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Chapter 1

(Quasi-coherent sheaves on projective
schemes

1.1 Lecture 14 : Quasi-coherent sheaves and projective spectra
Definition 1.1.1. A graded ring is a ring S with a decomposition
S = Bdezod

of the underlying abelian group into abelian subgroups Sy C S, such that S;-S. C Sgie-
A Z-graded ring is a ring S with a decomposition S = @ 4¢7.5, of the underlying abelian
group into abelian subgroups Sy C S, such that Sy -S. C Sgye.

Goal of this lecture: For a graded ring S, consider the scheme X = Proj(S), and

define a functor .
M— M

from the category of graded S-modules to the category of quasi-coherent O x-modules,
as in the affine case.

Recall. A graded abelian group is an abelian group M together with a decomposition
M = ®Byez My into abelian subgroups My C M.

Recall. Let S = @S, be a graded ring, which is either graded or Z-graded.

(1) A graded S-module is an S-module M with the structure of a graded abelian
group M = &My, such that the gradings of S and M are compatible in the sense
that Sq - M, C My, for all d,e € Z.

(2) An element x € M is called homogeneous if x € My for some d € Z.

(3) A graded submodule of a graded S-module M is a submodule N C M which is

generated by homogeneous elements.

(4) A morphism of graded S-modules p: M — N is a morphism of S-modules such
that ¢(My) C Ny for d € Z.



Question 1.1.2. In which ways can you turn R = 7Z into a graded ring?

Definition 1.1.3. Let M = &M, be a graded S-module. For n € Z, define a new
graded S-module M (n) as follows:

M(n)d = Md+n; M(n) = @M(n)d
In particular, we have the graded S-module S(n) for n € Z.

Lemma 1.1.4. Let S be a graded ring and M a graded S-module.

(1) An S-submodule N C M is a graded submodule if and only if N = ®&Ny for
Nd =NnN Md.

(2) If N C M is a graded submodule, then M/N is naturally a graded S-module.

(8) Let ¢o: M — N be a morphism of graded S-modules. Then the kernel, image and
cokernel of ¢ are graded S-modules in a natural way.

Proof. (1) Consider a submodule N C M, and define Ny = N N M, for d € Z. By
definition, N is graded if and only if /V is generated by the submodules Ny C N
for d € Z. As Ny Ny = 0 for d # d’, this happens if and only if N = &N,.

(2) Define (M/N)s =Im(My; — M/N). Then the natural map
®(M/N)g — M/N

is surjective. We need to show it is injective. In other words, we need to show,
for d # e € Z, that (M/N)yN (M/N). = 0. Let

x € (M/N)gnN(M/N)..
There exists my € My and m, € M, which both have image z € M/N. Hence,
mg = m, mod N.

In other words, mg—m, € N. Since N is graded, we can write mg—m, = ZkeZ Nk
as a sum of homogeneous elements n, € Ny. We have N, C My, and it follows
that n, = 0 for k # d,e, and that my = ng and m, = —n,. In particular,
mg, me € N, so that xt =0 € M/N.

(3) In view of item (2), it suffices to prove the statement for the kernel Ker(y) of
w: M — N. Indeed, we have Im(p) = M/Ker(y) and Coker(¢) = N/Im(y).
Thus, let us show that K = Ker(y) is a graded S-module. Let 2 € K. Write
x =Y mg for my € My. Then

0=cp(x) =Y @(ma).

As ¢(myg) € Ny, this implies p(mg) = 0 for each d € Z. Hence m, € K.
This proves the lemma. O



Remark 1.1.5. Let S be a graded ring, and M a graded S-module. Let p € Proj(S).
Consider the multiplicatively closed subset 7' C S containing all homogeneous elements
in S\ p. Then T~1M is naturally a graded T—1S-module: we have

T-'M=&(T"'M),_,  with
(T_IM)k = {% € T~'M: m homogeneous of degree k -+ deg(t)} .
Definition 1.1.6. Consider the notation in Remark 1.1.5. We define
My = (T M),
Notice that M, is an R)-module in a natural way.

Definition 1.1.7. Let M be a graded S-module. Let U C Proj(S) be open, and
define

MU) = {(s(p)) € H M,y : condition (x) holds} ,

pel

where (x) is the condition that for each p € U, there exists an open neighbourhood
p eV, CUofpin U, together with homogeneous elements m € M, f € S of the same
degree, such that for all q € V;, we have f ¢ q and s(q) = ? € M.

Proposition 1.1.8. Let X = Proj(S) for a graded ring S, and let M be a graded
S-module. The following assertions are true.

(1) For all p € Proj(S), we have a canonical isomorphism
(M )p = M)

(2) Let f € Sy homogeneous, and consider the canonical isomorphism
©: Di(f) = Spec S(p).
Then there is a canonical isomorphism
Mlp,(p = ¢" (Mm) :

Here, My denotes the degree zero part of My (note that Mgy is an S(p)-module

in a natural way) and My is the affine tilde construction.

(3) The sheaf M is a quasi-coherent Ox-module. If S is noetherian and M finitely
generated, then M s coherent.



Proof. (1). We have
(1\7) = lim M(U).
P pevcx

For U C X open with p € U, define a map
fo: M(U) = Mg, (s(a)) = s(p).

These maps are compatible with restrictions M U) — M (V) for p € V C U open,
and hence we get a well-defined map

f: (M)p: lig M(U) — M), (1.1)

peUcCX

We claim that (1.1) is an isomorphism. As for the surjectivity, let m/f € M, with
m, f homogeneous, f & p and deg(m) = deg(f). Then for each q € D, (f), put
s(q) =m/f € M. Then we get a section

s = (s(q)) € M(D4(f)),

and we have fp, (5)(s) =m/f € M. Thus, the map (1.1) is surjective.

To prove the injectivity, let s,t € (]\7),, such that f(s) = f(t). We can find an
open neighbourhood p € U C X and 5,f € M(U) that map to s,t € (M)p We have
5(p) = t(p), and hence there exists an open neighbourhood p € V, C U such that
5|y, = t|y,. In particular, s = ¢, and we are done.

(2). Exercise.

(3). By (2), quasi-coherence is clear. If S is noetherian and M finitely generated,

then S(y) is noetherian and My is finitely generated, hence M is coherent by (2). O

Recall that for a scheme X and a sheaf F on X, one defines the support of F as

Supp(F) ={x € X | F, #0}.
Lemma 1.1.9. For a graded S-module M, Supp(M) = {p € Proj(S) | My, # 0}.
Proof. Clear from item (1) in Proposition 1.1.8. O

Lemma 1.1.10. Let0 — A — B — C' — 0 be an exact sequence of graded S-modules.
Then for each d € 7, the induced sequence

0—-A;—B;—~C;—0
18 exact.

Proof. Everything apart from possibly the surjectivity of B; — Cj is trivial. To prove
this, let € Cy and lift « to an element y € B. Write y = > y,,. Then as y maps to
x, Yn maps to zero for each n # d. Therefore, y; maps to x, and y4 € By. n



Lemma 1.1.11. For a graded ring S, and X = Proj(5), the tilde construction M

M defines an exact functor from the category of graded S-modules to the category of
quasi-coherent O x-modules.

Proof. Let
0— M, - My — M;—0

be an exact sequence of graded S-modules. Let p € Proj(S). Then the sequence
0— (M), = (M), — (M3), = 0
is exact. In particular, in view of Lemma 1.1.10, the sequence
0= (M) = (Ma)p) — (Ms)) — 0

is exact. By Proposition 1.1.8, we are done. O

Recall that, for a ring R and an R-module M, we have
Supp(M) := {p € Spec R | M, # 0}.
Lemma 1.1.12. Let S be a graded ring and M, N graded S-modules.
(1) Suppose that Supp(M) C V(S,) C Spec S. Then M = 0.
(2) Assume that N~q = M~y for some d € Z>o. Then M= N.

Proof. (1). The assumption implies that Supp(M) N Proj(S) = 0. Hence M, = 0
for each p € Proj(S). In particular, My, = 0 for each p € Proj(S). It follows that
(]T/[J)p = 0 for each p € Proj(S), see Proposition 1.1.8. Thus M = 0.

(2). Since M~y C M is a graded submodule, the quotient L := M/M-,4 is graded
(see Lemma 1.1.4). Note that Supp(L) C V(S ). Therefore, L = 0 by item (1). From
Lemma 1.1.11, it follows that the sequence

O%]@%M%E%O

is exact. Hence M:d >~ ). Consequently,

We are done. O

Example 1.1.13. Let X = Proj(S) with S = k[zo, 21|, where k is a field. Let M
be the graded S-module M = k[zg,z;]/(x3,2%). Then M = 0. Indeed, we have
Sy = (xo,21). If M, # 0 for some p € Spec S, then r -1 # 0 for each r ¢ p. Thus,
r & (z3,x3) for each r € p. Thus, (23,2%) C p. Hence (xq,21) C p, so that p € V(S,).



1.1.1 Serre’s twisting sheaf
Definition 1.1.14. Let S be a graded ring and X = Proj(S). For n € Z, define

P

Ox(n) = S(n).

We call Ox(n) the n-th twisting sheaf (of Serre). If F is a sheaf of Ox-modules, we
put
.F(TL) = f@()x OX(H),

and call F(n) the n-th twist of F.

Proposition 1.1.15. Let S be a graded ring such that S is generated by S; as an
So-algebra. Let X = Proj(S). Then:

(1) The sheaf Ox(n) is invertible for all n € Z.
(2) Let M, N be graded S-modules. There is a canonical isomorphism

—~——

M®5N2M®OXN. (1.2)

(8) For all graded S-modules M and n € Z, we have a canonical isomorphism

—~

(4) We have canonical isomorphisms Ox(n) ® Ox(m) = Ox(n+ m) for n,m € Z.

Proof. (1). With respect to the identification D (f) = Spec Sy, we have a canonical
isomorphism

Ox(n)|p,(r) = S(n) )

of sheaves on Spec S(y). For n € Z and f € S;, we have an isomorphism
S(f) —)S(n)(f), s f"-s.

Thus, Ox(n)|p, (s is a free Ox|p, (p-module of rank one. Since S is generated by S,
over Sy, we have S = (f | f € S1), hence Proj(S) = Uses, D+ (f).

(2). Indeed, let f € 51, and consider the canonical isomorphism D (f) = Spec S(y).
Using Proposition 1.1.8, we can define isomorphisms

M ®s N|p,(r) = (M ®@s N) ) = My ®s, Nipy & M @ Np,(p),
men m n
Faegm)tdea(m) | fdea(m) © pea(n)’

These isomorphisms agree on overlaps D (f) N D (f), hence glue to give (1.2).
(3). This follows from (2), by taking N = Ox(n).
(4). This follows from (2), by observing that there are canonical isomorphisms

S(n) ®s S(m) = S(n+m), st s-t.



1.2 Lecture 15 : Projective schemes

1.2.1 The associated graded module

In the affine case, we can recover M from F = M by taking global sections. In the
projective setting, this will not work, as for instance I'(Pj, O]P)i) = k. Instead, we will
have to look at the various Serre twists F(d), d € Z.

Definition 1.2.1. Let S be a graded ring. Let X = Proj(5), and let F be an Ox-
module. We define the graded S-module associated to F as

I.(F) = @PT(X, F(d)).

d€eZ

In particular, from X we get an associated Z-graded ring

I'.(Ox) = @F(Xa Ox(d)).
deZ
Question 1.2.2. Note R =T',(Ox) has a grading R = @Gqez Ry indexed by the full set
of integers 7.. Hence R is a Z-graded ring in the sense of Definition 1.1.1. Is it always
true that Rg =0 for d < 07 In other words, is R actually a graded ring, or not?

The S-module structures are defined as follows. Let M be a graded S-module.
There is a canonical morphism

a: M — T, (M). (1.3)
To define a, let m € M, for d € Z. We need to provide a global section a(m) €

(X, M(d)) It suffices to provide sections a(m) € I'(Dy(f), M(d)) that agree on
overlaps. We have

—~

LD (f), M(d)) = (M(d)), ,

and put

a(m) = ?

€ (M(d)) ) = (M(f))d'

This defines the map (1.3).
In particular, we get a canonical morphism

B: S — I.(S) =T.(0x) = PT(X,0x(d)). (1.4)

This turns I',(Ox) into a Z-graded S-algebra (with compatible gradings). Moreover,
for each Ox-module F, we have that I'.(F) is a graded I',(Ox)-module in a canonical
way. Indeed, by item (4) of Proposition 1.1.15, we have canonical isomorphisms

Ox(d) ®o, F(e) = Ox(d) ®o, F Qo Ox(e) = F(d+e).

In particular, for s € Ox(d) and t € F(e), we get a canonical section s -t € F(d + e),
which defines the graded I',(Ox)-module structure on I',(F). Via (1.4), we obtain the
graded S-module structure on I',(F).



Proposition 1.2.3. Let A be a ring, and S = Alxo, ..., x| for somer > 1. Let X =
ProjS (projective r-space over A). Then (1.4) defines an isomorphism I'.(Ox) = S.

Proof. Cover X by the open subsets D, (z;) C X. By the sheaf axiom for Ox(n), we
get an exact sequence

0 = T(X,Ox(n)) = ®o(Se)n — ED(Sura, -

2%
Taking the direct sum over all n € Z, we get an exact sequence
T
0—-TI.(0x)— @Sxi — @Smj.
i=0 ij
As the z; € S are non-zero divisors, the maps
S — Sz, = Spiz;, = 5 = Spgea,

are all injective. We get

=0

as subrings of 5. ]

Exercise 1.2.4. More generally, let S be a graded ring finitely generated over Sy by
non-zero divisors xo, ..., z, € S;. Let X = Proj(S). Suppose that the x,...,z, are
relatively prime. Show that S =TI'.(Ox).

Corollary 1.2.5. (1) Let X =P} = Proj(k[zo,...,zs]). Then
['(X,0x(n)) = (k[zo, ..., zs])n-

In particular,

[(X,0x(1)) = (k[xo, ..., z,]); = Pk - .
i=0
(2) Let X = Proj(S) where S satisfies the assumptions in Exercise 1.2.4. Then
S1 =T(X,0x(1)). O

Definition 1.2.6. Let A be a ring and » > 0. We let zg,...,2, € Opr (1) be the
above global sections.

Lemma 1.2.7. Let S be a graded ring, generated by S1 as an So-module. Let F be a
quasi-coherent sheaf on X = Proj(S). Let f € S;. There are canonical isomorphisms

F(d)pyr) = - Flo, - (1.5)



Proof. As F(d) = F ® Ox(d), it suffices to prove the result for 7 = Ox. Notice that

S(d)(p) = (S(d) )y = (S¢(d))y
that

Si(d) = P(S)arer  (Sase = {i |z € Sm+d+e} ,

m
eEL f

and that the map

Sty — (S5(d)), = (Sy)a = {f—m ve sm}
d .
fim = ffmy S (Sf)d

is an isomorphism. More precisely, we have
f* Sy = (Sp)ac S

Therefore, we have

e~~~

Ox(d)|p. () = S(d)) = (S(d))y = (Sp)(d)o = f4-Spy = 4+ Sipy = 4+ Oxlp. ).

This proves the lemma.

O

Proposition 1.2.8. Let S be a graded ring such that S is generated by Sy as an Sy-
algebra. Let X = Proj(S). Let F be a quasi-coherent Ox-module. Then there is a

natural isomorphism

——~——

b: TL(F) 2 F,

Proof. Let f € S, and consider the scheme D, (f) = Spec S(y). We have

deZ

DD (f).T.(F)) = (CulF)) sy = (EB (X, f(d))>
!

0

This is an S(y-module; an element of this module is given by an expression

s € T'(X, F(d)).

Tr =

ﬁ>
The canonical isomorphism (1.5) shows that the section

slo,p € (D4 (f), F(d))

is of the form
slpop = f*-t for some te D(Dy(f),F).

10

(1.6)



We define ¢ (z) = t, which gives a map

—_——

pr: DD (f), Tu(F)) — T(D1(f), F).

Since D, (f) is affine, and I',(F) and F quasi-coherent, this yields a map

—_—

Vr: D(F)lpyy — Floy-

It is straightforward to show that the maps ¢y and 1), agree on overlaps D, (f - g) =
D, (f)NDs(g), hence glue to give the morphism (1.6). It is also readily checked that
¥ is an isomorphism for each f € S;. The result follows. n

Lemma 1.2.9. We have two functors

F =(—=)": GrMods — QCoh(X),
G =T.: QCoh(X) — GrModg,

with F'o G =1id as functors QCoh(X) — QCoh(X).
(1) The functor G is fully faithful, and that the functor F is essentially surjective.
(2) We do not in general have an isomorphism of functors G o F' = id.

