Alterations

Notes by OLIVIER DE GAAY FORTMAN, January 24, 2023

1 Introduction

1.1 **General idea.** The goal of this notes is to explain the main ideas behind the proof of De Jong's alteration theorem [Jon96]. We also put the alteration theorem in some context, by providing applications and extensions.

Notation 1.1. A variety is an integral separated scheme of finite type over a field. A modification of a variety X is a proper birational morphism $X' \to X$ with X' a variety. An alteration of X is a proper dominant map $X' \to X$ where X' is a variety with $\dim(X') = \dim(X)$.

Examples 1.2. 1. Blow-ups are modifications.

- 2. Modifications are alterations.
- 3. Finite field extensions are alterations.

These notions are used in geometric situations, when one wants to simplify such a situation by 'modifying' or 'altering' the varieties under consideration. The idea is to get to this new situation while staying as close to the geometry of original variety as possible.

Examples 1.3. 1. (From NC to SNC.) Let D be a normal crossings divisor on a noetherian scheme S. There exists a blow-up $S' \to S$ in an idea with support in D such that $\varphi^{-1}(D)_{\text{red}}$ is a strict normal crossings divisor.

2. (Extending families of curves.) Let Y be a projective variety, $U \subset Y$ a non-empty open subset, $n \in \mathbb{Z}_{\geq 3}$ and

$$(\mathscr{C}_0 \to U, \quad \sigma_1, \dots, \sigma_n \colon U \to \mathscr{C}_0)$$

be a smooth *n*-pointed curve of genus $g \ge 0$.

Claim: There exists a generically étale alteration $\varphi \colon Y' \to Y$ such that for $U' = \varphi^{-1}(U) \subset Y'$, the base change

$$\mathscr{C}'_0 \to U'$$

extends to a stable *n*-pointed curve $\mathscr{C}' \to Y'$. *Proof:* We get a morphism

 $U \to \mathscr{M}_{g,n}$

to the stack of smooth stable *n*-pointed curves of genus g. Choose $\ell \geq 3$ a prime number unequal to char(k), and let

$$U' \subset U \times_{\mathscr{M}_{g,n}} M_{g,n}^{\ell}$$

be an irreducible component. Then U' non-empty and finite étale over U. Put

$$Y' = \overline{\mathrm{Im}\left(U' \to Y \times \overline{M}_{g,n}^{\ell}\right)} \subset Y \times \overline{M}_{g,n}^{\ell}.$$

Then $Y' \to Y$ is a generically étale alteration by a projective variety, and the composition

$$Y' \to \overline{M}_{g,n}^{\ell} \to \overline{\mathscr{M}}_{g,n}[1/\ell] \to \overline{\mathscr{M}}_{g,n}$$

gives the desired family of curves.

What about resolving singularities?

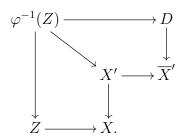
1.2 **Resolution of singularities.**

Definition 1.4. Let (X, Z) be a pair where X is a variety over a field and $Z \subset X$ a closed subscheme. The pair (X, Z) admits an *altered desingularization* (or *altered resolution of singularities*) if there exists an alteration

$$\varphi \colon X' \to X,$$

a smooth projective variety \overline{X}' over k, an open immersion $j: X' \to \overline{X}'$ and a strict normal crossings divisor $D \subset \overline{X}'$ such that $D = \overline{j(Z')} \cup \overline{X}' \setminus X' \subset \overline{X}'$. We say that (X, Z) admits a *desingularization* if such an alteration exists with φ birational.

Picture:



We have seen, so far:

Theorem 1.5 (Hironaka). Let X be a variety over a field k of characteristic zero, and let $Z \subset X$ be a proper closed subscheme. Then (X, Z) admits a desingularization.

In this talk, and the next, Morten and I will prove:

Theorem (Theorem (A). De Jong). Let X be a variety over a field k, and let $Z \subset X$ be a proper closed subscheme. Then (X, Z) admits an altered desingularization. If k is perfect then the alteration $\varphi \colon X' \to X$ may be chosen generically étale.

Remarks 1.6. 1. If k is perfect, then \overline{X}' is smooth over k. (But there are regular varieties which are not smooth: think of $Z(y^p - x^2 - t) \subset \mathbb{A}^2_{\mathbb{F}_p(t)}$.)

