
Alterations

Notes by Olivier de Gaay Fortman, January 24, 2023

1 Introduction

1.1 General idea. The goal of this notes is to explain the main ideas behind the proof
of De Jong’s alteration theorem [Jon96]. We also put the alteration theorem in some
context, by providing applications and extensions.

Notation 1.1. A variety is an integral separated scheme of finite type over a field.
A modification of a variety X is a proper birational morphism X ′ → X with X ′ a
variety. An alteration of X is a proper dominant map X ′ → X where X ′ is a variety
with dim(X ′) = dim(X).

Examples 1.2. 1. Blow-ups are modifications.

2. Modifications are alterations.

3. Finite field extensions are alterations.

These notions are used in geometric situations, when one wants to simplify such a
situation by ‘modifying’ or ‘altering’ the varieties under consideration. The idea is to
get to this new situation while staying as close to the geometry of original variety as
possible.

Examples 1.3. 1. (From NC to SNC.) Let D be a normal crossings divisor on a
noetherian scheme S. There exists a blow-up S ′ → S in an idea with support in D
such that ϕ−1(D)red is a strict normal crossings divisor.

2. (Extending families of curves.) Let Y be a projective variety, U ⊂ Y a non-empty
open subset, n ∈ Z≥3 and

(C0 → U, σ1, . . . , σn : U → C0)

be a smooth n-pointed curve of genus g ≥ 0.

Claim: There exists a generically étale alteration ϕ : Y ′ → Y such that for U ′ =
ϕ−1(U) ⊂ Y ′, the base change

C ′0 → U ′

extends to a stable n-pointed curve C ′ → Y ′. Proof: We get a morphism

U →Mg,n
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to the stack of smooth stable n-pointed curves of genus g. Choose ` ≥ 3 a prime
number unequal to char(k), and let

U ′ ⊂ U ×Mg,n M
`
g,n

be an irreducible component. Then U ′ non-empty and finite étale over U . Put

Y ′ = Im
(
U ′ → Y ×M `

g,n

)
⊂ Y ×M `

g,n.

Then Y ′ → Y is a generically étale alteration by a projective variety, and the compo-
sition

Y ′ →M
`

g,n →Mg,n[1/`]→Mg,n

gives the desired family of curves.

What about resolving singularities?

1.2 Resolution of singularities.

Definition 1.4. Let (X,Z) be a pair where X is a variety over a field and Z ⊂ X
a closed subscheme. The pair (X,Z) admits an altered desingularization (or altered
resolution of singularities) if there exists an alteration

ϕ : X ′ → X,

a smooth projective variety X ′ over k, an open immersion j : X ′ → X
′ and a strict

normal crossings divisor D ⊂ X
′ such that D = j(Z ′) ∪ X ′ \ X ′ ⊂ X

′. We say that
(X,Z) admits a desingularization if such an alteration exists with ϕ birational.

Picture:
ϕ−1(Z)

��

##

// D

��

X ′

��

// X
′

Z // X.

We have seen, so far:

Theorem 1.5 (Hironaka). Let X be a variety over a field k of characteristic zero, and
let Z ⊂ X be a proper closed subscheme. Then (X,Z) admits a desingularization.

In this talk, and the next, Morten and I will prove:

Theorem (Theorem (A). De Jong). Let X be a variety over a field k, and let Z ⊂ X
be a proper closed subscheme. Then (X,Z) admits an altered desingularization. If k
is perfect then the alteration ϕ : X ′ → X may be chosen generically étale.
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Remarks 1.6. 1. If k is perfect, then X
′ is smooth over k. (But there are regular

varieties which are not smooth: think of Z(yp − x2 − t) ⊂ A2
Fp(t)

.)

2. One obtains:

Corollary 1.7. Any variety X ′ → X admits an alteration by a regular variety. If X
is projective then there exists an alteration X ′ → X with X ′ projective and regular.

3. The subscheme Z ⊂ X is actually used the proof, which relies on an inductive
argument. It is not clear how to prove Corollary 1.7 directly.