Proof. (1). Essential surjectivity of F is clear: any object M € QCoh(X) is isomorphic
to (F o G) (M) =F(G(M)). As for the faithfulness of G: this holds, as we have maps

Hom(M,N) — Hom(G(M),G(N)) — Hom(FG(M), FG(N)) = Hom(M,N)

whose composition is the identity. Hence the first map in the composition is injective.

(2). We give an example of a graded module M with I',(M) % M. Let M be
any non-zero graded S-module such that Supp(M) C V(S;). Then M = 0 hence
F*(M) = 0. This finishes the proof. O

1.2.2  Projective schemes

Definition 1.2.10. Let A be a ring. Let X be a scheme and let
f: X — Spec A

be a morphism of schemes. We say that f is projective if f admits a factorization

N

X——Spec A

into a closed immersion X < P, and the canonical morphism P’ — Spec A, for some
integer n € Z>o. We also say that X is a projective scheme over A.

11



Comparison with the literature 1.2.11. See [Har77, Chapter II, Section 4.2, page
103]. See also [Liu02, Chapter 3, Section 3.1, Definition 1.12, page 83].

Lemma 1.2.12. Let S be a graded ring. Let S" be another graded ring, and ¢: S — S’
1s a surjective morphism of graded rings.

(1) We have Sy ¢ o~ (p) for any p € Proj(S"). In particular, Bs(¢) = 0, and we
get a morphism of schemes Proj(S’) — Proj(5).

(2) The above morphism of schemes Proj(S’) — Proj(S) is a closed immersion.
Proof. As for part (1), note that for p € Spec S’ homogeneous, we have
SLCp = o (S CeTi(p) = Sy Co i (p),

where we use the fact that ¢ is surjective.
As for part (2), note that the morphism is locally given by the maps

Spec (S(,(s)) — Spec (S()), fes.
These are induced by the ring maps
Stp — Ster)- (1.7)
In turn, the latter is induced via restriction by

This map is surjective: let z/p(f)" € Si,(p); then we can find y € S with o(y) = x, so
that

e(y/f") = ey)/o(f)" € S,ip-
Hence (1.7) is surjective (see Lemma (1.1.10)), proving (2). O

Proposition 1.2.13. Let A be a ring.

(1) Let X be a closed subscheme of Py. Then there exists a homogeneous ideal I C
Alxo, ..., x| such that X is the closed subscheme determined by the surjective
morphism of graded rings Alzo, ..., x.] — Alxg,...,z,]/I.

(2) A scheme X over Spec A is projective if and only if X = Proj(S) for some graded
ring S such that A = Sy and S is finitely generated by S1 as an Sy-algebra.

Proof. (1). Let T C Opr, be the corresponding quasi-coherent ideal sheaf. By Propo-
sition 1.2.8, there is a canonical isomorphism of graded S-modules

Moreover, the map



is injective and identifies I',(Z) with an ideal
I C F*(OPTA) = A[xo, e 7.1770},

where the canonical isomorphism F*(Opg) = Alxo, ..., x,] was provided in Proposition
1.2.3. Hence we have

IZTCEZOPZ, RI:A[]J(),...,ZL‘T].

Item (1) follows from this.

(2). Suppose that X is projective. Then there is a closed immersion X < P’ of
schemes over A, for some r > 0. By item (1), we get that X = Proj(Alxo,...,z,|/])
for some homogeneous ideal I C Alzy,...,z,]. Conversely, if X = Proj(S) for some
graded ring S with A = 5y and S finitely generated by S as Sp-algebra, then we can
find elements yy, ...,y € S1 that generate S as an A-algebra. This gives a surjective
morphism of graded A-algebras

Alxg, ..., x.] — S, Ti = Y,

yielding a closed immersion Proj(S) < P, of schemes over A. O

1.2.3  Morphisms to projective space

Definition 1.2.14. Let F be an Ox-module for a scheme X. We say F is generated
by global sections if there is an index set I and a surjective map of Ox-modules

@OX — F.
el

Note that to give such a morphism is to give global sections s; € F for ¢ € I. We say
that F is globally generated by the sections s;.

Exercise 1.2.15. Let S = k[u*, u®v, uv?, v?] C k[u,v], where the generators of S are
considered as to have degree one (i.e. deg(u?) = 1,deg(u?v) = 1, etc.). Note that
dim S; = 4. Show that dimI'(X,Ox(1)) = 5. Conclude that the canonical map
S1 — I'(X, Ox (1)) is not surjective.

Example 1.2.16. (1) Let A be a ring, X = Spec A, and F a quasi-coherent Ox-

module. Then F = M for some A-module M, and any set of generators for
M = T'(X,F) will generate F.

(2) Let S be a graded ring generated over Sy by a subset I C S;. Then the map

P ox — ox(1)

el

induced by the map 3: S; — I'(X, Ox(1)), is surjective.

13



Proof. Exercise. As for (2), suppose for instance that S = A|xy, ..., z,]|, with S = A.
Then for each z;, we have that

S(l)(f) = A[.TO, Ce ,a:r](l)(zi) == (A[xo, e ,Zlfr]zi)l
is generated by the z; as an Afxo, ..., %,|,)-module. In fact, the map
S(mi) — S(l)(mi) = (Sxi)l, SH—=>T;+S

is an isomorphism of S(;,)-modules, with inverse ¢ — x; 1. t. Therefore, for each
i €{0,...,7}, the images of the elements zy,...,z, € Sy in S(1),, = (S;,)1 generate
S(1)s, as an S(g,)-module. Thus, the map

Bs— s, (0....1...,0)
=0

yields a surjection ;_, Ox — Ox(1). O

Lemma 1.2.17. Let A be a ring, let r € Z>o and consider a morphism of A-schemes
w: X — P. Then the global sections xg,...,x, € Opg(l), see Definition 1.2.6, give
rise to global sections

Sz:@*(zl) el = SO*(OPTA(l)% Z':()’”"/}",
that satisfy the property that L is globally generated by the sections s;.

The following result shows that the converse is also true. An isomorphism between
pairs (L, (s;)) and (M, (t;)), where L and M are line bundles on a scheme X and
S0y -+ -5 Sr, Lo, - - ., t, global sections, is an isomorphism f: L — M such that s; = f*(¢;).

Theorem 1.2.18. Let A be a ring. Let X be a scheme over A, and let L be a line
bundle globally generated by sections sy, ...,s, € L. Then there is a unique morphism

o X — P
such that
(¢ (O(1)), ¢"(w0), - - - ™ (@) = (L, 50, - - -5 57).
Proof. We do not prove this here. See e.g. [GW20, Corollary 13.33]. O
Corollary 1.2.19. Let A be a ring. Consider the functor

F: Sch/A — Set,
X = {(L,s0,...,8:) | L line bundle globally generated by the s;} | = .

This functor is representable by P"y. More precisely, the association

@ = (" (Opr (1)), ¢ (o), - .., ¢ (x1))

defines a bijection
Homsch/A(X, ]P)TA) :> F(X)

for each A-scheme X, compatible with morphisms of A-schemes X — Y.
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For schemes X and T over C, we define X (7T') := Homgu,/c(T, X) as the set of
morphisms 7" — X of schemes over C.

Example 1.2.20. We make the following observations and definitions:
(1) For a finite dimensional complex vector space V', we get a graded ring
S = Sym*(V) = @450Sym*(V)

with Sy = C. If we choose a basis {eg, ..., e.} for V, then each e; € V defines an
element z; € Sym' (V) so that we get a set {x,...,7,} C S = Sym' (V) =V
of generators for S as an Sy = C-algebra, in a way that S = C|xy, ..., z,].

(2) We define
P(V) := Proj(Sym*(V)), P(V) := Proj(Sym*(V")).
This gives back Pi. = P(C"t1).

(3) We define )
L= B(C))

(4) Using Corollary 1.2.19, we can show that there is a canonical bijection
P(V)(C) = {lines £ C V'}.
In particular, we get a canonical bijection

PL(C) = {lines ¢ C C""'} .

(5) Via the canonical identification C™ = (C"*!)¥ that sends e; to e}, this gives
PL(C) = Pg(C) = {lines ¢ c C"*'}.

In other words, we re-obtain the good old description of the projective space of
dimension n as the space of lines in the affine space of dimension n + 1.

Proof. Exercise. m

Example 1.2.21. Let k be a field. Let L D k be a field extension of k. Let M be a
line bundle on X = Spec L. Then M = Ox. Therefore,

P} (L) = Homsehi(Spec L,PY) = {(so,...,8,) € L' = {0}} /o
where (s, ...,sn) ~ (to,...,t,) if there exists A € L* with A-(so, ..., s,) = (to, ..., tn).

Example 1.2.22. Let k be a field and let R be a k-algebra which is a discrete valuation
ring. Let X = Spec R. We will prove later (see Propositions 3.2.17 and 3.4.8) that
any line bundle L on X is isomorphic to Ox. Let m C R be the maximal ideal. Then

PE(R) = Homsens(X, BY) = {(s0,. -, 5) € (R™ — {0}) | i | su(m) # 0} /.

where (g, ..., 8,) ~ (to,...,t,) if there exists A € R* with A-(sg, ..., 8,) = (to,...,tn).

15



Chapter 2

Cohomology

In this chapter, we consider an abelian sheaf F on a scheme X, and define cohomology
groups H (X, F) for i € Z>o. They have the property that if 0 — F; — Fp — F3 — 0
is a short exact sequence of abelian sheaves, then one gets a long exact sequence:

0—I(X,F)—=DX,F) =TX, F)—H(X,F) - H(X, F) —---.

Thus, the cohomology measures the failure of the right exactness of the global sections
functor I'(X, —). Moreover, if (X;, F;) (i = 1,2) are schemes with sheaves on them,
and if ¢: X; — X, is an isomorphism with ¢='F, = F;, then one has an isomorphism
HP (X, F1) = HP(X,, F3) for each p > 0. Thus, sheaf cohomology forms an invariant
of the pair (X, F). This invariant turns out to be important in many situations.

2.1 Lecture 16 : Cech cohomology of sheaves on a scheme

2.1.1 Some homological algebra

Definition 2.1.1. A complex of abelian groups A® is a sequence of groups A’ indexed
by Z together with maps d’; between them as follows:

da® o ior du g da g da
A AT A AT A AT A

such that d’y o d';* = 0. A morphism of complexes
f*: A*— B*

is a collection of maps f,: AP — BP such that f; o dy' = di5' o fi_; for each i € Z.
In this way, we can talk about kernels, images, cokernels and exact sequences of
complexes of abelian groups. We define

HP(A*) == Ker(d")/Im(d" ).

Lemma 2.1.2. Let 0 — F* — G* — H®* — 0 be an exact sequence of complexes of
abelian groups. Then there is an associated long exact sequence of cohomology groups

o — HP(F*) — HP(G®) — HP(H®) — HP™Y(F*) — --- .
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Proof. We have a commutative diagram as follows:

0 FP GP HP 0

[

0 Fp—H Gp+1 Hp+1 0

By the Snake lemma, we get an exact sequence
0 — Ker(dh.) — Ker(dZ,) — Ker(dy,) — FP™ /Im(db.) — - -
Consider now the diagram

FP/Tm(dP~) —— GP /Tm(dP~') —— H? /Tm(d%;) —— 0
0 —— Ker(d"t!') ——— Ker(dP*') ——— Ker(d?™).

It has exact rows by the previous argument. Applying the Snake lemma again, gives
an exact sequence

HP(F*) — HP(G*) — HP(H®*) — HPYY(F*) — HPYY(G*) — HPTY(H®).
Since this sequence is exact for every p € Z, the result follows. n

Let f: C* — D*® be a morphism of complexes C'* and D*®. Then, since f o ds =
dp o f, the map f induces a well-defined map on cohomology groups

f: H(C*) — H'(D*).

Definition 2.1.3. A chain homotopy between two morphisms f,g: C* — D*® is a
collection of maps h: C™ — D"~ ! such that

f—g:dpoh+h0do.

Lemma 2.1.4. If there exists a chain homotopy between f and g, then f and g induce
the same map H'(C*) — H'(D*®).

Proof. Let ¢ € Ker(C" — C*1). Then [f(c) — g(c)] = [dp(h(c))] =0 € HY(D®*). O
Exercise 2.1.5. Let C'* be a complex.
(1) Show that C* is exact if and only if H(C*®) = 0 for all i.

(2) Assume that there exists a chain homotopy h: C™ — C"~! between the identity
id: C* — C* and the zero map 0: C* — C*. Show that ¢ = d? o h(c) + h o d(c)
for every ¢ € CP™L. Show that H'(C*®) = 0 for each i, hence that C* is exact.
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2.1.2  Cech cohomology

Let X be a topological space. Let U = {U;},.; be an open cover of X, indexed by
some set I. By the well-ordering theorem, there exists a well-ordering I, which we
choose once and for all. For any finite set of indices ¢,...,%, € I, we denote

i =UpN---NU; .

-----

For a sheaf F on X, we have the sheaf sequence

0= F(X) = [[Fw) = [ Fwinuy).

i€l 1,7€1

Definition 2.1.6. Let X and U be as above. Let F be a sheaf on X. We define the
Cech complex of F (with respect to U) as the complex C*(U, F) with

U F) = [ FUi.u)

1< <ip

Thus, to given an element o € CP(U, F) is to give a (p + 1)-tuple of elements

for each strictly increasing (p + 1)-tuple ip < --- < 4, of elements of I. We define the
coboundary map d?: CP(U, F) — CP*1(U, F) as the map that sends o € CP(U, F) to
the element da € CP™(U, F) with

Here, the notation 7, means that we omit 7.

Let o« € C°(U, F) = [Lie; F(U;). Then

(da)ioyil = Qi Uiy i, — Qig|Usy sy € ‘F(Uioﬂ'l)'

Hence, for each ig, 41,10 € I with ig < i1 < i, we have:

( )10 11,82 (da)h )12 (da)io,iz + (da)io,il

10 11,12 []io,i1,i2 ljioqi1,i2
- ((alz Uiyip — Qi1 Uil,iz) - (0412 Uig,ia — %o Uio,iQ) + (ail Uig,iy — Qi Uio,i1>) Uig iq ,ig
(Oé Uiy iy ig - Qg Uio,il,iQ) - (ai2 Uigip,ig — Qi Uio,il,iQ) + (ail Uig,igig — Qi U'Lo,il,iQ)

0.

In particular, we get d od = 0 as maps C°(U,F) — C*(U,F). This generalizes as
follows.

Lemma 2.1.7. We have d’*' o d? = 0 as maps CP(U, F) — CP**(U, F).

18



Proof. Exercise. O]

Definition 2.1.8. The p-th Cech cohomology group of F with respect to U is the

o HP(U, F) = HP(C*(U, F)) = Ker(d”) /Im(d"~Y).

Notice that a sheaf homomorphism F — G induces morphisms CP(U,F) —
CP(U,G), and it is not hard to show that these induce morphisms

HP (U, F) — HP(U,G).
This gives functors HP(U, —) from abelian sheaves on X to abelian groups.

Example 2.1.9. Notice that

HO(U, F) = Ker (H FU) = [[Frwin Uj)> = F(X).

i<j
Example 2.1.10. The group H' (i, F) is the group of sections o;; € [[,; F(Ui;) such
that oit|v,,, = 0ijlv,,, +0jklv,,,., modulo the sections o;; of the form oy; = 75(v,;, — 7ilu,,-

Example 2.1.11. Consider a short exact sequence of abelian sheaves on X:
0-A—=BLCc—o.

Let ¢ € C(X). Let U = {U,}, be an open covering of X such that c|y, = f(b;) for some
b; € B(U;). Define

Oij = bj Uyj — bz Uij € A(UZJ>

(1) We have o
(2) Let

Uik = OijlUyj T Ojk|Usj-

o(c) e H'(U, A)
be the Cech cohomology class induced by the ¢;;. Then o(c) = 0 if and only if
there exists an element b € B(X) with f(b) = c.

Definition 2.1.12. Let P be a property that a morphism of schemes can have. For
instance, P can be being a closed immersion, an open immersion, surjective, an iso-
morphism, etc. We say that the property P is stable under base change if for any
morphism of schemes X — Y that has property P, any scheme 7" and any morphism
of schemes T' — Y, the resulting morphism of schemes X xy T' — T has property P.

Lemma 2.1.13. The property of being a closed immersion is stable under base change.