2. One obtains:

Corollary 1.7. Any variety $X' \to X$ admits an alteration by a regular variety. If X is projective then there exists an alteration $X' \to X$ with X' projective and regular.

3. The subscheme $Z \subset X$ is actually used the proof, which relies on an inductive argument. It is not clear how to prove Corollary 1.7 directly.

4. The proof shows that the structural morphism $\overline{X}' \to \text{Spec } k$ factors over a finite field extension $k \subset k'$ such that \overline{X}' is geometrically irreducible over k'.

2 Applications and extensions

2.1 Applications. Using Theorem (A), one can prove, for instance, that:

1. For any variety over a perfect field k, there exists:

- (a) a simplicial scheme X_{\bullet} projective and smooth over k;
- (b) a strict normal crossings divisor D_{\bullet} in X_{\bullet} ; we put U_{\bullet} , and
- (c) an augmentation $a: U_{\bullet} \to X$ which is a proper hypercovering of X.
- 2. We have [Del74]:

$$\mathrm{H}^{i}_{et}(X \otimes \bar{k}, \mathbb{Q}_{\ell}) \cong \mathbf{H}^{i}_{et}(U_{\bullet} \otimes \bar{k}, \mathbb{Q}_{\ell}).$$

If k is finite, then the eigenvalues of Frobenius on $\mathrm{H}^{i}_{et}(X \otimes \overline{k}, \mathbb{Q}_{\ell})$ occur as eigenvalues of Frobenius on some cohomology group of some smooth projective variety, and hence are Weil numbers (compare [Del80]).

3. If $k = \mathbb{C}$, then [Del74]:

$$\mathrm{H}^{i}(X(\mathbb{C}),\mathbb{Q})\cong \mathrm{H}^{i}(U_{\bullet}(\mathbb{C}),\mathbb{Q}).$$

Moreover, Theorem (A) suffices to construct the mixed Hodge structure on $\mathrm{H}^{i}(X(\mathbb{C}),\mathbb{Q})$.

4. Similarly, Theorem (A) can be used to define crystalline cohomology of X, when X is defined over a perfect field of characteristic p > 0. One obtains a finite-dimensional cristalline cohomology (but it is not clear that the result is independent of the choice of $(X_{\bullet}, D_{\bullet}, a)$).

2.2 **Extensions.** One has the following extension of Theorem (A):

Theorem 2.1 (Gabber). Let X be a variety over a field k, and $\ell \neq \operatorname{char}(k)$ a prime number. The alteration $X' \to X$ with X regular can be chosen in such a way that [K(X'): K(X)] is prime to ℓ .

This has useful consequences. For instance, if X is a smooth projective variety over a perfect field k of characteristic p, and $Z \subset X$ is a closed subvariety of codimension k, let $Z' \to Z$ be an alteration with Z' smooth projective over k. Consider the composition $f: Z' \to Z \to X$. One may then define $[Z] := \frac{1}{d} \cdot f_*(1) \in \mathrm{H}^{2k}_{et}(X_{k^{sep}}, \mathbb{Z}_{\ell}(k))$. Here d = [K(Z'): K(Z)] and

$$f_* \colon \mathbb{Z}_{\ell} = \mathrm{H}^0(Z_{k^{sep}}, \mathbb{Z}_{\ell}) \to \mathrm{H}^{2k}_{et}(X_{k^{sep}}, \mathbb{Z}_{\ell}(k))$$

is the push-forward on cohomology attached to the morphism of smooth varieties f [Mil80, Section IV, §11]. Since any two alterations by smooth projective varieties can be covered by a third, this class does not depend on the alteration chosen.

The most general known statement seems to be the following. Given a scheme X, by char(X) we denote the set of all primes p with p = char(k(x)) for some $x \in X$. Let \mathcal{P} be a set of primes, possibly empty. By a \mathcal{P} -alteration we mean an alteration such that if $d = \prod_i p_i^{k_i}$ is the degree of the alteration, then $p_i \in \mathcal{P}$ for all i.

Example 2.2. Let p be a prime number. Then a $\{p\}$ -alteration of a variety over a field of characteristic p is an alteration $X' \to X$ of degree p^r for some $r \ge 0$.