4. The proof shows that the structural morphism X
′ → Spec k factors over a finite

field extension k ⊂ k′ such that X ′ is geometrically irreducible over k′.

2 Applications and extensions

2.1 Applications. Using Theorem (A), one can prove, for instance, that:

1. For any variety over a perfect field k, there exists:

(a) a simplicial scheme X• projective and smooth over k;

(b) a strict normal crossings divisor D• in X•; we put U•, and

(c) an augmentation a : U• → X which is a proper hypercovering of X.

2. We have [Del74]:
Hi

et(X ⊗ k̄,Q`) ∼= Hi
et(U• ⊗ k̄,Q`).

If k is finite, then the eigenvalues of Frobenius on Hi
et(X ⊗ k̄,Q`) occur as eigenvalues

of Frobenius on some cohomology group of some smooth projective variety, and hence
are Weil numbers (compare [Del80]).

3. If k = C, then [Del74]:

Hi(X(C),Q) ∼= Hi(U•(C),Q).

Moreover, Theorem (A) suffices to construct the mixed Hodge structure on Hi(X(C),Q).

4. Similarly, Theorem (A) can be used to define crystalline cohomology of X, when X
is defined over a perfect field of characteristic p > 0. One obtains a finite-dimensional
cristalline cohomology (but it is not clear that the result is independent of the choice
of (X•, D•, a)).
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2.2 Extensions. One has the following extension of Theorem (A):

Theorem 2.1 (Gabber). Let X be a variety over a field k, and ` 6= char(k) a prime
number. The alteration X ′ → X with X regular can be chosen in such a way that
[K(X ′) : K(X)] is prime to `.

This has useful consequences. For instance, if X is a smooth projective variety over
a perfect field k of characteristic p, and Z ⊂ X is a closed subvariety of codimension
k, let Z ′ → Z be an alteration with Z ′ smooth projective over k. Consider the
composition f : Z ′ → Z → X. One may then define [Z] := 1

d
·f∗(1) ∈ H2k

et (Xksep ,Z`(k)).
Here d = [K(Z ′) : K(Z)] and

f∗ : Z` = H0(Zksep ,Z`)→ H2k
et (Xksep ,Z`(k))

is the push-forward on cohomology attached to the morphism of smooth varieties f
[Mil80, Section IV, §11]. Since any two alterations by smooth projective varieties can
be covered by a third, this class does not depend on the alteration chosen.

The most general known statement seems to be the following. Given a scheme X,
by char(X) we denote the set of all primes p with p = char(k(x)) for some x ∈ X. Let
P be a set of primes, possibly empty. By a P-alteration we mean an alteration such
that if d =

∏
i p

ki
i is the degree of the alteration, then pi ∈ P for all i.

Example 2.2. Let p be a prime number. Then a {p}-alteration of a variety over a
field of characteristic p is an alteration X ′ → X of degree pr for some r ≥ 0.

Theorem 2.3 (De Jong, Gabber, Illusie, Temkin). Let X and S be Noetherian in-
tegral schemes, f : X → S a morphism of finite type. If any alteration of S can be
desingularized by a char(S)-alteration, then both X and f can be desingularized by a
char(X)-alteration.

Corollary 2.4. Let X be a variety over a field of characteristic p ≥ 0. Let P be any
set of prime numbers such that p ∈ P if p > 0. Then X is P-resolvable. If p = 0 then
X admits a resolution of singularities.

Remark 2.5. If k is perfect then X is separably P-resolvable.

Let us be more precise. Let P be a set of primes, and S a Noetherian integral
scheme. We say that S is universally P -resolvable if for any alteration Y → S and
any strict closed subset Z ⊂ Y there exists a P -alteration f : Y ′ → Y such that Y ′ is
regular and Z ′ = f−1(Z) is a strict normal crossings divisor. The precise version of
Theorem 2.3 is the following.