Proof. Let f: X — Y be a closed immersion. We consider a morphism of schemes
T — Y; the goal is to show that 7: X xy T"— T is a closed immersion. It suffices to
provide an affine open covering {T;} of T such that #—'(T}) is affine and 7~ !(T}) — T;
is a closed immersion. We start with an affine open covering {Y;} of Y, which gives
an open covering of T (by taking inverse images under 7" — Y") which we refine to an
affine open covering {7;} of 7. Thus, for each j € J there is an ¢ € [ such that T}
maps into Y; under 7 — Y. Then 7= 1(T}) = f~1(Y;) Xy, T} is affine, and the map
O(T;) = O(f1(Y;))®o,) O(Tj) is surjective as O(Y;) — O(f~(Y;)) is surjective. [
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Lemma 2.1.14. Let X be a separated scheme. Let U C X and V C X be affine
opens. Then U NV is affine.

Proof. Notice that UNV = U xx V. This is naturally a closed subscheme of U xz V/,
since it sits inside the cartesian diagram

UXXV(—>UXZV

| |

X— X xz X,

and closed immersions are stable under base change by Lemma 2.1.13. Moreover,
U xzV =U Xgpec (z) V is affine, because U, V' and Spec (Z) are all affine. As closed

subschemes of affine schemes are affine, we are done. O

Theorem 2.1.15. Let X be a noetherian separated scheme. Let U = {Uy, Uy, ..., U,}
be a finite covering of X by affine opens U; C X. Then all the intersections U,
are affine, and moreover:

----- tp

(1) The Cech cohomology groups define functors H' (U, —): AbShx — Ab.
(2) We have H*(U, F) = F(X).

(8) Let 0 — Fy — Fo — F3 be a short exact sequence of quasi-coherent Ox-modules.
Then there is an associated long exact sequence in cohomology:

o= HUF) = (U, F) — H(U, F3) — BT U, F) - BN U,F) — - -

(4) If V = {V;} is another finite covering of X by affine opens, then there is a
canonical isomorphism
HY U, F) = H(V, F)
for every p > 0 and every quasi-coherent sheaf F on X.

(5) If X has dimension n, then HP(U, F) = 0 for every quasi-coherent sheaf F on
X and every integer p > n.

Proof. Finite intersections of affines on separated scheme are affine. Indeed, this fol-
lows from Lemma 2.1.14 above.

(1) & (2). We have already observed this above.

(3). Note that if U C X is an affine open subset, then the sequence

0— FU) = FU)— FU)—0

is exact, because the functor F +— F(U) from quasi-coherent Op-modules to Ox (U)-
modules is exact as U is affine. It follows that for each p > 0 and each i < --- <7, € I,
the sequence

..........



is exact (again since Uy,

-----

i, is affine). Therefore, the sequence
0—CP(U,F) — CPU,Fz) = CP(U, F3) — 0

is exact for each p > 0, so that we get an exact sequence of complexes
0—=C*(U,F)—CUF) —C* (U, F3) — 0.

Hence the desired long exact sequence comes from Lemma 2.1.2.

(4). We do not prove this here.

(5). We only prove this in case X is quasi-projective of finite type over a noetherian
ring A. In this case, X admits an open cover U = {U;},_, consisting of m < n +1
affine open subsets U; C X, see Exercise 2.1.16 below. In particular, C?(U, F) = 0 for
p > m, since there are no (p + 1)-tuples ip < --- < i, € I, for p > m. H

Exercise 2.1.16. Let X be a quasi-projective scheme of finite type over a noetherian
ring A. Let n = dim(X). Then X admits an affine open cover U consisting of at most
n + 1 affine open subsets U; C X.

Proof hint: Suppose that X C Z C P, where Z is a closed subscheme of P’ and X
is an open subscheme of Z. Write W = Z — X. Write Z = U;Z; as a union of its
irreducible components. If Z; C W, then X = Z — W C Z — Z;, so that X N Z; = (),
hence X C Ujx;Z;. Therefore, one may assume that the irreducible components of Z
are not contained in . Using induction on the dimension, one can prove that X is
covered by n + 1 open affines induced from open affines in P7,. n

We record here the following lemma, for later use:

Lemma 2.1.17. Let m: X — 'Y be a morphism of noetherian separated schemes, such
that the scheme 71 (U) is affine for every affine open U C Y. Let F be a quasi-coherent
sheaf on X, and let i > 0 be an integer. Then we have a canonical isomorpism

HY (Y, 7, F) = H'(X, F).

Proof. Let U = {U;} be a finite affine open covering of Y such that H/(Y, 7, F) is
computed by the Cech complex C*(U,m,F). Then V = {7~ 1(U;)} forms an affine
open covering of X, and we have a canonical isomorphism C*(U, 7, F) = C*(V, F). O

2.2 Lecture 17 : Examples & Cohomology via resolutions

2.2.1 Some examples

Proposition 2.2.1. Let k be a field. We consider P! := P} = Projk[zo, z1]. Then
there is a natural isomorphism between P! and the scheme obtained by glueing together
Uo = Spec k[t] and U; = Spec k[t™!] along Spec k[t,t™1].
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Proof. We have isomorphism
U; = D, (x;) = Spec kg, 21](2,)

for i = 0, 1. Moreover, there is a map of k-algebras
x
wo: k[t] = k[xo, 1] (g), x_l
0

Then g is an isomorphism, with inverse s — s(1,¢). Similarly, we have

1 _ x

o1 k[N 2 kg, o)y, T =

L1
Finally, D, (zoz1) = Spec k[zo, Z1](z0z;), and there is an isomorphism kft,t7!] =
k[xo, 1) (soe,) defined as t — a3 /(zoz1) and ¢t — 27/ (zo21). O
Example 2.2.2. Consider the projective line P! = P} as above; it is covered by

the open affines Uy = Spec k[t] and U; = Spec k[t™!] with intersection Uy N U; =
Spec k[t,t7']. Let U = {Uy, U, }. For the structure sheaf Op:1, the Cech complex

0— CU,Op) = CHU,Op) — 0
takes the form

0—— Opi(Up) X Op1 (U1) —— Opi (U N Uy ) —— 0

T |

00— k[t] x k[t — 24— k[t 1] ——— 0,

with
d(f(t),9(t™)) =gt™") — f(B).
If f(t)=g(t™') € k[t,t7"], then f = g € k. In other words,
H° (P, Op1) = HO(U, Op1) = Ker(d) = k.

Furthermore, each element s € k[t,¢7'] is a sum of a polynomial in ¢ and a polynomial
in t~!. Therefore, d is surjective, so that

HY (P!, Op1) = HY(U, Op) = 0.
Example 2.2.3. Let m € Z, consider P! := P}, the projective line over a field &, and
the sheaf O(m) := Op1(m). Let S = k[xg, x1]. We have
O(m)(D(x:)) = S(m)@) = i" - S(ay)

for ¢« = 1,2. Under the isomorphisms

S(zl) — k[t_l]a f = f(t_l7 1)7
Soay = K[t,t71], [ f(L1) = [t 1),
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see Proposition 2.2.1, the Cech complex takes the form
00— Opl (m)(Uo) X O[[»l (m)(Ul) E— O]pl (m)(U() N Ul) —0
0——— 28" - S(ag) X 1"+ S(ay) ———— 27"+ S(agar) ——0

0 S(JEO) X (%)m ’ S(ivl) - (_>m ’ S(Zom) —0

00— k[t] x t™ - k[t7Y] ————t™ - k[t,t 7] ——— 0.

Here, we have

m m m m m m xm m
d: z(" - Stagy X 2" - Sary — 27" S(wowr),  d(xg" - foal" - g) = af 'g—x—om'xl - f,
1

corresponding to the map
d: k[t] x " k[t — " k[t = k[T, d(f@), " g(tTh)) st g — f.
Suppose that m > 0. Then the elements
™ ™ 1), (e (0 ™)
are linearly independent elements that generate the kernel of d. Therefore,
dim H°(P*, O(1)) = dim H*(U, O(1)) = dim Ker(d) = m + 1.
If m < 0, then H°(P!, O(1)) = 0.
Example 2.2.4. Next, we compute the dimension of H' (P!, O(m)). If m > 0, then
any polynomial in k[t,¢!] can be written in the form t™g(¢t~!) — f(t) for f(t) € k[t]
and g(t~1) € k[t7!]. We claim the same holds if m = —1. Indeed, let t=* € k[t, 1] for

some k > 1 (for the non-negative powers of ¢, the claim is clear). Then ¢ =% = ¢=1.¢7*+1,
with t=(*=1 € k[t71] as k — 1 > 0. Therefore, the map

E[t] x t™ - k[t — t™ - k[t,t 7], (fit™-g)—t"-g—f

is surjective if m > —1. Hence H' (P!, O(m)) = 0 for m > —1.
If m < —2, then no linear combinations of the monomials

t_l, t_Q, o ’tm—l-l — t—(—m—l)

lies in the image of d, but combinations of all the others do. It follows that H' (P!, O(m))
is a k-vector space of dimension —m — 1 in this case.
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Example 2.2.5. We now consider an example from topology. Let X = S! be the
unit circle, with the standard euclidean topology. Let U = {U,V'}, where U and V are
connected open intervals that intersect in two connected open intervals W; and Ws.
Let F = Zx be the constant sheaf associated to Z. Then, we have

CU,F)=FU)xF(V)=2ZxZ,  CYU,F)=FUNV)=FW UWy)=ZXZ.
Under these identifications, the map d: C°(U, F) — CY(U, F) is given by
d:ZXZL— 7 XZ, (a,b) = (b,b) — (a,a) = (b —a,b—a).

Hence:
HO(U, F) = Ker(d) = Im(Z 2% 7 x 2) = 7.

and
H'(U,F) = (Z x Z) /Im(d) = Z.

This gives the same answer as singular cohomology.

Remark 2.2.6. This is no coincidence: the groups H?(U,Z) agree with the usual sin-
gular cohomology groups H fing (X, Z) for any topological space X homotopy equivalent
to a CW complex, provided that the open sets in the covering U are contractible.

Exercise 2.2.7. Let X be a topological space and let ¢4 be an open cover of X.
Assume that U; = X for some ¢ € I. Show that HP(U, F) = 0 for every abelian sheaf
F on X and every integer p > 1.

Example 2.2.8. Let X be an irreducible topological space. Then X is connected and
any non-empty open subset U C X is irreducible, hence connected. Let Ax be the
constant sheaf associated to an abelian group A. Then Ax(U) = A for any non-empty
open U C X (so that Ax agrees with the constant presheaf associated to A).

Let U be an open covering of X whose index set [ is well-ordered. The Cech
complex takes the form

0—>HA—>HA—> H A— e
o€l 10<t1 10<t1 <12

where for a € [] A, we have its coordinate o, . ;, € A, and:

.....

i0 <+ <ip

Note also that H?(U, F) = 0 in view of Exercise 2.2.7. Indeed, by the above, the Cech
complex does not depend on the U;, only on the index set I. Hence we may assume
U; = X for some 1.
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2.2.2  Cohomology as right derived functor

Definition 2.2.9. (1) Let A be an abelian group. Then A is injective if the con-
travariant functor Hom(—, A) from Ab to Ab, is exact. This is equivalent to say-
ing that it is right exact. In other words, for any injective morphism B; — Bs
of abelian groups, and any morphism B; — A, there should exist a morphism
By — A that makes the obvious triangle commute.

(2) Let F be an abelian sheaf on a topological space X. Then F is injective if
the contravariant functor Hom(—, F) from AbSh(X) to Ab, is exact. This is
equivalent to saying that it is right exact. In other words, for any injective
morphism B; < B, of abelian sheaves, and any morphism B; — F, there should
exist a morphism By — F that makes the obvious triangle commute.

Exercise 2.2.10. (1) Show that an abelian group A is injective if and only if it is
divisible: for each n € Z>; and each x € A there exists y € A such that n-y = x.

(2) Give an example of a non-zero divisible abelian group A such that for each a € A
there exists n € Z>, such that n-a = 0.

(3) Show that a finite abelian group which is divisible, is zero.
(4) Show that the quotient of a divisible abelian group is divisible.

Proposition 2.2.11. Let X be a topological space. Then any abelian sheaf F admits
an embedding F — I into an injective abelian sheaf Z.

Proof. We first prove the proposition in the case where X = {z} is a point. Then F
corresponds to an abelian group A, and we need to find an injective morphism A < [
into a divisible abelian group I (see the above exercise). Consider the morphism

F:z@Z—>A, ZnaHZna-a.

acA

This is clearly a surjective group homomorphism. Let K be the kernel. There is an
embedding

F—Fe,Q=PHQ

acA
and hence an embedding

A=F/K — (F®;Q)/K.

As (F ®z Q)/K is divisible, being the quotient of a divisible abelian group (see the
above exercise), we are done in the case X = {z}.

In the general case, for each z € X, choose an injective abelian group I, and an
embedding F, < [,. For each x € X, let ,: {z} — X denote the natural inclusion.

We define
T =[] (¢a)u(I2).
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We have
Hom(F,I) = [ [(F, (¢.).1) = || Hom(F,, L.

zeX zeX

This yields a natural morphism of sheaves F — Z, which is injective since it is so on
each stalk. It is also easily checked that Z is injective. We are done. ]

Definition 2.2.12. Let F be an abelian sheaf on a topological space X. An injective
resolution of F is a complex Z°, defined in degrees ¢ > 0, together with a morphism
e: F — I such that Z' is injective for each ¢ > 0 and such that the sequence

0—+F =10 =T — ...

1s exact.

Corollary 2.2.13. Let X be a topological space. Then any abelian sheaf F on X
admits an injective resolution. O

Lemma 2.2.14. Let X be a topological space and let F — ZI° and F — J°* be
two injective resolutions. Then there are morphisms of complexes f: I°® — J* and
g: J* — I* whose compositions are homotopic to the identity (see Definition 2.1.3).

Proof. Exercise. m

Note that if Z*® is an injective resolution of an abelian sheaf F on X, we get a
complex I'(X,Z*) whose terms are I'(X,Z") = Z'(X) for i > 0.

Definition 2.2.15. Let X be a topological space. For each abelian sheaf F on X,
choose an injective resolution F — Z°, and define H'(X, F) = H/(T'(X,Z*)).

Theorem 2.2.16. Let X be a topological space.

(1) For each i > 0, the assocation F +— H'(X,F) defines a functor from AbSh(X)
to Ab. Moreover, this functor is, up to natural isomorphism of functors, inde-
pendent of the choices of injective resolutions made.

(2) We have HY(X, F) = F(X).

(8) Let 0 — Fy — Fo — F3 be a short exact sequence of abelian sheaves. Then there
15 an associated long exact sequence in cohomology:

= HY(X, F) = H(X, FR) — H(X, F3) - HTY(X, ) - HTY(X, F) — -

Proof. Exercise. Hint: Use Lemmas 2.2.14 and 2.1.2. O

Theorem 2.2.17. Let X be a noetherian separated scheme. Let F be a quasi-coherent
sheaf on X. Then there is a canonical isomorphism between the group HP(X,F) in-
troduced in Definition 2.2.15 and the Cech cohomology group HP (U, F) introduced in
Definition 2.1.8, where U = {Uy, ..., U,} is a finite cover of affine opens U; C X.

Proof. Exercise. O
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2.3 Lecture 18 : Coherent sheaves on projective schemes

2.3.1 Cohomology of twisting sheaves on projective space

Recall. See Examples 2.2.2, 2.2.5 and 2.2.4. We have H*(Pi, O(m)) =
HY(P}, O(m)) =0 for m > —1, and dim H (P}, O(m)) = —m — 1 for m > 2

We would like to generalize this to projective spaces of arbitrary dimension n > 1.
Theorem 2.3.1. Let P, = ProjAlx, ..., x,| where A is a noetherian ring. Then:
(1) For each m € Z, H (P, O(m)) = Alxo, - - ., Tn)m.-
(2) For all0 <p<n and all m € Z, H?(P"}, O(m)) = 0.
(3) For each m € Z,

H" (P}, 0(m)) = (v " - x, ' - Alzg .. ,x;l])m.

In particular, H" (P, O(—n — 1)) = A.

Proof. We consider the open cover U = {U;} with U; = D (x;). This gives
I={0,...,n}.

