1) =7 Opr(1)@m:Ops(1).
In other words, for the irreducible divisor £ = P" x P* — X, we have
Op(E) = Ng/x = Ow(—1) Z 7m0 (—1) @ 1, Ops(—1).
O

Lemma 3.6. Denote by & and h the pull-backs of the classes £, h € Pic(Y') to X. The vector
space N'(X)g has dimension 3, generated by [E] and the nef classes & and h.

Proof. Indeed, by Lemma 2.2 the morphism 7: X — Y induces an isomorphism
Pic(X) 2 Pic(Y) B Z - Ox(E).
By Equation (4), this implies that

Pic(X)=Z-BZ-h®Z-[E).

m
Lemma 3.7. We have the following multiplication table:
h-t=1, h-'=0, h-{ =0, (9)
§£:0> 5.6/:1’ 5'6//:()7 (10)
E] (=-1, [E]- (=1, [E]-{"=-1. (11)



Proof. Indeed, let L C P be the line that gives { € NE(Y) such that ,(¢) = ¢. Recall
that j: P — Y was the inclusion. Let L’ C P* be the line that corresponds to L under the
isomorphism P = P®. Then

h-l=¢e"(h)-L=h-e,0) =7"01) - j.([L]) =O(1)-[L'] = 1.
hell =h-e,(0)=0, h-l'=h-e,(")=0.
Moreover,
§l=Ee(0)=0, £l =¢all)=1 & =¢el)=0,
and if ¢: £ =P" x P* — X is the inclusion, then (because m, .(¢) = 0) we have
[E]- €= Op(E) - ¢"(€) = (r;(O(=1)) + 7(O(-1))) - ] =
Opr(—1) - i [l] + Ops(—1) - w5 4 [l] = (Opr(—1) - w4 [l]) =1 = —1.

In a similar way, one proves that [E] - ¢’ = 1. Finally,

/!

B]- (' = 0p(B) - ¢*((") = -1

because the projection £ — P corresponds to the projection P* x P" — P¥ and since this
contracts the line ¢, ¢ = [L"] for some line L" contained in a fiber {z} x P" C E — P*.
]

3.4 The cone of curves in X

The goal of this subsection is to prove the following:
Proposition 3.8. We have
NE(X)=NE(X) =Rt -/ +R* ./ +R*-(".

Proof. Let C' C X be an irreducible curve, and let

i

Cl=al+dl'+al
be its class in NE(X).
e The subvariety P is defined as the complete intersection of r+1 divisors with class & — h.

e This implies that if C is not contained in E, the class £ —h — [E] on X has nonnegative
intersection with C.

We conclude that

/)

h-C=a>0, dd=¢(-C>0, a =(E—-h—[E])-C>0.
e IfC C E, then a = 0. Moreover, a and a" are nonnegative in this case.
The conclusion is that [C] € RT - £+ R* - ¢/ + R* - ¢", which proves the proposition. O

Lemma 3.9. We have X = X, ; = P(Opryps ® Opryps(1,1)).



4 Example III: - a flip

Let us prove the statements made in Remark 3.3. We begin with a

Lemma 4.1. Let Y be a Fano variety and let D,..., D, be nef divisors on Y such that
—Ky —Dy...— D, is ample. Then X =P(B,_, Oy (D;)) is a Fano variety.

Proof. Indeed,
det (@ Oy(Di)) =0y()_ Dy,
i=1 i

thus by Lemma 1.2, we have Kx = (r +1) - Ox(1) + 7*(=Ky — Dy --- — D,) € N}(X). O
Corollary 4.2. Assume that r < s. The variety Y, s is a Fano variety.

Proof. Tt suffices to observe that & = Ops @ Ops(1)2"+1) is a direct sum of nef divisors, and
that
_K[Ps — OPS(T + 1) - OPS(S + 1) - OPS(T + 1) - OPS(S - T)

is ample because s > r. O
Proposition 4.3. Let R =R" - /.

1. The contraction R
CRr: }/r,s — }/r,s

of the Ky,  -negative extremal ray R is the morphism associated with the base-point-free
linear system |Oy, (1)].

2. One has L(R) =P C Y, .

3. The morphism cgr is a small contraction.

Lemma 4.4. Continue to assume that r < s and consider the variety Ys,. Let R = R" -{ C
NE(Y;,). Then Ky,, - R > 0.

Proof. By Lemma 1.2, we have Ky, = —(r+1) - Oy, (1) + 7*(Kpr + Ops(s + 1)). Therefore,
Ky,, £ =7"(Kpr 4+ Ops(s+1)) - L =7"(Opr(s —7)) - £ = Ops(s — 1) - m({) =5 — 1> 0.
[

In other words, where Y, ; was Fano and ¢ € NE(Y,.,) was Ky, -negative, the variety Y, is
not a Fano variety, and the class £ € NE(Y,.,) is Ky,  -positive.
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