Theorem 2.3 (De Jong, Gabber, Illusie, Temkin). Let X and S be Noetherian integral schemes, $f: X \to S$ a morphism of finite type. If any alteration of S can be desingularized by a char(S)-alteration, then both X and f can be desingularized by a char(X)-alteration.

Corollary 2.4. Let X be a variety over a field of characteristic $p \ge 0$. Let \mathcal{P} be any set of prime numbers such that $p \in \mathcal{P}$ if p > 0. Then X is \mathcal{P} -resolvable. If p = 0 then X admits a resolution of singularities.

Remark 2.5. If k is perfect then X is separably \mathcal{P} -resolvable.

Let us be more precise. Let P be a set of primes, and S a Noetherian integral scheme. We say that S is universally P-resolvable if for any alteration $Y \to S$ and any strict closed subset $Z \subset Y$ there exists a P-alteration $f: Y' \to Y$ such that Y' is regular and $Z' = f^{-1}(Z)$ is a strict normal crossings divisor. The precise version of Theorem 2.3 is the following.

Theorem 2.6 (De Jong, Gabber, Illusie, Temkin). Let X and S be Noetherian integral schemes, $f: X \to S$ dominant of finite type. Let $Z \subset X$ be a strict closed subset, and assume that S is universally P-resolvable for a set of primes P with char $(S) \subset P$. Then

(i) X is universally P-resolvable.

(ii) There exist projective P-alterations $a: S' \to S$ and $b: X' \to X$, with regular sources, a quasi-projective morphism $f': X' \to S'$ compatible with (f, a, b), and snc divisors $W' \subset S'$ and $Z' \subset X'$, such that $Z' = b^{-1}(Z) \cup (f')^{-1}(W')$ and the morphism $(X', Z') \to (S', W')$ is log-smooth.

(iii) If S = Spec k and k is a perfect field, then one can achieve in addition to (ii) that a is an isomorphism and b is separable.

Proof. See [Tem17].

For any practical application, one should start with a class of schemes S that satisfy the desingularization property as above. Recall that a Noetherian ring is *quasiexcellent* if it has geometrically regular formal fibres and if any finite type algebra over it has closed singular set. A locally noetherian scheme is quasi-excellent if it admits an affine open covering by spectra of quasi-excellent rings. Remark that any algebraic scheme is excellent [Liu02, Chapter 8, Corollary 2.40].

Reduced, separated, Noetherian, quasi-excellent schemes of dimension ≤ 3 admit a modification by a regular scheme [CP19]. Hence, to apply Theorem 2.6, we can take S to be a three-dimensional scheme having these properties.

Finally, we recall the relation between quasi-excellent schemes and resolutions of singularities.

Proposition 2.7 (Grothendieck). Let X be a locally noetherian scheme. Suppose that, for every integral scheme Y finite over X, one can resolve the singularities of Y. Then X is a quasi-excellent scheme.

Proof. See [DG61, §7].

Grothendieck asks whether the converse holds:

Conjecture 2.8 (Grothendieck). Let X be a reduced locally Noetherian scheme. If X is quasi-excellent, then X admits a desingularization (and hence the same holds for any reduced scheme Y locally of finite type over X).

3 Outline of the proof of Theorem (A)

As we explained above, the proof of Theorem (A) will be done in two talks. In this talk, I present the first half of the proof of the theorem, and explain what will be next.

3.1 **Outline of the proof.** The idea is as follows.

1. By applying suitable alterations, reduce Theorem (A) to the case where k = k, X is normal and projective, and $Z \subset X$ is the support of a Cartier divisor $D \subset X$.

2. Modify X (i.e. define a projective modification of X) in order to construct a suitable family of curves $X \to Y$ over a projective variety Y, smooth over a non-empty open $U \subset Y$, together with $n \geq 3$ sections $\sigma_i \colon Y \to X$ such that $Z = \bigcup_i \sigma_i(Z)$.

3. Use the moduli stacks of curves $\mathcal{M}_{g,n}$ and $\overline{\mathcal{M}}_{g,n}$, and the projectivity of the coarse moduli space of $\overline{\mathcal{M}}_{g,n}$, to define an alteration $Y' \to Y$ and an extension of the smooth *n*-pointed curve $X_{U'} \to U'$ to a stable *n*-pointed curve $f: \mathscr{C} \to Y'$. Replace Y by Y'.