We get

crwom) = ]I (A[a;o, . xn])

o<+ <ip

m

The Cech complex takes the form

[T Ao, - wale) <> TI (Alzos - #alersy),, = T (Alzos -, 2aloinyan ), <2 -

i i<j i<j<k
For each ¢y < --- <4, € I, we have a decomposition

(A[xo,...,xn]%...xip) = P A

m
ecznt1: deg(e)=m
;>0 VjZ{io,....ip}

This gives a decomposition

crw.om) = [] <A[x0,...,xn]xio...xip>m: I] D Arpa

’i0<"'<ip 'L'O<"'<ip eczn+1; deg(e)=m
€j >0 Vj@{io,... ip}

Note that (1) follows from Proposition 1.2.3. Let us prove (2) and (3). We have:

(Alzo, -, Tnlugzn) @ Axg’

Sei=m
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More generally:
Cc*U,0(m)) = @ U, 0(m)).,
ecZn+1
with
P U, O(m)). = 11 (afp - atr A),,.
i< <ip: €520 Vi@ {i0,ip}

Therefore, to prove (ii), it suffices to prove that the complex C*(U, O(m)). is exact in
the range 0 < p < n, for each e € Z"™!. For deg(e) # m, the complex is zero. For
deg(e) = m and 0 < p < n, we have a canonical split embedding

€0 ... pbn €0, .. Cn

| | xy Tt A — | | R A
ig<--<ip<n 19<--<ip<n

€; >0 ng{io,...,ip}

and the complex

— H xy’ - xn A — H xg’ - ar A— H xya A — -

10<-<ip_1<n i< <ip<n 10<-<ipt1<n

identifies with the complex C* with C? =[] A, that is, with

i< <ip
— H A— H A— i — H A=A

19<-<ip_1<n 19<-<ip<n 10<t1 <<t

The latter is exact in degrees 0 < p < n (see Example 2.2.8), hence the former is exact
in those degrees as well. This proves (2).
To prove (3), observe that

C"(U,0(m)) = (Alzo, -, Tnlogan)m

is a free graded A-module spanned by the monomials of the form z(’--- xS with

>~ e; = m. The image of d"~! is spanned by the monomials z(’ - - - ¢ with > e; =m
and at least one e; > 0. Hence

H"(P", O(m)) = Coker(d" ') = A {3580 cexin | e; < 0 Vi and Z e = m}

= (xal e At ,x;l])m.

This gives

rrn n

H"(P",O(-n—1)) = (x5 -z, Alzg ', . .. x_l])_n_l =A-xytat

The proof is finished. O
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Corollary 2.3.2. Let k be a field. For m > 0, we have

dim HO(P", O(m)) = (m”). 2.1)

n

Moreover, form < —n — 1, we have

dim H"(P", O(m)) = (‘m - 1).

n

We have HP(P™, O(m)) = 0 for all other values of (p,m) € Z%?.

Proof. Remark that (2.1) holds by item (1) of Theorem 2.3.1. Indeed, we have that
dim k[mo, . m:{") By item (3) of Theorem 2.3.1, we have H"(P}, O(m)) =

(T xn)~ L k[xo ...,z ']. Now note that there are natural isomorphisms

((ZL'O .. '[En)_l k[$017 - 71};1])7” k:[xol, e 7$;1]m+n+1 = kf[t(), . ,tn]_m_n_l.

Therefore,

dim H"(P", O(m)) = dim (kffo, .- - tn] mn_1) = ((_m —n-D+ ") _ (‘m - 1).

n n

The corollary follows. O

2.3.2  Cohomology of coherent sheaves on projective schemes

Theorem 2.3.3. Let A be a noetherian ring. Let X C IP"y be a projective scheme over
A. Forn € Z, consider the sheaf Ox(n) on X. Let F be a coherent sheaf on X. Then:

(1) The cohomology groups H (X, F) are finitely generated A-modules for eachi > 0.
(2) There exists an ng > 0 such that
HY(X,F(n)) =0 (where F(n) = F o, Ox(n))
for alln > ng and i > 0.
Example 2.3.4. Let X be an integral projective scheme over a field k. Then
dim; H°(X,0x) = 1.

Indeed, consider a closed immersion i: X < P} for some n > 0. Then X =
Proj(k[zo, ..., x,]/I) for some homogeneous ideal I C k[zo, ..., x,], see Proposition
1.2.13. Now S = k[xg,...,x,]/I is a graded k-algebra which is a domain (since X
is integral), generated by elements x,...,z, € S; over k which are relatively prime.
Thus, by Exercise 1.2.4, the map 3: S — I',(Ox) defined in (1.4) is an isomorphism.
In particular,

k=Sy=T.(0x))=T(X,0x) = H(X, Ox).
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To prove Theorem 2.3.3, we need a couple of results.

Lemma 2.3.5. Let X be a topological space and let v: Z C X be a closed subset. Let

U be an open cover of X, and let Uy be the induced open cover of Z. Then for any
sheaf F on Z and any p > 0, we have HP(Z, F) = HP(X, i,.F).

Proof. This follows from the fact that for each open U C X, '(UNZ, F) = T'(U, i,.F),

so the two cohomolgy groups arise from the same Cech complexes. [

Lemma 2.3.6. Let f: X — Y be a morphism of schemes. Let X be a scheme and let
F be an Ox-module. Let L be a line bundle on Y. Then there exists an isomorphism

0 fo(F)®oy L= fo (F oy [F(L)). (2.2)

Proof. Let {U;} be an open cover of Y such that for each i € I there exists an
isomorphism p;: L]y, = Oyp,. For i € I, define an isomorphism

pir (fo(F) ®oy L) v, = (fo (F @0y (L)) |u;

as the composition

(f+(F) ®oy L) v, = F(F)lv: = (f« (F @ox [7(£))) |u;-

Note that o;|v,nv;, = ¢jlvinu;- Thus, the ¢; glue to an isomorphism (2.2). O

Lemma 2.3.7. Let S be a graded ring and let M be a finitely generated graded S-
module. Then M 1is generated by finitely many homogeneous elements, and there is a
set of integers ay, ..., a, € Z and a surjection of graded S-modules ®;S(—a;) — M.

Proof. First observe that there exists a set of generators {ms,...,m,} C M for M
over S such that each m; is homogeneous. Let a; = deg(m;). The map S(—a;) - M
that sends 1 € S(a;)s; = So to the element m; is a morphism of graded S-modules.
Moreover, the resulting map of graded S-modules ®;S(—a;) — M is surjective. n

Proof of Theorem 2.3.3. Let i: X — P"; be the given closed embedding into P’;. Then
1. F 1s coherent and 4 '

H'(X, F) = H' (P}, i.F),
see Lemma 2.3.5. Moreover, by Lemma 2.3.6, we have F®i*Opr (n) = i, (F ® i*Opr (n)),
so that

H' (X, F ® Ox(n))

H(X, F(n)) = H'(
(X, F @i Op, (n))
(
(

(P, i F ® Opr (n)).

H
H
H

This reduces the theorem to the case X =P’,.
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Recall (see Proposition 1.2.8) that in this case, the coherent sheaf F on X = P,

is of the form F = M for some finitely generated graded S-module M, where S =

Alxg, ..., z,]. Both parts of the theorem are trivially satisfied when ¢ > dimP’, =

r+ dim(A). We take this as the base case, and proceed by downwards induction on i.
(1). As M is finitely generated, we may pick a surjection of graded A-modules

P A(-ar) — M.

The kernel K of this surjection is graded and finitely generated (see Lemma 1.1.4), so
that we get an exact sequence of finitely generated graded A-modules

O—>K—>@A(—ak)—>M—>0.
k

Applying the tilde functor, which is exact by Lemma 1.1.11, we get an exact sequence
of coherent sheaves

OAK:I?%EBOM(—%)%}"%O. (2.3)
k

Taking the long exact sequence in cohomology yields:

C— HY( %@HZ O (—ay)) — H (PG, F) — HF (P, K) — -

By the induction hypothesis, we have that H*™ (P, K) is a finitely generated A-
module. The A-module @, H (P}, Opr, (—ay)) is also finitely generated, see Theorem
2.3.1. Hence, we get that H(P, F) is finitely generated.

(2). It suffices to prove that for each i > 0, there exists ng > 0 such that
H(P",, F(n)) = 0 for all n > ng. Indeed, one then takes the max of all such ng
defined for the various 0 < i < r 4 dim(A).

Twist the exact sequence (2.3) by Opr, (n) and take cohomology, to get an exact
sequence

- — H(P",, K(n)) — @Hi(PTA, Opr, (n—ay)) — H' (P, F(n)) — HTY P, K(n)) — - .

Again, by downward induction on 7 > 0, we get some ng such that H(P", K(n)) = 0
for n > ny, and enlarging ny if necessary, we may assume H'(P%, O(n — a;,)) = 0 for
n > ng and all k (see Theorem 2.3.1. This gives H (P%, F(n)) = 0 for n > ny. O

2.3.83  Picard group of a scheme
Definition 2.3.8. Let X be a scheme.

(1) Let F be an Ox-module. We say that F is finite locally free if there exists an
open covering {U;},.; of X together with an integer n; € Z>; and an isomorphism
Flu, = O for each i € I.

31



(2) An Ox-module L is invertible if there exists an open covering {U;} of X and for
each ¢ an isomorphism L|y, = Oy, of Op,-modules. We call £ a line bundle.

(3) We let Pic(X) denote the set of isomorphism classes of line bundles on X.

Exercise 2.3.9. Let X be a scheme. For a line bundle £ on X, show that the Ox-
module

L= Home, (L,0x)

is a line bundle on X. Show that £; ®o, L, is a line bundle on X if £, L, are line
bundles on X. Show that Pic(X) admits a natural structure of an abelian group. It
is called the Picard group of X.

Exercise 2.3.10. Let k be a field. Show that Pic(A}) = 0.
Exercise 2.3.11. Let k be a field. Let X = P;}.
(1) Show that Ox(n) ®o, Ox(m) = Ox(n+m).

(2) Show that
Pic(P}) = Z - Op1 (1).
In other words, for any line bundle £ on X = P}, we have £ = Ox(n) for some

n € 7.

2.4 Lecture 19 : Hypersurfaces

2.4.1 Field-valued points of schemes
Let k be a field and let X be a scheme over k.

Definition 2.4.1. For a scheme T over k, we write
X(T') == Homgen /i (T, X).

This is the set of morphisms of k-schemes T" — X. If T' = Spec A is affine, we write
X(A) = X(T).

Note that for affine k-schemes X = Spec R and T = Spec A, we have that X (7T') =
X (A) is naturally in bijection with the set of morphisms of k-algebras R — A.

Lemma 2.4.2. Suppose that X = Spec R with

R: k[tl,...,tn]/(fl,...,fm), fz € k[tl,,tn]

Let T = Spec A be an affine scheme over k. Then there are natural bijections

X(A) = X(T) = Homsen /i (T, X)
= Homy pg(R, A) ={a € A" | fila) =0Vie {1,...,m}}.
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Proof. Exercise. O]
Examples 2.4.3. (1) Let X = Spec R[z,y|/(z* + y*). Then X (R) = 0.
(2) Let X = Spec R[z,y]/(z +y,x —y). Then X(R) = {(0,0)} C A*(R) = R

Example 2.4.4. Let k be a field. Let V = k™!, Then there is a natural isomorphism
of k-vector spaces V' = V'V given by e; — eY. This gives an isomorphism

Py = P},
where we recall that
Py =P(VY) and that P(W) = Proj(Sym*(W))

for a finite dimensional k-vector space W. For each field extension k' D k, one gets a
canonical bijection (see also Example 1.2.20):

Py (k') = {lines ¢ C (K')"*'}.

2.4.2  Hypersurfaces in projective space
Definition 2.4.5. (1) A hypersurface is a closed subscheme X C P} defined as
X = V(F> = Proj(k[l’o, s axn]/<F))7

for some homogeneous polynomial F' € k|x,...,z,| of positive degree. The
degree of this hypersurface is the degree of F'.

(2) A complete intersection of two hypersurfaces X C P} is a closed subscheme

X =V(F)NV(G) = V(F,G) C P}

defined by two homogeneous polynomials F,G € k[x,...,z,] of positive de-
grees d > 0,e > 0 such that V(F) and V(G) have no irreducible component in
common.

Example 2.4.6. Continue with the notation from Example 2.4.4. Let X = V(F) C P}
be a hypersurface. Then for each field extension k' D k, we have:

X(K)={a=[zxo: -+ : 2, € P(K) | F(a) =0} C P*(K).
Exercise 2.4.7. For a hypersurface X = V(F') C P} of degree d > 0, show that:
(1) dim(X) =n — 1;
(2) the ideal sheaf Zx C Opy is canonically isomorphic to the sheaf Opy (—d).

Exercise 2.4.8. For a complete intersection X = V(F)NV(G) = V(F,G) C P,
where deg(F') = d > 0 and deg(G) = e > 0, show that:
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(1) dim(X) =n—2:
(2) for R = kl[xo,...,x,], the sequence of graded R-modules
0— R(—d—¢) % R(—d) ® R(—e) & (F,G) = 0
is exact, where a(h) = (—hG,hF') and B(hy, he) = hi F + hoG.
(3) Applying the tilde functor, we get an exact sequence of Opr-modules
0 — Opp(—d —e) = Opp(—d) ® Opp(—e€) = Ix — 0,

where Zx C Opg is the ideal sheaf of X C P}.

2.4.3 Genus of a plane curve

Definition 2.4.9. Let k be a field.

(1) A curve over k is an integral scheme C' which is separated and of finite type over
k, with dim(C') = 1.

(2) The genus g(C) of a projective curve C' is the dimension of the k-vector space
H'(C,O¢). This dimension is finite by Theorem 2.3.3.

(3) A plane curve is a hypersurface C' C P? which is integral. Remark that any
plane curve is a curve.

Example 2.4.10. The projective line P} is a curve with g(P}.) = 0.

Definition 2.4.11. Let C' C PZ be a plane curve defined by a homogeneous polynomial
F € k[xg,x1, 5] of positive degree. We say that C is smooth if there is no point

p € C(C) c P?(C) such that 0F/dz;(p) = 0 for each i = 0,1,2. In other words, C' is
smooth if there is no p € P?(C) such that

F(p) = 0F/0xo(p) = OF/0x1(p) = OF /0x2(p) = 0.

Proposition 2.4.12. Let C' C P% be a smooth plane curve. Then, with respect to the
natural complex manifold structure of P?(C), we have that C(C) C P*(C) is a complex
submanifold of dimension one.

In particular, C'(C) is a connected and compact Riemann surface in a natural way.
Proof. Exercise. O

Fact 2.4.13. Let C C PZ be a smooth plane curve. Then g(C') equals the (topological)
genus of the Riemann surface C(C). In particular, rank; H*(C(C),Z) = 2 - g(C).

Lemma 2.4.14. Letn € Z>3 and let 0 = V) — --- = V,, = 0 be an exact complex of
finite dimensional vector spaces V' over a field k. Then Y, (—1)"dim(V;) = 0.
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Proof. First assume n = 3. If 0 - Vi — Vo — V3 — 0 is a short exact sequence
of finite dimensional vector spaces, then there exists a injective linear map V5 — V5
whose composition with the given map V5, — V3 is the identity: the sequence splits.
Thus V5 = V] @ V3 in this case, whence the result.

We assume n > 4 and apply induction on n, assuming the lemma to be true for
n — 1. Let W,,_y = Coker(V,,_3 — V,,_5). Then we have exact sequences 0 — V; —
o= Vg >V, oW, 1 —-0and 0 —> W, —» V,_1 — V,, — 0. By the induction
hypothesis, we have

N

S (—1)" dim(V;) + (—=1)" " dim(W,,—;) = 0.

1

<.
I

Moreover, the n = 3 case gives (—1)" "t dim(W,,_;) = (—=1)"! (dim(V},_1) — dim(V},)).
Hence,

I
P/lﬂ
—
.
e
z
S
~—
+
|
Naw

S
=
4
E

We are done. 0

Theorem 2.4.15. Let C' C P2 be a plane curve of degree d > 0. Then
g(C) = (d—1)(d—2)/2.
Proof. Let i: C' — P2 be the natural closed immersion. Consider the ideal sequence
0—>Zc— Op2 — 1,0 — 0.
Using Lemma 2.3.5, we get a long exact sequence

0 — HY(P?, O(—d)) — H°(P?, Op2) — H(C, O¢) —
— HY(P?, O(—d)) — H'(P?, Op2) — HY(C, O¢) —
— H2(P?, O(—d)) — H*(P?, Op2) — 0.

In view of Lemma 2.4.14 and Corollary 2.3.2, this gives:

d—1
0—1+1—0+0—g(X)+( 5 )—0:0.
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Therefore,

L fd-1\  (d-1)  (d—1)(d—2)
g(X)_( 2 )_2!(d—3)!_ 2 '

This proves the proposition. O

Example 2.4.16. Consider P% = ProjC|z,y, 2]. Let
C=V(z—2°—2") C P

Then C' is smooth (see Definition 2.4.11), and the Riemann surface C'(C) is topolog-
ically a torus. Hence g(C) = 1 (see Fact 2.4.13). This is compatible with Theorem
2.4.15, since 1 = (3 — 1)(3 — 2)/2.
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Chapter 3

Divisors

3.1 Lecture 20 : Bézout’s theorem and Weil divisors

3.1.1 Bézout’s theorem

Let k be an algebraically closed field. Let C' C P? and D C P? be two plane curves of
degrees d > 0 and e > 0, that have no irreducible component in common. This implies
that the scheme-theoretic intersection

Z=CxpDCP}

is a zero-dimensional subscheme of P2. In particular, the underlying topological space
|Z| of Z consists of finitely many closed points py, . .., p, € |P%|. Note that there exists
an automorphism ¢ € Aut(P%) such that ¢(|Z|) is contained in the affine open

Uo = D (o) = Spec (k[zo, 21, %2](a)) = Spec (k[z, y]).
Replacing C' by ¢(C) and D by ¢(D), we get that Z C Uy C P;. Let
m; C k[z, y]
be the maximal ideal associated to the closed point p; € Uy = Spec k[z,y] = AZ.