Theorem 2.6 (De Jong, Gabber, Illusie, Temkin). Let X and S be Noetherian integral
schemes, f : X → S dominant of finite type. Let Z ⊂ X be a strict closed subset, and
assume that S is universally P -resolvable for a set of primes P with char(S) ⊂ P .
Then

(i) X is universally P -resolvable.
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(ii) There exist projective P -alterations a : S ′ → S and b : X ′ → X, with regular
sources, a quasi-projective morphism f ′ : X ′ → S ′ compatible with (f, a, b), and snc
divisors W ′ ⊂ S ′ and Z ′ ⊂ X ′, such that Z ′ = b−1(Z) ∪ (f ′)−1(W ′) and the morphism
(X ′, Z ′)→ (S ′,W ′) is log-smooth.

(iii) If S = Spec k and k is a perfect field, then one can achieve in addition to (ii)
that a is an isomorphism and b is separable.

Proof. See [Tem17].

For any practical application, one should start with a class of schemes S that
satisfy the desingularization property as above. Recall that a Noetherian ring is quasi-
excellent if it has geometrically regular formal fibres and if any finite type algebra over
it has closed singular set. A locally noetherian scheme is quasi-excellent if it admits
an affine open covering by spectra of quasi-excellent rings. Remark that any algebraic
scheme is excellent [Liu02, Chapter 8, Corollary 2.40].

Reduced, separated, Noetherian, quasi-excellent schemes of dimension ≤ 3 admit
a modification by a regular scheme [CP19]. Hence, to apply Theorem 2.6, we can take
S to be a three-dimensional scheme having these properties.

Finally, we recall the relation between quasi-excellent schemes and resolutions of
singularities.

Proposition 2.7 (Grothendieck). Let X be a locally noetherian scheme. Suppose that,
for every integral scheme Y finite over X, one can resolve the singularities of Y . Then
X is a quasi-excellent scheme.

Proof. See [DG61, §7].

Grothendieck asks whether the converse holds:

Conjecture 2.8 (Grothendieck). Let X be a reduced locally Noetherian scheme. If
X is quasi-excellent, then X admits a desingularization (and hence the same holds for
any reduced scheme Y locally of finite type over X).

3 Outline of the proof of Theorem (A)

As we explained above, the proof of Theorem (A) will be done in two talks. In this
talk, I present the first half of the proof of the theorem, and explain what will be next.

3.1 Outline of the proof. The idea is as follows.

1. By applying suitable alterations, reduce Theorem (A) to the case where k = k̄, X
is normal and projective, and Z ⊂ X is the support of a Cartier divisor D ⊂ X.

2. ModifyX (i.e. define a projective modification ofX) in order to construct a suitable
family of curves X → Y over a projective variety Y , smooth over a non-empty open
U ⊂ Y , together with n ≥ 3 sections σi : Y → X such that Z = ∪iσi(Z).
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3. Use the moduli stacks of curvesMg,n andMg,n, and the projectivity of the coarse
moduli space ofMg,n, to define an alteration Y ′ → Y and an extension of the smooth
n-pointed curve XU ′ → U ′ to a stable n-pointed curve f : C → Y ′. Replace Y by Y ′.

4. Prove that the rational map β : C 99K X extends to a morphism β : C → X, and
that there is a closed subset D ⊂ Y such that β−1(Z) is contained in the union of the
images of the sections τi : Y → C and f−1(D), and such that C → Y is smooth over
Y \D. Since β is a modification, after replacing X by C we may assume that X → Y
is a stable n-pointed curve, smooth over Y \D.

5. Apply the induction hypothesis to the pair (Y,D): up to altering the pair (Y,D),
we may assume that D ⊂ Y is a divisor with strict normal crossings, f : X → Y is a
stable curve, smooth over Y \D; and

Z =
⋃
i

σi(Y ) ∪ f−1(D) ⊂ X,

where σi, 1 ≤ i ≤ n are mutually disjoint sections into the smooth locus of f .

6. Modify X to get that Sing(X) has codimension at least three in X.

7. Calculate what the singularities of (X,Z) must look like: for a smooth point x ∈ X,
Z is a normal crossings divisor at x, and for x ∈ Sing(X), there are 2 ≤ s ≤ r ≤ d− 1
such that

OX,x
∧ = k[[u, v, t1, . . . , td−1]]/(uv − t1 · t2 · · · · ts),

Z ⊂ X is defined by t1 · · · tr = 0, and the irreducible components of Sing(X) are
smooth.