4. Prove that the rational map $\beta: \mathscr{C} \dashrightarrow X$ extends to a morphism $\beta: \mathscr{C} \to X$, and that there is a closed subset $D \subset Y$ such that $\beta^{-1}(Z)$ is contained in the union of the images of the sections $\tau_i: Y \to \mathscr{C}$ and $f^{-1}(D)$, and such that $\mathscr{C} \to Y$ is smooth over $Y \setminus D$. Since β is a modification, after replacing X by \mathscr{C} we may assume that $X \to Y$ is a stable *n*-pointed curve, smooth over $Y \setminus D$.

5. Apply the **induction hypothesis** to the pair (Y, D): up to altering the pair (Y, D), we may assume that $D \subset Y$ is a divisor with strict normal crossings, $f: X \to Y$ is a stable curve, smooth over $Y \setminus D$; and

$$Z = \bigcup_i \sigma_i(Y) \cup f^{-1}(D) \subset X,$$

where $\sigma_i, 1 \leq i \leq n$ are mutually disjoint sections into the smooth locus of f.

6. Modify X to get that Sing(X) has codimension at least three in X.

7. Calculate what the singularities of (X, Z) must look like: for a smooth point $x \in X$, Z is a normal crossings divisor at x, and for $x \in \text{Sing}(X)$, there are $2 \leq s \leq r \leq d-1$ such that

$$\mathcal{O}_{X,x}^{\wedge} = k[[u,v,t_1,\ldots,t_{d-1}]]/(uv-t_1\cdot t_2\cdots t_s),$$

 $Z \subset X$ is defined by $t_1 \cdots t_r = 0$, and the irreducible components of Sing(X) are smooth.

8. For the blow up $X' \to X$ of X in a component of $\operatorname{Sing}(X)$, show that the number of components of $\operatorname{Sing}(X')$ is one less than the number of components of $\operatorname{Sing}(X)$.

9. By repeatedly blowing up (X, Z), we get to the situation that X is smooth and Z is a strict normal crossings divisor. This finishes the proof of Theorem (A).

4 Proof of Theorem (A): Part I

Let X be a variety over a field k, with a proper closed subscheme $Z \subset X$.

Lemma 4.1. To prove that an altered desingularization of (X, Z) exists, we may replace (X, Z) by (X', Z') for any alteration $\varphi \colon X' \to X$, with $Z' = \varphi^{-1}(Z)$.

Consider the following hypotheses:

Conditions 4.2. 1. The field k is algebraically closed.

2. X is projective and there exists a divisor $D \subset X$ such that Z is the support of D.

Proposition (R). To prove Theorem (A), we may assume that Conditions 4.2.1-4.2.2 hold.

Proof. 1. Let \bar{k} be an algebraic closure of k, let Y be an irreducible component of $X \times_k \bar{k}$, and let C be the inverse image of Z in Y. Suppose that we can find $f: Y' \to Y$ and $Y \hookrightarrow \overline{Y}$ as in the theorem. Then the altered desingularization

$$\left(C' \subset Y' \to Y \supset C, Y \hookrightarrow \overline{Y}\right) \tag{1}$$

is defined over a finite extension k_1 of k. In other words, we have

$$\left(C_1' \subset Y_1' \to Y_1 \supset C_1, Y_1 \hookrightarrow \overline{Y}_1\right)$$

over k_1 such that these give rise to (1) after base extension. The composition

$$X' = Y'_1 \to Y_1 \hookrightarrow X \otimes k_1 \to X$$

defines the desired alteration $X' \to X$ of X.

- 2. Perform the following steps:
- Take a modification $\varphi \colon X_1 \to X$ with X_1 quasi-projective (Chow's lemma) and define $Z_1 = \varphi^{-1}(Z)$.
- Embed $j: X_1 \to \overline{X}_1$ into a projective variety \overline{X}_1 and define $\overline{Z}_1 = \overline{j(Z_1)} \cup \overline{X}_1 \setminus X_1$.
- Blow up \overline{X}_1 in the ideal sheaf of \overline{Z}_1 .

If the resulting pair $(\overline{X}'_1, \overline{Z}'_1)$ admits an altered desingularization, the same holds for (X, Z).