Theorem 3.1.1 (Bézout’s theorem). Under the above notation and assumptions,

im H° =d-e.
dimH’(Z,0,) = Zd <fg>> d-e

Example 3.1.2. Let C = V(2 — x9) and D = V(z; + .7}2). Then Z = C xp2 D =
V(zy — x9, 21 + x2) = V(xy,29) C Uy. We get Z = Spec k with closed embedding
Spec k < Uy = A? given by 0 € Af(k) = Homsn i (Spec k, A7), see Lemma 2.4.2.

Proof of Theorem 3.1.1. Since Z is a zero-dimensional subscheme of Uy = Spec k|, y],

it is clear that .
Z) = @ Ovai7
i=1
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Z:p ‘/0 Di ZZp — l/O z Z k 9

(f.9)

Moreover, for the natural closed immersion i: Z < P2 we have the ideal sheaf se-
quence 0 — Z, — O]P)i — 1,0z — 0, which gives exact sequences

> Vie{l,...,r}.

0 — H(P}, Zz) — HY(P}, Op2) — H(Z,0z) — H'(PE, Zz) — 0

and
0=H'(Z 0z) =H'(P?i.07) — H*(P},Z;) — H*(P?, Op2) = 0,

where H'(Z, Oz) = 0 because dim(Z) = 0. This gives:
dim H(Z, 0z) = dim H°(P}, Op2) + dim H' (P}, Z) — dim H(P}, Z.),
H?*(P3,Z,) = 0.
Recall the exact sequence
0 — Opz(—d —e€) = Op2(—d) ® Op2(—e) = Iz — 0, (3.1)

see Exercise 2.4.8. As H'(P%, Opz (m)) = 0 for each m € Z, see Corollary 2.3.2, we get
an exact sequence

0 = H(P, Opz (—d) & Opz (—e)) — H (P, Zz) — H(Py, Opz (—d — ¢)) = 0,
which shows that H°(P?, Z,) = 0. Hence

dimH(Z, Oz) = dim H*(P}, Op2) + dim H' (P}, Z) = 1 + dim H' (P}, Z).
Furthermore, (3.1) gives a long exact sequence

0 = HI(B2, T,) — H2(B2, Ops (—d — ¢)) — HE(B, O (—d)) & (P2, Opa ()
— HX(P},Zz) = O,
where the vanishing H?(P?,Z;) = 0 has been shown above. We conclude that
dimy, H' (P}, Zz) = dimy, H*(P}, Opz (—d — ¢))
— dim,, H?(PP%, Opz (—d)) — dimy H?(P%, Opz2(—¢))

_(d+e—-1\ [(d—1\ f(fe—1
B 2 2 2 )
see Corollary 2.3.2. Now

()-()-(3)
dte—1)d+e—2) (d-1)(d-2) (e—1)(e—2)

2 2 2
:%-((d2—|—2de—3d—|—62+2)—(d2—3d+2)—(62—3e+2))
:2d6_2:de—1.

2
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Therefore,
dim, H*(Z,04) = 1 + dim H (P}, Z;) = 1 + de — 1 = de.

The theorem follows. O

3.1.2  Definition of an algebraic variety

In this course, we follow the Stacks Project with our notion of algebraic variety:
Definition 3.1.3. Let k be a field.

(1) An algebraic variety (or simply a variety) over k is a scheme X over k such that
X is integral, and such that the structure morphism X — Spec k is separated
and of finite type.

(2) A curve (resp. surface, resp. threefold) is an algebraic variety of dimension one
(resp. two, resp. three).

Remark 3.1.4. Suppose that k'/k is an extension of fields. Suppose that X is a
variety over k. Then the base change X, = X X, k' is not necessarily a variety over
k'. For instance, let k = Q, let X = Spec Q(7) and let k£’ = Spec Q(7). Then

Xy = Spec (Q(i) ®g Q(i)) = Spec Q(i) LI Spec Q(3).

Remark 3.1.5. The same counterexample shows that the product of two varieties
need not be a variety. If the ground field is algebraically closed however, then the
product of varieties X and Y over k = k is a variety over k. This statement readily
reduces to the affine case, and in fact to the statement that for an algebraically closed
field k£ and two finitely generated k-algebras A and B which are integral domains, the
tensor product A ®; B is an integral domain. We leave this as an exercise.

Corollary 3.1.6. Let
X — Spec k

be a projective morphism, where k is a field and X is a scheme. Then X is separated
and of finite type over k. In particular, if X is integral, then X is a variety over k.

Proof. Indeed, the composition of two separated (resp. finite type) morphisms is sep-
arated (resp. of finite type), and P} is separated and of finite type over k. ]

Example 3.1.7. Let C' be a curve over a field k. Then C' is an algebraic variety.

Example 3.1.8. Let X = Spec C and consider the morphism X — Spec R. This
turns X into an algebraic variety over R.

Non-Example 3.1.9. Let k be a field and consider the scheme X = Spec k[z]/(x?)
with its natural morphism X — Spec k. Then X is irreducible, separated and of finite
type over k. However, X is not an algebraic variety over k, since X is not reduced.
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For an algebraic scheme, there is a natural characterization of its closed points.
For this, we need the following elementary lemma.

Lemma 3.1.10. Let X be a topological space. Let W C U C X be subsets equipped
with their induced topologies. Let W be the closure of W in U, and let W be the
closure of W in X. Then w' =W nu.

Proof. As W is closed in X , we have that W¥ AU is closed in U and contains W
Thus, w' C wrnu. Conversely, we have that WY is the intersection NZ of all

closed subset Z C X that contain W. Hence WX N [Q§( containﬁ (}n the intersection
of all closed subset of U that contain W. This gives W~ NU C W . O

Proposition 3.1.11. Let X be a scheme of finite type over a field k. Letx € X. Then
x 1s closed if and only if there exists an affine open neighbourhood U of x € X with

Ox(U) a finitely generated k-algebra, with x € U corresponding to a mazimal ideal in
Ox(U). This happens if and only if the residue field k(x) is a finite extension of k.

Proof. Let x € X be an arbitrary point. Let U = Spec A be any affine open neighour-
hood of z. If x is closed in X then z is closed in U. Conversely, assume z is closed
in U. Define Z = 7% C X. Then Z is irreducible, and hence Z N U is irreducible,
open and dense in Z. Thus dim(ZNU) = dim(Z). We have ZNU =7¥NU =7V by
Lemma 3.1.10 above. As z is closed in U, we get ZNU = zV = . We conclude that
dim(Z) = dim(Z N U) = dim({z}) = 0. Therefore, Z C X is an irreducible closed
subset of dimension zero, which gives that ¥ = x, i.e. that z is closed in X. We
conclude that z is closed in X if and only if z is closed in U.

Now z is closed in U = Spec A if and only if the prime ideal x = p € Spec A is a
maximal ideal. Thus k(z) = k(p) = A,/pA, = A/p. This field extension k(z) D k is
finitely generated as a k-algebra, and therefore finite by the Hilbert Nullstellensatz.

Conversely, assume the residue field k(x) of € U is a finite field extension of k,
and let p C A be the prime ideal corresponding to x. We get ring homomorphisms

k— Alp — Ay /pA, = k(2).

Since k() is finite as a module over k, we see that k(z) is finite as a module over A/p.
Therefore, we have dim(A/p) = dim(k(z)) = 0. Thus A/p is a field, hence A/p = k(z).
This implies that p is a maximal ideal. This proves the proposition. O

Example 3.1.12. Let k be a field and A = k[t]) the localization of k[t] in (¢). Then
A is a one-dimensional local noetherian normal domain, hence a discrete valuation
ring (cf. Theorem 3.1.21) with maximal ideal m = (¢) - A. The underlying topological
space |Spec A| consists of two points: |Spec A| = {n, m}. The point m is closed and
the point 7 = (0) is open. On the one hand, k(m) = k, which is a finite field extension
of k. On the other hand, k(n) = k(t), which is not a finite field extension of .
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3.1.3  Smooth varieties

Let k be a field. Let A = k[ty,...,t,)/(f1,--., fm) be a finitely generated k-algebra,
with f; € k[ty,...,t,] for i = 1,...,m. Note that for each i € {1,...,m} and each
je{l,...,n}, we get a polynomial

0fi
€ klty, ..., ta),
ot 2 |
and hence an element 2 (a) € k for each a € (k).

Definition 3.1.13. Fix an integer d > 0.

(1) Let X be a scheme of finite type over an algebraically closed field &, all whose
irreducible components have dimension d. Let x € X be a closed point (thus
x € X(k), cf. Proposition 3.1.11). We say that X is smooth at x if there exists
an affine open neighbourhood U of z and an open immersion

U < Spec klt1, ..., ta)/(f1,-- -, fr)

for suitable n > d, where r = n —d, and fi,..., f. € k[t1,...,t,], such that the
Jacobian matrix

df;
J, = ( a{j (g;))m € M, n (k)

has rank r.

(2) Let X be a scheme of finite type over a field k, all whose irreducible components
have dimension d. Then X}, is a scheme of finite type over k, all whose irreducible
components have dimension d. Let x € X be a closed point. We say that X is
smooth at x if for any closed point 2’ € X}, lying above z € X, X; is smooth at
x'. We say X is smooth over k is X is smooth at every closed point = € X.

Lemma 3.1.14. Let X be a scheme of finite type over an algebraically closed field k,
all whose irreducible components have dimension d > 0. Let v € X (k). Assume X is
smooth at x. Then for any affine open neighbourhood U of x, any integer n > d, any
fi,o o fr € klt1, ..., t,] where r =n —d, and any open immersion

U— Spec k[tla-H;tn]/(fla-”;fr);

the Jacobian matriz

dfi
== M Xn
& ((915]- (x)>2j & Mrcalf)
has rank r.

Proof. This follows from results in later chapters (see Exercise 4.2.23). 0

Lemma 3.1.15. Let X be a variety over k. If X 1is smooth over k then each open
subscheme U C X 1s smooth over k.
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Proof. Exercise. O]

Example 3.1.16. Let k be a field and let X = V(F') C P} be a hypersurface. Then
X is smooth over k if and only if for each

a=[zg: -1, € X(k) CP(k),

there exists ¢ € {0,1,...,n} such that (0F/0x;)(«) # 0. Indeed, this follows from
Lemma 3.1.14. In particular, Definitions 2.4.11 and 3.1.13 are equivalent, if £ = C.

Example 3.1.17. Let k be a field and let p be a prime number. Consider the curve
C C P% defined by the equation z + z§ + 25 = 0. In other words,

C = Proj (k{zo, 1, 2/ (28 + a4 + 2%)) .

(1) If the characteristic of k is different from p, then C' is smooth. Namely, we have
OF/0z; = p - xi’_l for i = 0,1,2, and if, for each ¢ € {0, 1,2}, this homogeneous

degree p — 1 polynomial p - 2*~" vanishes at some o = [ag: a1 : as] € P?(k), then
ag = a1 = as = 0, which is absurd.

(2) If the characteristic of k equals p, then C is not smooth. Namely, we then
have 0F/0xz; = p-a?™' = 0 for i = 0,1,2. Thus for any a € C(k), we get
F(a) = 0F/0x;i(a) =0 for : =0,1,2.

3.1.4 Normal schemes

We consider the following important notion in scheme theory.

Definition 3.1.18. (1) Let A be a ring which is a domain. Then A is called normal
if A is integrally closed in its field of fractions Q(A). This means that for each
a € Q(A) which is integral over A, we have a € A. Equivalently: for each monic
polynomial f € A[z] and each o € Q(A) with f(a) =0, we have a € A.

(2) A ring R is normal if for each prime ideal p C R, the localization R, is a normal
domain.

(3) A scheme X is called normal if for all z € X, the local ring Oy, is a normal
domain.

Suppose X = Spec A is an affine scheme such that A is reduced. Then saying that
X is normal is not equivalent to saying that A is integrally closed in its total ring of
fractions. However, if A is noetherian, then this is the case (exercise).

Lemma 3.1.19. Let X be a scheme. The following are equivalent:
(1) The scheme X is normal.

(2) For every affine open U C X, the ring Ox(U) is normal.
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(3) There exists an affine open covering X = U;U; such that each ring Ox(U;) is
normal.

(4) There exists an open covering X = U;X; such that the scheme X; is normal for
each 1.

Moreover, if X is normal, then every open subscheme U C X is normal.
Proof. Exercise. O]

Lemma 3.1.20. Let X be a normal integral scheme. Then for each non-empty open
U C X, the scheme U is normal and integral, and Ox(U) is a normal integral domain.

Proof. The fact that U is normal and integral is clear. Thus, it suffices to show that
Ox(X) is a normal integral domain. For this, see e.g. [Stacks Project, tag 0358]. [

Theorem 3.1.21. Let A be a noetherian local domain of dimension one, with maximal
tdeal m. The following are equivalent:

(1) A is a discrete valuation ring;
(2) A is normal;
(8) m is a principal ideal.
Proof. See Atiyah—-Maconald (Proposition 9.2 on page 94). [

Corollary 3.1.22. Let k be an algebraically closed field and let C be a curve over k.
Then C' is smooth over k if and only if C' is normal.

Proof. This uses: (1) any discrete valuation ring is a regular local ring of dimension
one, and conversely; (2) since k is algebraically closed, any variety X over k is smooth
over k if and only if for each z € X there exists an affine open neighbourhood U C X
such that the localizations R, of R = Ox(U) are all regular. Details omitted. []

In arbitrary dimensions, one has:
Proposition 3.1.23. Let X be a smooth variety over a field k. Then X is normal.

Proof. We do not prove this here. O]

3.1.5 Codimension

Definition 3.1.24. Let X be a scheme. Let Y C X be an irreducible closed subset
of X. The codimension of Y in X, denoted by codim(Y, X), is the supremum of all
integers n such that there exists a chain

Y=Y%CViC - CY,CX

of irreducible closed subsets Y; of X.
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Proposition 3.1.25. Let X be a scheme, let v € X and define Y = {z} C X. Then
Y is irreducible, and codim(Y, X) = dim Ox .

Proof. Since Y has a generic point, it is irreducible. Let Y =Yy C --- C Y, C X be
a chain of irreducible closed subsets. Let U C X be an affine open neighbourhood of
x in X. Since U NY; # () for each i, we have n; € U for each i. Moreover, for each 1,
Y; N U is a closed subset in U, defined by a prime ideal p; C R, where R = Ox(U).
Thus we get a chain of prime ideals

Pn & s & Po =P,
where p is the prime ideal that defines Y NU in U. Hence we have
codim(Y, X') = sup,, (Ip, € - C po =p C R) = height(p) = dim(R,).
As R, = Ox 4, we get dim Oy, = dim R, = codim(Y, X'), whence the result. O

Theorem 3.1.26. Let k be a field and let X be a variety over k, with generic point
ne X. Let k(X) = Ox,, be the function field of X. Then:

(1) the dimension of X agrees with the transcendence degree of k(X) over k;
(2) for each non-empty open subset U C X, we have dim(U) = dim(X);

(3) if Y C X is a closed subvariety, then all mazimal chains of irreducible subvari-
eties
YC 4,4, C---CZ, CX

have the same length;
(4) we have codim(Y, X) = dim(X) — dim(Y").

Proof. We will not prove this here. O]

3.1.6 Weil divisors

Definition 3.1.27. Let X be a normal integral noetherian scheme.
(1) A prime divisor is an integral subscheme Z C X of codimension one.

(2) A Weil divisor of X is an element of the free abelian group generated by the
prime divisors of X. We denote the group of Weil divisors by Div(X). Thus,
an element D € Div(X) can be written as a formal linear combination of prime

divisors
D= Z ny -7

Z CXprime

with ny € Z for each prime divisor Z C X, and such that ny = 0 for all but
finitely many prime divisors Z C X.
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(3) We say that a Weil divisor D = Y ny - Z is effective if ny > 0 for each prime
divisor Z.

(4) Any Weil divisor D = ) nzZ can be written as D = Zle n; - Z; where Z; is
a prime divisor and n; € Z — {0} for each i € {1,...,k}. This gives a closed
subset U;Z; C X called the support of the Weil divisor D.