8. For the blow up X ′ → X of X in a component of Sing(X), show that the number
of components of Sing(X ′) is one less than the number of components of Sing(X).

9. By repeatedly blowing up (X,Z), we get to the situation that X is smooth and Z
is a strict normal crossings divisor. This finishes the proof of Theorem (A).

4 Proof of Theorem (A): Part I

Let X be a variety over a field k, with a proper closed subscheme Z ⊂ X.

Lemma 4.1. To prove that an altered desingularization of (X,Z) exists, we may
replace (X,Z) by (X ′, Z ′) for any alteration ϕ : X ′ → X, with Z ′ = ϕ−1(Z).

Consider the following hypotheses:

Conditions 4.2. 1. The field k is algebraically closed.

2. X is projective and there exists a divisor D ⊂ X such that Z is the support of D.
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Proposition (R). To prove Theorem (A), we may assume that Conditions 4.2.1-4.2.2
hold.

Proof. 1. Let k̄ be an algebraic closure of k, let Y be an irreducible component of
X×k k̄, and let C be the inverse image of Z in Y . Suppose that we can find f : Y ′ → Y
and Y ↪→ Y as in the theorem. Then the altered desingularization(

C ′ ⊂ Y ′ → Y ⊃ C, Y ↪→ Y
)

(1)

is defined over a finite extension k1 of k. In other words, we have(
C ′1 ⊂ Y ′1 → Y1 ⊃ C1, Y1 ↪→ Y 1

)
over k1 such that these give rise to (1) after base extension. The composition

X ′ = Y ′1 → Y1 ↪→ X ⊗ k1 → X

defines the desired alteration X ′ → X of X.
2. Perform the following steps:

• Take a modification ϕ : X1 → X with X1 quasi-projective (Chow’s lemma) and
define Z1 = ϕ−1(Z).

• Embed j : X1 → X1 into a projective variety X1 and define Z1 = j(Z1)∪X1\X1.

• Blow up X1 in the ideal sheaf of Z1.

If the resulting pair (X
′
1, Z

′
1) admits an altered desingularization, the same holds for

(X,Z).

Remark 4.3. By normalizing X, we may assume in addition that X is a normal
variety.

5 Proof of Theorem (A)

In the sequel, a curve over a field k is a geometrically connected algebraic scheme C
over k which is equidimensional of dimension one.

Theorem (Theorem (B)). Let X be a projective variety over an algebraically closed
field k, and let Z ⊂ X be the support of a divisor D ⊂ X. There exists an alteration
X ′ → X, a closed subscheme Z ′ ⊂ X ′ which is the support of a divisor D′ ⊂ X ′, a
morphism of projective varieties f : X ′ → Y ′ such that:

1. All fibres are curves.

2. The smooth locus of f is dense in all fibres.

3. The generic fibre of f is smooth.
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4. The morphism f |Z′ : Z ′ → Y ′ is finite and generically étale.

5. For all geometric points Y ∈ Y ′, and any irreducible component C ′ of X ′
Y

= f−1(Y ),
we have

# |sm(X ′/Y ′) ∩ C ′ ∩ Z ′| ≥ 3.

6. There are sections σi : Y ′ → X ′, i = 1, . . . , n, such that Z ′ = ∪iσi(Y ′).

Sketch of the proof of Theorem (A), assuming Theorem (B). By Proposition (R) and
Theorem (B), we may assume that there exists a morphism of projective varieties

f : X → Y

satisfying the assumptions in Theorem (B). Let

U = {y ∈ Y | Xy is smooth over y and σi(y) 6= σj(y) for i 6= j} .

Note that U 6= ∅ and that n ≥ 3. Let g be the genus of Xy for y ∈ U . Let

Y ′ → Y

be a generically étale alteration by a projective variety Y ′ such that U ′ →Mg,n extends
to Y ′ →M g,n (see Example 1.3).