Remark 4.3. By normalizing X, we may assume in addition that X is a normal variety.

5 Proof of Theorem (A)

In the sequel, a *curve* over a field k is a geometrically connected algebraic scheme C over k which is equidimensional of dimension one.

Theorem (Theorem (B)). Let X be a projective variety over an algebraically closed field k, and let $Z \subset X$ be the support of a divisor $D \subset X$. There exists an alteration $X' \to X$, a closed subscheme $Z' \subset X'$ which is the support of a divisor $D' \subset X'$, a morphism of projective varieties $f: X' \to Y'$ such that:

- 1. All fibres are curves.
- 2. The smooth locus of f is dense in all fibres.
- 3. The generic fibre of f is smooth.

4. The morphism $f|_{Z'}: Z' \to Y'$ is finite and generically étale.

5. For all geometric points $\overline{Y} \in Y'$, and any irreducible component C' of $X'_{\overline{Y}} = f^{-1}(\overline{Y})$, we have

$$\# \left| \operatorname{sm}(X'/Y') \cap C' \cap Z' \right| \ge 3.$$

6. There are sections $\sigma_i: Y' \to X', i = 1, ..., n$, such that $Z' = \bigcup_i \sigma_i(Y')$.

Sketch of the proof of Theorem (A), assuming Theorem (B). By Proposition (R) and Theorem (B), we may assume that there exists a morphism of projective varieties

$$f\colon X\to Y$$

satisfying the assumptions in Theorem (B). Let

$$U = \{y \in Y \mid X_y \text{ is smooth over } y \text{ and } \sigma_i(y) \neq \sigma_j(y) \text{ for } i \neq j\}.$$

Note that $U \neq \emptyset$ and that $n \geq 3$. Let g be the genus of X_y for $y \in U$. Let

$$Y' \to Y$$

be a generically étale alteration by a projective variety Y' such that $U' \to \mathcal{M}_{g,n}$ extends to $Y' \to \overline{\mathcal{M}}_{g,n}$ (see Example 1.3).

Replace Y by Y' and X by the closed subscheme of $X \times_Y Y'$ given by dividing the $\mathcal{O}_{Y'}$ -torsion out of $\mathcal{O}_{X \times_Y Y'}$. Therefore, we may assume that there exists a stable *n*-pointed curve

$$(\mathscr{C}, \tau_1, \ldots, \tau_n) \to Y_n$$

a non-empty open subscheme $U \subset Y$ and an isomorphism

$$\beta\colon \mathscr{C}_U \xrightarrow{\sim} X_U$$

mapping each section $\tau_i|_U$ to the section $\sigma_i|_U$.

Theorem (C). There are modifications $Y' \to Y, X' \to X$ such that the rational map $\beta \colon \mathscr{C} \dashrightarrow X$ extends to a morphism $\beta \colon \mathscr{C}' \to X'$ and such that there is a closed subset $D' \subset Y'$ such that

$$\beta^{-1}(Z') \subset \tau_1(Y') \cup \cdots \cup \tau_n(Y') \cup g^{-1}(D')$$

and such that $\mathscr{C}' \to Y'$ is smooth over $Y' \setminus D'$.

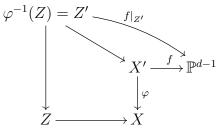
Replace X by \mathscr{C} and Z by $\tau_1(Y) \cup \cdots \cup \tau_n(Y) \cup f^{-1}(D)$. Then apply the induction hypothesis to (Y, D). Modify X to get $\operatorname{codim}(\operatorname{Sing}(X), X) \geq 3$. The completions of the singularities of X look like

$$\{uv - t_1 \cdots t_s = 0\} \subset \mathbb{A}_k^{d+1},$$

Z is defined by $t_1 \cdots t_r = 0$, and the irreducible components of $\operatorname{Sing}(X)$ are smooth. Blow these components up repeatedly to get that X is smooth. Then modify X by blow-ups in smooth centers to make $Z \subset X$ a strict normal crossings divisor (and note that X remains smooth [Har77, Theorem II.8.24]).