(5) Given two Weil divisors D = >, nzZ and D' = Y myZ, we say that D > D’
if D — D’ is effective, or equivalently, if ny > my for all prime divisors Z. This
turns Div(X) into a partially ordered group.

Example 3.1.28. Let k be a field and let X = P} be the projective line over k. Since
(' is a curve, any irreducible closed subset of codimension one on X is a closed point.
For example, for any

f € Homseh(Spec k,Pp) = P (k) = {lines in £°}
the image f(Spec k) in P} is a closed point (see Proposition 3.1.11), and the map
P, (k) — {closed points = € P} }
is injective. In this way, we get some examples of Weil divisors on Py

Dy=3-(1:0)—5-(0: 1),
Dy = (1:1)+5-(0: 1),
Di+Dy=3-(1:0)+(1:1).

3.2 Lecture 21 : The divisor class group of a scheme

3.2.1 Principal Weil divisors

Let X be a normal integral noetherian scheme with generic point n € X and fraction
field K = k(X) = Ox,. Since X is normal, for each z € X, the local ring Ox, is a
domain which is integrally closed in its field of fractions Q(Ox ) = K.

Lemma 3.2.1. Let X be a normal integral noetherian scheme. Let § € X be a point
such that codim({¢}, X) = 1.

(1) The reduced closed subscheme {€} C X is a prime divisor, and every prime
divisor arises uniquely in this way.

(2) The local ring A = Ox¢ is a discrete valuation ring.

Proof. Note that @ is irreducible since it has a generic point, hence it is a prime
divisor. For an arbitrary prime divisor Z C X, the generic point 1z of Z gives a
codimension one point 17, € X. As for part (2), this follows from Theorem 3.1.21. [
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This has the following implication. By Theorem 3.1.21, for each codimension one
point £ € X, the local ring Ox ¢ is a discrete valuation ring. Thus, this ring is equipped
with an associated valuation

v: K — Z U {0},

such that A = v™! (Zso U {o0}).

In fact, one can define v explicitly as follows. Given a € A— {0}, the ideal (a) C A
has the property that (a) = m™ for some n € Zso, and we define v(a) = n. This gives
a function v: A — {0} — Z which extends to K* = {%:a,b € A—{0}} by putting
v(a/b) = v(a) — v(b), and then to a map v: K — Z U {co} by putting v(0) = oco.

Definition 3.2.2. Let f € K = k(X). For every prime divisor Z C X, we get by the
above a valuation vz: K — Z U {oc}, which allows us to define

ordz x(f) = v(f).

Lemma 3.2.3 (Algebraic Hartog’s lemma). Let A be a normal noetherian integral
domain and let x € K. Let K = Q(A) = Frac(A) be the fraction field of A. Then
x € Aif and only if v € Ay C K for all height one primes ideals p C A.

Proof. We do not prove this here. O

Corollary 3.2.4. Let A be a noetherian normal domain, and f € Q(A). Then
ordy (p) spec 4(f) = 0 for all primes p C A of height one if and only if f € A, and
ordy (p),spec a(f) = 0 for all primes p C A of height one if and only if f € A*.

Proof. Let f € Q(A)*. Then apply Lemma 3.2.3 to f and to f~! € Q(A). O

Lemma 3.2.5. Suppose that X is a normal integral noetherian scheme with fraction
field K and let f € K*. Then ordz x(f) =0 for all but finitely many primes Z C X.

Proof. We proceed in two steps:

Step 1: Reduction to the case where X = Spec A is affine and f € A: Consider a
non-empty affine open subset V of X. Let R = Ox (V). Then K is the fraction field
of R, so that f = a/b for some a,b € R which are both non-zero. We then look at
the affine open U := D(b) C V C X. This is an affine open where b is invertible, so
that f = a/b € R, = I'(U,Ox). The complement W = X — U is a closed subset of
codimension at least one, since X is integral (which implies U is non-empty). Notice
that

D ordzx(f)-Z =) ordzx(f)Z+ Y ordzx(f)Z,
Z

ZcW ZgW

and that there are only finitely many prime divisors Z C X that satisfy Z C W.
Thus, it suffices to show that ordz(f) = 0 for almost all prime divisors Z C X with
Z NU # (). Notice that, for primes Z C X with ZNU # (), we have

ordz x(f) = ordzruu(f).
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since Ox¢ = Oy, for the generic point § € Z. Now the sum »_,, ordz x(f)Z is
finite since W has finitely many irreducible components of codimension one. Hence it
remains to show that ordzy(f) =0 for f € I'(U, Ox) and almost all primes Z C X
with ZNU # 0, so that indeed, we may assume that X = Spec A is affine and f € A.

Step 2: Case where X = Spec A is affine and f € A: We now have ordz(f) > 0,
and ordz(f) > 0 if and only if p|(f), C A, for all p of height one in Z if and only if
f € p for all primes p in Z if and only if Z is contained in V' (f) C Spec A. Since V (f)
has finitely many irreducible components of codimension one, we are done. O]

Definition 3.2.6. Let X be a normal integral noetherian scheme with fraction field
K. For f € K*, define its corresponding Weil divisor div(f) as

div(f) = Zordzx(f) - Z,

Z

where the sum runs over all prime divisors. Any Weil divisor D of the form D = div(f)
for some f € K* is called a principal Weil divisor.

Example 3.2.7. Let A be a normal noetherian integral domain and let X = Spec A.
Let K be the fraction field of A. Then for any f € K*, we have

le(f) = Z OrdV(p),Spec A(f) ) V(p)

p height 1

Example 3.2.8. Let A be a discrete valuation ring with maximal ideal m C A. Let
t € A such that m = (t) C A. The underlying topological space |Spec A| consists of
two points: [Spec A| = {n, m}. The point m is closed and the point n = (0) is open.
We have (0) € m and m is the only prime ideal of height one. For f € K = Frac(A),
we can write f = u - 1" for some n € Z and u € A*. Then div(f) = ordy (m)spec a(f)
and this equals v(f) = v(u-t") = v(t") = n, where v: K — Z U {oo} is the valuation.

Lemma 3.2.9. Let X be a normal integral noetherian scheme. The set of principal
Weil divisors forms a subgroup of Div(X).

Proof. For f,g € K*, we have div(f) — div(g) = div(f/g). O

In fact, the map K* — Div(X) sending f to div(f), is a group homomorphism. If
X = Spec A is affine, then div(f) = 0 if and only if f € A* (see Corollary 3.2.4); thus
we get an exact sequence 0 — A* — K* — Div(X) in that case.

3.2.2  FExamples

Example 3.2.10. Let X = Spec Z with function field Q(Z) = Q. We claim that the
map Q" — Div(X) is surjective. Indeed, any element D € Div(X) is a finite sum D =
> ni - V(p;), where the p; are prime numbers and n; € Z; we have div(] [, pi") = D.

Example 3.2.11. Let X = Al. Consider f = t*(t — 1)™! € k(t) = k(A}). Then
div(f) =2-[0] — [1], where 0,1 € A(k) give closed points of A}.
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Example 3.2.12. Let k be a field and consider X = P, = Proj(k[xo,z1]), whose
function field is k(X)) = k(t), where t = z1/x¢. Consider the rational function

f=tt-1)""'ekK.

Notice that P}, — Uy = {oo}, where Uy = D, (o) = Spec k[xo, 1)) = Spec k[t], and
where co = [0 : 1] € Uy (k). Therefore:

div(f) = ) ord,(f) + ords(f) - 00

p€lp

=2-[1: 0] = [1: 1] + orde(f) - 00,

because

Sord(f)= S ordy(f)=2-[0] - [

pelo pESpec klt]

by Example 3.2.11. Moreover, using the identification
Ui = Dy (1) = Spec k[xo, #1](,) = Spec k[u]
with v = xo/z; = t71, we get

1 1
:t2t—1_1: -2 —1_1—1: — ]
f ( ) u(u ) 2w t—1) u—u?

Therefore, if we let ¢ = (v —u?)™' = u=1(1 —u)™! € k(u), then
orde(f) = ordp(g) = —1.

All in all, this gives

div(f) =) ord,(f) + ordee(f) - [0: 1] =2 [1: 0] = [1: 1] — [0: 1].

p€lp

3.2.8 The divisor class group

Definition 3.2.13. Let X be a noetherian integral normal scheme with function field
K. We define the divisor class group of X (or simply the class group of X) as the
group of Weil divisors modulo principal Weil divisors, and we denote it by CI(X).
Thus, we have

Cl(X) = Div(X)/(div(f) | f € K¥).

Two Weil divisors D and D’ are said to be linearly equivalent (written D ~ D') if they
have the same image in C1(X); in other words, if D — D’ = div(f) for some f € K*.

Example 3.2.14. Let A be a noetherian normal domain with fraction field K. Write
Div(A) = Div(Spec A) and Cl(A) = Cl(Spec A). In view of Corollary 3.2.4, there is
an exact sequence of abelian groups

0 — A" — K* — Div(4A) — Cl(4) — 0. (3.2)
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Remark 3.2.15. Let K be a number field. Then K is the fraction field of its ring of
integers Ok, and in this case, Div(Ok) can be identified with the group of fractional
ideals (these are non-zero finitely generated Og-submodules of K, which form a group
under ideal multiplication), and Cl(Ok) with the group of fractional ideals modulo
the principal fractional ideals (these are the fractional ideals generated by an element
of K*). A classical result in number theory says that the group Cl(Of) is finite. Note
that Cl(Og) = 0 if and only if Ok is a unique factorization domain. For example,

Z[v/—5] is not a UFD since 2-3 = (1—+/—5)(1++/—5), and in fact Cl(Z[v/—5]) = Z/2.
Example 3.2.16. Consider the ring Z. Then CI(Z) = 0, see Example 3.2.10.

This generalizes as follows:

Proposition 3.2.17. Let A be a normal noetherian integral domain and let X =
Spec A. Then CI(X) = 0 if and only if A is a unique factorization domain.

Proof. Suppose that A is a unique factorization domain. Let Z C X be a non-zero
prime divisor in X. Then Z = V(p) for some prime ideal p C A of height one. Take
f € p non-zero, and let f = f;--- f, be a factorization of f into irreducible elements
of A. Since p is prime, we see that f; € p for some i. Since A is a UFD, the element f;
is prime. Thus p contains the prime ideal (f;). As p has height one, we have p = (f;).
Thus gives Z = V(p) = V(f;) € X. But note that div(f) = V(f;). Therefore,
Z =div(f;), and we get that C1(X) = 0.

Conversely, assume ClI(X) = 0. Then every height one prime ideal p is principal.
Indeed, thereis an f € K* such that div(f) = V(p), one has f € A (in view of the exact
sequence (3.2)), and one can show that p = (f) (exercise). Now since A is noetherian,
every non-zero non-unit element a € A has a factorization into irreducibles, hence it
suffices to show that an irreducible element a € A is prime. Let (a) C p be a minimal
prime over (a). Then p has height one (exercise). By the above, p is principal, so that
p = (b) for some b € A. Hence a € (b) so that a = bc for some ¢ € A, which must be a
unit because a is irreducible. Thus, (a) = (b) = p is prime, and we win. O

Corollary 3.2.18. Let k be a field and let n € Z>o. Then Cl(A}) = 0. O

3.3 Lecture 22 : Weil divisors and invertible sheaves

3.3.1 Class group of projective space

Let k£ be a field and consider P} = Proj(R) with R = k[zo,...,x,|. Prime divisors
Z on P} are of the form Z = V(p) for a non-zero homogeneous height one prime
ideal p C R. For such a prime ideal p we have p = (g) for some non-zero irreducible
homogeneous polynomial g € R (see the proof of Proposition 3.2.17). The generator
g is unique up to scalar, so the degree deg(p) := deg(g) of a homogeneous height one
prime ideal p is well-defined. This gives a group homomorphism

k k
deg: Div(P}) — Z, ZniV(Pi) = an deg(p;).
i=1 i=1
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Exercise 3.3.1. Let k£ be a field.
(1) For a rational function f € K(P}), show that deg(div(f)) = 0.
(2) Show that deg factors through an isomorphism
CLP) > Z,

and compare this statement with Exercise 2.3.11.

3.83.2  The sheaf associated to a Weil divisor

Definition 3.3.2. Let X be a normal integral noetherian scheme with function field
K, and let D = Y nzZ be a Weil divisor on X. We define a presheaf Ox (D) by
defining, for U C X an open subset,

Ox(U) ={f € K |ordzx(f) > —ngz for all Z with generic point n; € U}.

Exercise 3.3.3. Check that this presheaf Ox (D) is actually a sheaf. As such, it is
a subsheaf of the constant sheaf of fields K on X, associated to the field K. Finally,
verify that Ox (D) has a natural Ox-module structure.

Proposition 3.3.4. The Ox-module Ox (D) is quasi-coherent.

Proof. Let U = Spec A C X be an affine open subset. The proposition follows from
the fact that for f € A, the canonical injective map

I(U, 0x(D)); — T(D(f), Ox(D))

induced by restriction to the open subset D(f) C U, is an isomorphism. We leave this
fact as an exercise for the reader. n

Lemma 3.3.5. Let X be a normal integral noetherian scheme with function field K.
(1) For each non-empty open U C X, the ring Ox(U) is a normal integral domain.

(2) For each non-empty open U C X, we have that n € U for the generic point n of
X, and the natural map

0: Ox(U) — Ox,, =K
1s injective. This gives an embedding of sheaves Ox — K.

(3) For the Weil divisor D = 0, we have Ox = Ox(D) as subsheaves of K. Con-
versely, if for some Weil divisor D on X, Ox(D) = Ox C K, then D = 0.

(4) For Weil divisors D, E on X, we have Ox(D) = Ox(E) as subsheaves of K if
and only if D = F.
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Proof. For part (1), see Lemma 3.1.20.

For part (2): let f € Ox(U) such that ¢(f) = 0. We claim that f = 0. To prove
this, consider a cover U = U,;U; by affine opens U;. As it suffices to show that f|y, =0
for each i, we may assume that U = Spec A is affine. Then f € A, and K = Q(A)
is the fraction field of A. Since A is an integral domain (see Lemma 3.1.20), the map
A — Q(A) = K is injective. Hence, f = 0 as desired.

As for part (3), consider a non-empty open U C X. We have

Ox(0)(U) ={f € K |ordzx(f) >0 for all Z prime with generic point n; € U}.

This implies that
OX - OX(O) cK

as subsheaves of K. To prove that the inclusion Ox C Ox(0) is an equality of sub-
sheaves of IC, it suffices to show that Ox(U) = Ox(0)(U) C K for each non-empty
affine open U C X. If U = Spec A for a normal noetherian integral domain A, then
this follows from the fact that

A= {f € K | ordy(),u(f) = 0 for all height one p € U},

see Corollary 3.2.4.

Conversely, let D be a Weil divisor so that Ox(D) = Ox C K. Write D =
> nzZ. Assume that ny # 0 for some prime divisor Z C X; our goal is to arrive at
a contradiction. We may assume that ny > 0. Let z € Z be the generic point of Z,
and let U C X be an affine open neighbourhood of z in X. Let A = Ox(U), and let
p C A be the height one prime ideal corresponding to z € U. Then Oy, = A, and
this is a discrete valuation ring. Moreover, we have ZNU =V (p) C U = Spec A, and

O)((D)Z = {f e K | Ordv(p)yU(f) Z —nz} .

As we assume that Ox (D) = Oy, we get Ox(D), = Ox, = A,, hence

{f e K | OrdV(p),U(f) Z —nz} = OX(D)Z = Ap = {f e K | Ordv(p),U(f) Z O} . (33)

We claim this is a contradiction. Indeed, A, is a discrete valuation ring with maximal
ideal pA,, which is generated by a single element ¢t € pA,, see Theorem 3.1.21. This
gives an element

f=tleK
that has the property that
Ol"dv(p%U(f) = U(t_l) = —1

Hence f € Ox(D), (since nz > 0) but f &€ Ox ., which violates (3.3).
Finally, to prove part (4), we apply part (3) to the Weil divisor D — E. The fact
that Ox(D) = Ox(FE) implies that Ox(D — E) = Ox C K, so that D = E. O

Lemma 3.3.6. Let X be a normal integral noetherian scheme with function field K.
Let D be a Weil divisor on X.
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(1) If f € K, then
Ox(div(f))=f"1-0x cKk (3.4)
as subsheaves of the constant sheaf IC associated to K.
(2) Then D is a principal divisor if and only if Ox (D) = Ox.