Replace Y by Y ′ and X by the closed subscheme of X ×Y Y ′ given by dividing
the OY ′-torsion out of OX×Y Y ′ . Therefore, we may assume that there exists a stable
n-pointed curve

(C , τ1, . . . , τn)→ Y,

a non-empty open subscheme U ⊂ Y and an isomorphism

β : CU
∼−→ XU

mapping each section τi|U to the section σi|U .

Theorem (C). There are modifications Y ′ → Y,X ′ → X such that the rational map
β : C 99K X extends to a morphism β : C ′ → X ′ and such that there is a closed subset
D′ ⊂ Y ′ such that

β−1(Z ′) ⊂ τ1(Y
′) ∪ · · · ∪ τn(Y ′) ∪ g−1(D′)

and such that C ′ → Y ′ is smooth over Y ′ \D′.

Replace X by C and Z by τ1(Y )∪ · · · ∪ τn(Y )∪ f−1(D). Then apply the induction
hypothesis to (Y,D). Modify X to get codim(Sing(X), X) ≥ 3. The completions of
the singularities of X look like

{uv − t1 · · · ts = 0} ⊂ Ad+1
k ,

Z is defined by t1 · · · tr = 0, and the irreducible components of Sing(X) are smooth.
Blow these components up repeatedly to get that X is smooth. Then modify X by
blow-ups in smooth centers to make Z ⊂ X a strict normal crossings divisor (and note
that X remains smooth [Har77, Theorem II.8.24]).
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6 Proof of Theorem (B)

Lemma (Key Lemma I). Let X be a normal projective variety over an algebraically
closed field k, and let Z ⊂ X be the support of a divisor D ⊂ X. Then there exists a
diagram

ϕ−1(Z) = Z ′

��

%%

f |Z′

$$

X ′

ϕ

��

f
// Pd−1

Z // X

where ϕ is the blow-up of X in a finite set of closed points S ⊂ Reg(X) with S∩Z = ∅,
having the following properties:

1. All fibres of f are non-empty, equidimensional schemes of dimension one.

2. The smooth locus of f is dense in all fibres of f .

3. The morphism f |Z′ : Z ′ → Pd−1 is finite and étale over an open subscheme of Pd−1.

4. At least one fibre of f is smooth.

Lemma (Key Lemma II). Let f : X → Y be a morphism of smooth projective varieties
over an algebraically closed field k such that all fibres are curves. Suppose that the
smooth locus of f is dense in all fibres. There exists a divisor H ⊂ X such that

(α) f |H : H → Y is finite and generically étale, and

(β) for all geometric points Y ∈ Y , and any irreducible component C of XY = f−1(Y ),
we have

# |sm(X/Y ) ∩ C ∩H| ≥ 3.

Proof of Theorem (B) assuming Key Lemma’s I and II. Let (X,Z) be as in the state-
ment of the theorem. Replace X by a modification to get into the situation of Key
Lemma I. Thus, we get a family of curves

f : X → Y

satisfying 1− 4. By Key Lemma II, there exists a divisor H ⊂ X satisfying (α)− (β).
It suffices to prove the theorem for the pair (X,Z ∪ H). Thus we may replace Z
by Z ∪ H. We know have that for all geometric points Y ∈ Y , and any irreducible
component C of XY , have

# |sm(X/Y ) ∩ C ∩ Z| ≥ 3. (2)

Let Z =
⋃

i Zi be the decomposition into irreducible components. Choose a finite
Galois extension k(Y ) ⊂ L such that k(Zi) may be embedded over k(Y ) into L for all
i (this is possible by 3).
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Let Y ′ be the normalization of Y in the field L. Then Y ′ → Y is a finite generically
étale alteration of Y . Let (X ′, Z ′) be the strict transform of (X,Z). We see that

Z ′ = Z ′1 ∪ · · · ∪ Z ′n,

with Z ′i → Y ′ finite and birational, and where n ≥ 3 by (2). Hence Z ′i → Y is an
isomorphism (Y is normal). In this way, we obtain sections

σi : Y → X, i = 1, . . . , n

of f such that Z = ∪ni=1σi(Y ), with n ≥ 3. This proves Theorem (B).
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