6 Proof of Theorem (B)

Lemma (Key Lemma I). Let X be a normal projective variety over an algebraically closed field k, and let $Z \subset X$ be the support of a divisor $D \subset X$. Then there exists a diagram



where φ is the blow-up of X in a finite set of closed points $S \subset \text{Reg}(X)$ with $S \cap Z = \emptyset$, having the following properties:

- 1. All fibres of f are non-empty, equidimensional schemes of dimension one.
- 2. The smooth locus of f is dense in all fibres of f.
- 3. The morphism $f|_{Z'}: Z' \to \mathbb{P}^{d-1}$ is finite and étale over an open subscheme of \mathbb{P}^{d-1} .

4. At least one fibre of f is smooth.

Lemma (Key Lemma II). Let $f: X \to Y$ be a morphism of smooth projective varieties over an algebraically closed field k such that all fibres are curves. Suppose that the smooth locus of f is dense in all fibres. There exists a divisor $H \subset X$ such that

(α) $f|_H: H \to Y$ is finite and generically étale, and

(β) for all geometric points $\overline{Y} \in Y$, and any irreducible component C of $X_{\overline{Y}} = f^{-1}(\overline{Y})$, we have

$$\# |\mathrm{sm}(X/Y) \cap C \cap H| \ge 3.$$

Proof of Theorem (B) assuming Key Lemma's I and II. Let (X, Z) be as in the statement of the theorem. Replace X by a modification to get into the situation of Key Lemma I. Thus, we get a family of curves

$$f: X \to Y$$

satisfying 1-4. By Key Lemma II, there exists a divisor $H \subset X$ satisfying $(\alpha) - (\beta)$. It suffices to prove the theorem for the pair $(X, Z \cup H)$. Thus we may replace Z by $Z \cup H$. We know have that for all geometric points $\overline{Y} \in Y$, and any irreducible component C of $X_{\overline{Y}}$, have

$$\# \left| \operatorname{sm}(X/Y) \cap C \cap Z \right| \ge 3.$$
(2)

Let $Z = \bigcup_i Z_i$ be the decomposition into irreducible components. Choose a finite Galois extension $k(Y) \subset L$ such that $k(Z_i)$ may be embedded over k(Y) into L for all i (this is possible by 3).

Let Y' be the normalization of Y in the field L. Then $Y' \to Y$ is a finite generically étale alteration of Y. Let (X', Z') be the strict transform of (X, Z). We see that

$$Z' = Z'_1 \cup \dots \cup Z'_n$$

with $Z'_i \to Y'$ finite and birational, and where $n \ge 3$ by (2). Hence $Z'_i \to Y$ is an isomorphism (Y is normal). In this way, we obtain sections

$$\sigma_i \colon Y \to X, \quad i = 1, \dots, n$$

of f such that $Z = \bigcup_{i=1}^{n} \sigma_i(Y)$, with $n \ge 3$. This proves Theorem (B).

References

- [CP19] Vincent Cossart and Olivier Piltant. "Resolution of singularities of arithmetical threefolds". In: *Journal of Algebra* 529 (2019), pp. 268–535.
- [Del74] Pierre Deligne. "Théorie de Hodge. III". In: Publications Mathématiques de l'IHÉS 44 (1974), pp. 5–77.
- [Del80] Pierre Deligne. "La conjecture de Weil. II". In: *Publications Mathématiques de l'IHÉS* 52 (1980), pp. 137–252.
- [DG61] Jean Dieudonné and Alexander Grothendieck. "Éléments de Géométrie Algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie". In: *Publications Mathématiques de l'IHÉS* (1961–1967).
- [Har77] Robin Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics 52. Springer, 1977, pp. xvi+496.
- [Jon96] Aise Johan de Jong. "Smoothness, semi-stability and alterations". In: *Publications Mathématiques de l'IHÉS* 83 (1996), pp. 51–93.
- [Liu02] Qing Liu. Algebraic Geometry and Arithmetic Curves. Vol. 6. Oxford Graduate Texts in Mathematics. Oxford University Press, 2002, pp. xvi+576.
- [Mil80] James Milne. *Étale Cohomology*. Princeton Mathematical Series 33. Princeton University Press, 1980, pp. xiii+323.
- [Tem17] Michael Temkin. "Tame distillation and desingularization by *p*-alterations". In: Annals of Mathematics 186.1 (2017), pp. 97–126.