Proof. For item (1), let U C X be a non-empty affine open with U = Spec A. We
claim that

L(U, Ox(div(f))) = f'-ACK. (3.5)
Indeed,
LU, Ox(div(f))) = {g € K | ordy(y)v(g9) > —ordy (v (f) for all p of height one},
so that
f-T(U,0x(div(f))) = {g € K | ordy)(g) > 0 for all primes p of height one} = A,

where the second equality holds by Corollary 3.2.4. Hence (3.5) follows, proving (3.4).
For item (2), assume that D = div(f) for some f € K*. Then Ox(div(f)) = f~!-
Ox by item (1), and multiplication by f € K* defines an isomorphism f~1-Ox = Oy.
Conversely, assume that D = > nzZ is a Weil divisor such that Ox(D) = Ox.
Since Ox (D) is an Ox-submodule of I, the fact that it is free of rank one over Oy
implies that there exists g € K* such that Ox(D) = Ox - g C K. Define f = g~'. We
claim that D = div(f). Note that

Ox(div(f)) = Ox =g-Ox CK
by item (1). Therefore,
Ox(D) = Ox - g = Ox(div(f)) C K
as subsheaves of K. Thus, we have D = div(f) by item (4) of Lemma 3.3.5. O

Definition 3.3.7. Let X be a normal integral noetherian scheme. Let D be a Weil
divisor on X. For a non-empty open subscheme U, U is a normal integral noetherian
scheme, see Lemma 3.1.20. We define a Weil divisor D|y on U as follows: if D =
Zle n;Z; for some n; € Z and prime divisors Z; C X, we let J C {1,...,k} be the
subset of those j € {1,...,k} such that Z;NU # 0 (equivalently, such that the generic
point 7; of Z; is contained in U). We then define Dy = >, ;n; (Z; NU). The fact
that Z; NU C U is a prime divisor (whenever Z; N U # ) follows from the fact that
codim(Z; NU,U) = dim Oy,,, = Ox, = codim(Z;, X) = 1, see Lemma 3.1.25.

Corollary 3.3.8. Let X be a normal integral noetherian scheme. Let D be a Weil
divisor on X. Then the following are equivalent:
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(1) The Ox-module Ox (D) is invertible (i.e. locally free of rank one).

(2) The Weil divisor D is locally principal; that is, there exists an open covering
X =UU; of X and rational functions f; € K* such that D|y, = div(f;).

Proof. Let U C X be a non-empty open subscheme. Then U is a normal integral
noetherian scheme, see Lemma 3.1.20, and Ox(D)|y = Oy (D|y). Moreover, by item
(2) of Lemma 3.3.6, we have that Oy (D|y) = Oy if and only if D|y is a principal
divisor. Consequently, we see that the Op-module Ox(D)|y is trivial (i.e. isomorphic
to Op) if and only if D|y is a principal divisor. In particular, the sheaf Ox (D) is
locally free of rank one if and only if the Weil divisor D is locally principal. [

Exercise 3.3.9. Let X be a normal integral noetherian scheme. Let D C X be an
integral closed subscheme of codimension one, and Z C Oy the ideal sheaf of D in X.

(1) Show that the subsheaf Ox(—D) C K is contained in Ox C K.
(2) Show that Z = Ox(—D) as subsheaves of Ox.

3.3.3  Cartier divisors

Definition 3.3.10. Let X denote a normal integral noetherian scheme with function
field K and sheaf of rational functions K. Consider the exact sequence of sheaves of
abelian groups:

00— 0y — K" — K'/Oy — 0.

It induces a short exact sequence
0 —I'(X,0%) — I'(X,K") — I'(X,L*/O%).
(1) A Cartier divisor on X is a global section D € I'( X, K£*/O%) of the sheaf £*/O%.

(2) We define
CaDiv(X) = D(X, K*/O%)

as the abelian group of Cartier divisors.
(3) A Cartier divisor is principal if it is in the image of K* = T'(X, £*) — I'(X, K*/O%).
(4) Two Cartier divisors are called linearly equivalent if their difference is principal.

(5) A Cartier datum is an open covering {U;} of X by non-empty opens U; C X,
together with elements f; € K* satisfying fif“]f1 € O (U;NU;) for all 4, 5.

Lemma 3.3.11. (1) For a Cartier divisor D € T'(X,K*/O%), there exists an open
cover {U;} (with U; # 0 for alli) of X, and for each i an element f; € T'(U;, K*),
such that for each i,j, we have f;/f; € T'(U; NU;,O0%). In other words, each
Cartier divisor D defines a Cartier datum {(U;, fi)}.

(2) Conversely, each Cartier datum {(U;, f;)} defines a Cartier divisor D on X.
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(3) Two Cartier data {(U;, f;)} and {(V;,g;)} define the same Cartier divisor if and
only if fig;" € D(U; NV}, 0%) for all i, j.

Proof. Exercise. O]

3.4 Lecture 23 : Cartier divisors, Weil divisors and sheaves

Lemma 3.4.1. Let X be a noetherian normal integral scheme. Then there is a natural

ijective homomorphism
m: CaDiv(X) — Div(X),

whose image consists of the Weil divisors D on X which are locally principal (in the
sense of Corollary 3.5.8).

Proof. Let
{(Ulv fi)}z'el

be a Cartier divisor on X. We define the associated Weil divisor D = Y nzZ as
follows. Define a function

¢: {prime divisors Z C X} — I,

by choosing for each prime divisor Z C X, an element i = ¢(Z) € [ such that
U;NZ # 0. We then put ny = ordz x(fu2)).

This does not depend on the function ¢. Indeed, if U;NZ # (), then the generic point
of Z is contained in U; and in Uj, hence U; NU; # 0, and f;/f; € T(U;NU;, 0%) C K,
so that ordz x(f;f; ) = 0, which implies that ordz x(f;) = ordzx(f;).

Note that the sum D = Y nzZ = ) ordz x(fy(z))Z is finite. Indeed, we can fix
i € I such that U; # (0. Then the complement W := X — Uj; is a closed subset of
codimension at least one, which has finitely many irreducible components (since it is
noetherian), hence there are finitely many prime divisors Z C X which are contained
in W; moreover, we can write

D = Z OrdZﬁUi,Ui(fi)Z"i_ Z Ol"dzjx(f‘p(z))z,

ZOU;#0 ZCW

and the sum ZZQU#@ ordzny, v, (fi)Z is finite because of Lemma 3.2.5.

This defines a group homomorphism, because if {(U;, f;)} and {(V},g;)} are two
Cartier divisors on X, then ordz x(f; - g;) = ordz x(f;) + ordz x(g;) for each prime
divisor Z C X.

It remains to show that the image of 7 is the subgroup of locally principal divisors.
It is clear that

D= ({(Ul, fl)}zel) = Z OrdZ,X(fcp(Z))

is locally principal for a Cartier divisor {(Uj, fi)},c; on X, since D|y, is principal for
each i € I. Conversely, if D € Div(X) is locally principal, then there exists an open
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covering X = UU; such that D|y, = div(f;) € Div(U;) for some f; € K*. Then
{(U;, fi)} gives a Cartier divisor on X. Indeed, we have

div(f;) v, = Dlv;|v, = div(f;)

so that f;, f; € K* define the same Weil divisor on U; N U;, which means that
div(fifj_l) = 0 as a Weil divisor on U; N Uj, so that

uinU; = D Ui U;NU; »

OUiﬂUj = OUiﬂUj (le(fsz71>> = fiilfj ’ OUimUJ’ cK

see Lemmas 3.3.5 and 3.3.6. Therefore, f; ' f; € T(U; N U;, O%).

To prove that 7 is injective, assume that D = " ordz x(f,(z)Z = 0 for some
Cartier divisor {(U;, fi)} on X. Then D|y, = 0 for each i € I, and D|y, = div(f;) €
Div(U;). By the above argument, f; € I'(U;, O%). Hence the Cartier divisor {(U;, fi)}
is trivial, that is, {(U;, fi)} € T'(X, K*/O%) is the identity element. O

U;NU; »

Definition 3.4.2. Let X be a noetherian integral normal scheme. For a Cartier divisor
D = {(U;, fi)} on X, we define a sheaf of Ox-modules Ox (D) := Ox(n(D)).

Lemma 3.4.3. Let X be a normal integral noetherian scheme and let D and E be two
Cartier divisors on X. Then the following hold:

(1) Ox(D + E) = Ox(D) ®o, Ox(E);
(2) we have Ox (D) = Ox(E) if and only if D and E are linearly equivalent.

Proof. As for item (1): choose an affine open cover {U;} of X such that D|y, = div(f;)
and E|y, = div(g;). Let i € I and A; = Ox(U;). Since Ox (D), Ox(E) and Ox(D+E)
are quasi-coherent, it suffices to show that the canonical map

is an isomorphism for each ¢ € I. But as D|y, = div(f;) and E|y, = div(g;), this map
can be identified with the map

and as Ox(div(f)) = f~1- Ox for f € K*, this map corresponds to the map

[T A ®a, 67 A — g7 Ay (3.6)
The map (3.6) is an isomorphism, which proves (1).

To prove item (2), notice that, in view of item (1), it suffices to prove that Ox (D) =
Ox if and only if D is a principal Cartier divisor. For this, note that Ox (D) = Oy if
and only if D = div(f) is a principal Weil divisor (see Lemma 3.3.6), and moreover,
for D € CaDiv(X), have w(D) = div(f) for some f € K* if and only if D is in the
image of K* — I'(X, K*/O%), which is to say, D is a principal Cartier divisor. O
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Proposition 3.4.4. Let X be a noetherian normal integral scheme. Then the associ-
ation D — Ox (D) defines a natural homomorphism

p: CaCl(X) — Pic(X),
where, as usual, Pic(X) denotes the group of isomorphism classes of invertible sheaves.
Proof. This follows from Corollary 3.3.8 together with Lemmas 3.4.1 and 3.4.3. [

Proposition 3.4.5. Let X be a noetherian normal integral scheme. The map
p: CaCl(X) — Pic(X), D — Ox(D)
s an isomorphism.

Proof. Injectivity: If D and E are Cartier divisors with Ox (D) = Ox(E), then D is
linearly equivalent to E (see Lemma 3.4.3), so that p is injective.

Surjectivity: Let £ be a line bundle on X. Let V' C X be a non-empty open subset
of X such that there exists a non-zero section f € I'(V,L). Let {U;} be an open
cover of X by non-empty affine opens U; C X such that £|y, = Op,. Then f induces
elements f; € I'(U; N V,Ox) C K; in particular, we get f; € K for each i € I. We
remark that D = {U,, f;} is a Cartier divisor, and that Ox (D) = L (exercise). O

Lemma 3.4.6. Let X = Spec A where A is a noetherian normal domain. Let D €
Div(A), write D = _ nqV(q), where q ranges over the primes in A of height one.
Consider the sheaf Ox(D) on X. Letp € X. Define a Weil divisor D, on Spec A, as

D, = Zn¢(q)V(q), (with  ¢: Spec A, — Spec A the canonical morphism),
q

where q ranges over the prime ideals of Ay of height one. Then Ox (D), = Ospec a,(Dy)-
Proof. Exercise. m

Lemma 3.4.7. Let A be a noetherian ring. Let M be a finitely generated A-module.
Let X = Spec A, p € X, and n € Z>y. The coherent sheaf F = M is locally free (of
rank n) around p € X if and only if the stalk M, is a free A,-module (of rank n).

Proof. Exercise. m

Proposition 3.4.8. Let X be a normal integral noetherian scheme. Suppose that Ox ,
is a UFD for each v € X. The map w: CaDiv(X) — Div(X) is an isomorphism.

Proof. Let D € Div(X). We need to show that D is locally principal (see Lemma
3.4.1), or equivalently, that Ox(D) is locally free of rank one (see Lemma 3.3.8).
Equivalently (see Lemma 3.4.7), we need to show that Ox (D), is a free Ox ,-module
for each x € X. Thus we may assume that X = Spec A is affine, and need to show
that Ox(D), is a free Ox ,-module, for any € X corresponding to a prime p C A.
To then prove that Ox (D), = Ox ., it suffices, in view of Lemma 3.4.6, to prove that
Ox(D) = Ox for any D € Div(Spec A) in case A is a local noetherian domain and
a UFD. But in this case, we have Cl(Spec A) = 0 by Proposition 3.2.17, so that D is
principal, and hence Ox (D) = Ox (see Lemma 3.3.6) as desired. O
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Theorem 3.4.9. Let X be a smooth variety over a field k. Then for each x € X,
we have dimy,) m,/m2 = dim(Ox,,), where m, C Ox, denotes the mazimal ideal of
Ox . In particular, the local ring Ox 5 is a UFD for each x € X.

Proof. We do not prove this here. O

Corollary 3.4.10. Let X be a smooth variety over a field. Then the natural maps
m: CaCl(X) — CI(X) and  p: CaCl(X) — Pic(X)
are 1somorphisms. Il

Corollary 3.4.11. Let k be a field. Then Pic(A}) = 0. In particular, for the k-algebra
R = k[z1,...,x,), we have that any R-module M such that M, = R, for each prime
tdeal p C R s in fact isomorphic to R.

Proof. Indeed, we saw that CI(A}) = 0, see Corollary 3.2.18. Thus Pic(A}) = 0 by
Corollary 3.4.10. The other statement follows then from Lemma 3.4.7. m

3.4.1 Restricting divisors to an open subscheme

Theorem 3.4.12. Let X be a noetherian normal integral scheme and let U C X be a
non-empty open subscheme. Let W = X —U. Let Zy,..., 2. C W be the irreducible
components of W of codimension one in X. Then the natural sequence

éBZ- [Z)] — CI(X) — Cl(U) — 0

15 exact.

Proof. Right exactness follows from the fact that if Z7 C U is a prime divisor on
U, then its closure Z C X is a prime divisor on X, and Z|y = ZNU = Z. Tt
is also clear that for any ¢ € {1,...,r}, we have Z;|y = 0 as Weil divisors on U.
Conversely, let Z C X be a prime divisor such that Z|y = div(f) for some f € K*.
Then D = Z — div(f) € Div(X) satisfies D|y = 0 as Weil divisors on U. Thus D is
supported on W, hence D = 22:1 n;Z; for some n; € Z, and the theorem follows. [J

Corollary 3.4.13. Let X be a noetherian normal integral scheme. Let Y C X be an
integral closed subscheme of codimension at least two. Then the natural map

Cl(X) - Cl(X —-Y)
s an isomorphism. O

Example 3.4.14. Let k be a field. The map C1(A?) — CI(A2—{0}) is an isomorphism.
Thus CI(AZ — {0}) = 0 in view of Corollary 3.2.18.
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Example 3.4.15. Let k be a field and let P € P} be the image of a k-point Spec k —
P}, (cf. Example 3.1.28). Let U = P; — {P}. Then U = A;. We get an exact sequence

7 -[P] — CI(P}) — CI(A}) = 0.

This gives a surjection Z — CI(PP}) sending 1 to the class of P in CI(P}). This map is
injective, for if [nP] = 0 € C1(P}), then nP = div(f) for some f € k(P;), and we have
nP|y = 0 so that div(f)|y = 0, which implies that f € k(P;) = k(t) has neither zeros
nor poles on U = A} so that f € T'(A}, X}C) = k*. Hence f is constant, so n = 0.

We conclude that CI(P}) = Z - [P] (compare Exercise 3.3.1). Under the isomor-
phism CI(P}) = Pic(PP}), the generator P is sent to Op: (1), hence this also shows that

Pic(P}) = Z - Op: (1) (compare Exercise 2.3.11).
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Chapter 4

Differentials

In this chapter, we introduce Kéhler differentials, which allow us to the sheaf of Kéahler
differentials for an algebraic variety. Differentials appear in many areas of mathemat-
ics, including multivariable analysis, differential geometry and complex geometry. In
algebraic geometry, they are introduced algebraically, and referred to as Kéhler differ-
entials. For a smooth variety, the sheaf of Kéhler differentials is locally free of rank
equal to the dimension of the variety, and forms the algebraic analogue of the cotan-
gent bundle of a smooth manifold. Namely, if the variety is defined over a perfect field,
then for each point of the variety, the fibre of this sheaf above this point is canonically
isomorphic to the dual of the Zariski tangent space of the variety at that point.

4.1 Lecture 24 : Kahler differentials

Definition 4.1.1. Let A — B be a morphism of rings. Let M be a B-module. Then
an A-derivation from B with values in M is an A-linear map D: B — M such that,
for all by,b, € B, we have

D(blbg) = le(bg) + bgD(bl)

Note that, in particular, D(a) = 0 for every a € A (indeed, this follows from the string
of equalities D(a) =a-D(1-1) =2a-D(1) =2- D(a)).

Let Dera(B, M) be the set of A-derivations of B into M. Note that Der4(B, M)
has a natural B-module structure.

Example 4.1.2. Let t¢y,...,t, be variables and let B = M = k[ty,...,t,]. Then for
each i € {1,...,n}, we have that 9/0t;: B — B is an A-derivation.

Note that, for a fixed morphism of rings A — B, the association
M +— Dery(B, M)

defines a functor Der4(B, —) from Modp to itself.
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Proposition 4.1.3. Let A — B be a morphism of rings. The covariant functor
Der4(B,—): Modg — Modp
is representable. In other words, there exists a B-module Qg4 and a deriwation
dp: B — Qp/a

such that for any B-module M and any A-derivation D: B — M there exists a unique
B-module morphism «: Qg/a — M such that c«odp = D.

Proof. Define G as the free B-module on the set underlying B, and for b € B, let
db € G be the canonically attached element. Thus G = @, 5 B - db. Let H C G be
the submodule generated over B by elements of the form

d(b+b)—db—db and d(b¥)—bdy —bdb and da,

for a € A,b,b' € B. Define Qg4 = G/H, and the map dg: B — Qg4 as the map
with dg(b) = db. This is a group homomorphism (by the first constraint), it satisfies
d(bb') = bd(b') +b'd(b) for b,b' € B (by the second constraint), and it is A-linear (since
dp(A) =0 and d(bV') = bd(V') + b'd(b) for b,b" € B).

Let D: B — M be an A-derivation into a B-module M. Define a B-morphism
a: Qg4 — M by putting a(db) = D(b) for b € B and extending linearly. Then « is
the unique B-module map /4 — M such that cod = D. O

Example 4.1.4. Let A — A’ be a morphism of rings, let A’ — B be a morphism of
rings, and let M be a B-module. We get an inclusion Dery/ (B, M) C Dery(B, M). In
particular, Der (B, Qp/a) C Dera(B,Qp/a). Thus, by the universal property, the
A-derivation dg/a: B — Qg4 factors as

B — QB/A — QB/A’-

Proposition 4.1.5. Let A be a ring, B = Alt1,...,t,]. Then Qpga is the free B-
module generated by dt,...,dt,, and dg: B — Qpa = @, Bdt; is defined as

dp(f) =Y (0f/0t;)dt;,  fe€B=Alt,... 1.

Proof. Consider the map d: B — €, Bdt; with d(f) = > (0f/0t;)dt; for f € B. Let
M be any B-module, and D: B — M an A-derivation. There is a unique morphism
of B-modules €, Bdt; — M making the obvious triangle commute (exercise). O

Proposition 4.1.6. Let A — B be a morphism of rings. Let C = B/I for some
ideal I C B. Let a: B — C be the quotient map. Note that I/1? is a C-module in a
canonical way. The sequence of C'-modules

[/[2 i> QB/A ®BCi> QC/A — 0
is exact, where §(z) = dz®1 for x € I with image € 1/1%, and where f(db&c) = c-db.
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Proof. 1t suffices to show that for each C-module N, the sequence

0 —— Home(Qca, N) —2— Home (/4 ®5 C, N) —-— Home (I /12, N)

0 ——— Dery(C,N) ———— Dery (B, N) ———— Hom¢ (I @5 C, N)

HOIIIB )

is exact. Since a: B — C'is surjective, the map f is surjective, too (verify this). Thus,
the map f*: Dery(C, N) — Dery(B, N) is injective. The map

0%: Dery(B, N) — Hompg(I, N)
associates to an A-derivation D: B — N its restriction to I, which is an A-linear
map D|;: I — N, which is in fact B-linear, since for b € B and a € I, we have
D(b-a) =aD(b) +bD(a) =bD(a) € N. If D|; =0 then D factors as
B o2 N,
and the induced map D': C' — N is an A-derivation from C into N. O

Proposition 4.1.7. Let A be a ring and let B be a finitely generated A-algebra. Then
Qpya is finitely generated over B.

Proof. Write B = Alty,...,t,]/I for some ideal I C Alty,...,t,]. Then we get an
exact sequence
]/12 — QA[tl 77777 tn]/A @A B — QB/A — 0.

/A = D, Adt; (see Example 4.1.2), we are done. O

-----

4.1.1  Kahler differentials on schemes

Definition 4.1.8. Let f: X — S be a morphism of schemes. Let F be a quasi-
coherent Ox-module. Then an f~!(Og)-linear morphism D: Ox — F is called an
Og-derivation if for all affine open subset V' C S and U C X with f(U) C V, the map

Dl|y: Ox(U) — F(U)
is an Og(V')-derivation (with respect to the natural ring morphism Og(V') — Ox(U)).

For a morphism of schemes f: X — S, and a quasi-coherent Ox-module F,
let Derp,(Ox, F) denote the set of Og-derivations Ox — F, which is naturally an
Ox(X)-module. Remark that the association

F = Deros((’)x,f)
defines a functor
Der@S((’)X, —)2 QCOh(X) — MOd(f)X(X) (41)

from the category of quasi-coherent O x-modules to the category of Ox (X )-modules.
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Theorem 4.1.9. Let f: X — S be a morphism of schemes.

(1) The functor (4.1) is representable. In other words, there exists a quasi-coherent
Ox-module Q2x/g together with an Og-deriation

dxi OX — Qx/s

that satisfies the following universal property: for any quasi-coherent Ox-module
F and any Og-deriwation D: Ox — F, there exists a unique morphism of Ox-
modules a: Qx/s — F such that D = a o dx.

(2) The sheaf Qx/s is a quasi-coherent sheaf on X that has the property that for each
affine open V.= Spec A C S and each affine open U = Spec B C f~}(V) C X,
we have a canonical isomorphism of Oy-modules

Qx/slv = Qpya.

(3) For each x € X, we have a canonical isomorphism (Qx/g)s = Q0 2/0s. 4wy -
4) If f is of finite type, then Qx,g is coherent.
/

Proof. Ttems (1), (2) and (3): either prove this by adapting the proof of the affine
case, or use the result from the affine case to define Qx/g|y for affine opens U C X
and V C S with f(U) C V, and then glue. For item (4), see Proposition 4.1.7. O

4.1.2  Euler sequence
Theorem 4.1.10. Let A be a ring. There is a natural exact sequence
0— QPZ/A — Opz(—l)nJrl — O[pz — 0.

Proof. We do not prove this here. See e.g. [OE15, Theorem 19.24]. H

4.2 Lecture 25 : Regular and smooth schemes

4.2.1  Regular local rings

Lemma 4.2.1. Let B be a noetherian local ring with mazimal ideal m. Let e € Z>.
Let K = B/m. Thenm can be generated by e elements if and only if dimg(m/m?) < e.

Proof. Assume m = (z,...,x.) can be generated by e elements. Then dimy(m/m?) <
e. Conversely, let x1, ..., 7, € m be such that they generate m/m?. We get an inclusion
I = (z1,...,2.) C m. Consider the ring R := R/I. Let m C R be the image of m. We
get m = 0 mod R/m?. Hence m = m? C R. Thus m = 0 by Nakayama’s lemma. [

Lemma 4.2.2. Let B be a noetherian local ring with mazimal ideal m. Let K = B/m.
Then dim(B) < dimg(m/m?).
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Proof. Note that ht(m) = dim(B): the height of m equals the dimension of B. Now
assume dimg(m/m?) = e. By Lemma 4.2.1, we see that m can be generated by e
elements. Thus m = (zy,...,z.) for some z; € B. This implies ht(m) < e (verify
this). Therefore, we get dim(B) < e = dimg(m/m?) as desired. O

Definition 4.2.3. Let B be a noetherian local ring with maximal ideal m. Then B is
called regular if there exist n := dim(B) elements 1, ..., x, with m = (z1,...,z,).

Lemma 4.2.4. B is regular if and only if dim(B) = dimg(m/m?), where K = B/m.

Proof. Let n = dim(B). By Lemma 4.2.2, n < dimg(m/m?). By Lemma 4.2.1, we have
that m can be generated by n elements if and only if dimx (m/m?) < n. Combining this,
we see that m can be generated by n elements if and only if n < dimg(m/m?) <n. [

4.2.2  Regular schemes

Definition 4.2.5. Let X be a noetherian scheme and let x € X. We say that X is
reqular at z if the noetherian local ring Ox , is regular. We say that X is regular if X
is regular at all of its points.

Definition 4.2.6. Let X be a scheme and let x € X. The Zariski tangent space of X
at x, denoted by T, X, is the k(x)-vector space

T,X = (m/m?)" = Homy(,)(m/m? k(z))
where m is the maximal ideal of Oy, and k(z) = Ox ,/m is the residue field of z.
Lemma 4.2.7. Let X be a noetherian scheme and let v € X.
(1) The scheme X is reqular at x if and only if dim(Ox ;) = dimy) (T, X).

(2) If X is a variety over a field k, and if v € X is a closed point (cf. Proposition
8.1.11), then X is reqular at x if and only if dim(X) = dimy) (T, X).

Proof. Ttem (1) follows from Lemma 4.2.4 and the definitions. Item (2) follows from
item (1) together with the equality

dim(X) = codim({z}, X) = dim(Ox.,),
see Proposition 3.1.25. O

Exercise 4.2.8. Let X be a regular noetherian scheme. Show that X is reduced, that
is, that Ox , is reduced for each z € X.
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4.2.83  Regular schemes and Kdihler differentials

Proposition 4.2.9. Let (B, m) be a local k-algebra with residue field K = B/m D k.
Suppose that k C K s finite and separable. Then the map
§: m/m* — Qp ®p K
from the conormal sequence (4.1.6) is an isomorphism.
Proof. Note that the conormal sequence (4.1.6) reads
m/m®> — Qp ®p K — Qg — 0.

We claim that Qg/, = 0. Indeed, K is finite and separable over %, so that by the
primitive element theorem, we have

K = k() = k[z]/(f)

for some f € f[z] with f(a) = 0 and f'(«) # 0. Let M be a K-vector space and let
d: K — M be a k-derivation. Then

0=d(0) = d(f(a)) = f(a) - d(a).
Since f'(a) € K*, it follows that d(«) = 0. Now K is generated as a k-vector space by
the powers o' for i € Z>g, and we have d(a’) =i-a'"!-d(a) = 0 for each i > 1. Thus
d = 0. By the universal property of dr: K — Qg/i, we conclude that Qg /. = 0.
It remains to verify that 6: m/m? — Qg @p K is injective. We leave this as an
exercise for the reader. O

Corollary 4.2.10. Let B be an algebra satisfying the assumptions in Proposition 4.2.9.
Assume in addition that B is noetherian. Then B is a reqular local ring if and only if

Proof. By Proposition 4.2.9, we see that dimy(m/m?) = dimg (Qp/, @k K). O

Recall that a field k is called perfect if every algebraic extension k’/k of k is sep-
arable. Examples include algebraically closed fields, finite fields, and fields of charac-
teristic zero. For a non-example: the field F,(¢) is not perfect. Namely, the extension
F,(t) C F,(t'/?) is not separable.

For varieties over a perfect field X, Kéhler differentials are closely related to tangent
vectors at closed points (i.e., elements of T, X for x € X closed).

Corollary 4.2.11. Let X be a variety over a perfect field k. Let x € X be a closed
point. Then there is a canonical isomorphism of k(x)-vector spaces

(TxX)v :> QX/k,x ®OX,1 ]C(l’)

Proof. This is clear from Proposition 4.2.9, as the field extension k& C k(x) is finite
(see Proposition 3.1.11) hence separable since k is perfect. O

This justifies why the sheaf €2y, is often called the cotangent bundle. However,
note that €2x/ is not a vector bundle in general, that is, this O x-module is not always
locally free of finite rank. If X is smooth, then this turns out to be the case, as we
will show next. Conversely, if % is perfect and (2x/, is locally free, then X is smooth.
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4.2.4  Smooth schemes, reqular schemes and Kdhler differentials

Definition 4.2.12. Let k be a field. Let X C A} be a closed subscheme of A}, cut out
by polynomials fi,..., f. € k[t1,...,t,]. Let x € X be a closed point, cf. Proposition
3.1.11. Remark that, in view of Lemma 2.4.2, we can associate to x € X an element

x € Homy(Spec k(z), X) = X (k(z)) C A"(k(z)) = (k(z))",

We define the Jacobian matriz of X C A} at the point z as follows:

b= (gtf; (x)) 1<i<r,1<j<n © ern(k(x)) <4'2)

Ul >

Lemma 4.2.13. Let k be a field. Let X C A} be a closed subscheme of A}, cut out
by polynomials fi,..., fr € k[t1,...,t,]. Let x € X be a closed point. Then

dimy () (T X) < n — rank(J,), (4.3)
with J, € My (k(2)) as in (4.2). If k =k, then (4.3) is an equality.
Proof. Exercise. m

Definition 4.2.14. Let X be a scheme of finite type over a field k. Let x € X be a
closed point (cf. Proposition 3.1.11).

(1) Assume k = k. We say that X is smooth at x if there exists an affine open
neighbourhood U of z in X with U = Spec A C A} for a finitely generated
k-algebra A = k[t1,....t,)/(f1,--., fr), such that the rank rk(.J,) of the matrix
(4.2) satisfies the equality

rk(J;) =n — dim(Ox ).

Remark that if X is irreducible, then dim(Ox ,) = dim(X) since x is closed, see
Proposition 3.1.25.

(2) In general, we say that X is smooth at x if for any closed point 2’ € X; = X X, k
lying over z, the scheme Xj is smooth at 2’. We say that the scheme X is smooth
over k if X is smooth at x for any z € X.

Proposition 4.2.15. Let X be a scheme of finite type over a field k. Let x € X be a
closed point. Then the following assertions are equivalent:

(1) The scheme X is smooth at x.
(2) For any closed point x' € Xj, lying over x € X, the scheme Xj, is smooth at x'.
(8) For any closed point x' € Xy, lying over x € X, the scheme Xj, is reqular at x'.

(4) For any affine open neighbourhood U of = in X with U = Spec A C A} for a
finitely generated k-algebra A = k[t1,...,t,]/(f1,..., [+), the rank rk(J,) of the
matriz (4.2) satisfies the equality rk(J,) = n — dim(Ox ).

65



(5) There exists an affine open neighbourhood U of x in X with U = Spec A C A}
for a finitely generated k-algebra A = k[ty, ..., t,)/(f1,- .., f+), such that the rank
tk(J,) of the matriz (4.2) satisfies the equality rk(.J,) = n — dim(Ox ).

Proof. Assume (1). Then (2) holds by definition. Assume (2) and let 2’ € Xt be a
closed point lying over x € X. We claim that X7 is regular at 2’. Since Xj, is smooth at
7', there exists an affine open neighbourhood V' of " in Xj with V' = Spec A C A} for
a finitely generated k-algebra A = k[t1,...,t,]/(f1,..., f-), such that the rank rk(7,)
of the matrix I, = (0f;/0t;(x")) satisfies the equality

tk(Iy) = n — dim(Ox; o).

By Lemma 4.2.13, we have dimy(T,y X3) = n — rk(/,). It follows that dim(Ox, .) =
dimy (7T X3). Thus, Xj is regular at ' € X3, proving (3). We claim that (4) also holds.
Namely, let U be any affine open neigbourhood of x € X with U = Spec B C A} for
a finitely generated k-algebra B = k[t1,...,t,]/(g1,...,9s). Let J, = (0g;/0t;(x))i;
and J = (9g;/0t;(x))i;. Then rk(Jy) = rk(J;) and dim(Ox,) = dim(Ox, ). By
Lemma 4.2.13, we have dimg(7,» X3) = n — rk(J,/). Therefore:

tk(J,) = 1k(Jy) = n — dimg (T Xz) = n — dim(Ox; o) = n — dim(Ox ;).

This proves (4) as desired.
Clearly, (4) proves (5). Finally, assume (5). Let 2’ € X be a closed point lying

over ¥ € X. Let U C X as in (5). We have U; = Spec (A ®; k) C A7, and
tk(Jy) = rk(J,) = n — dim(Ox ;) = n — dim(Ox_ /), proving (1). We are done.  [J

Lemma 4.2.16. Let X be an irreducible scheme of finite type over a field k. Let
x € X be a closed point. Assume that X is smooth at x. Then there exists an open
neighbourhood x € U C X of x in X such that the scheme U is smooth over k.

Proof. We may assume X = Spec k[t1,...,t,]/(f1,..., fr) with the Jacobian matrix
(0fi/0t;(x)) of rank m = n — dim(X) at € X. Thus, there exists a m x m-minor
of the matrix (0f;/0t;) which does not vanish at x € X. Hence this minor does not
vanish in an open neighbourhood U of z in X. This scheme U is smooth over k. [

Exercise 4.2.17. Let X be a scheme of finite type over a field k. Let X be the set
of closed points of X. Show that X is dense in X.

Exercise 4.2.18. Let F be a coherent sheaf on a noetherian scheme X. Define a
function ¢: X — Z as ¢(v) = dimp) (Fz ®oy, k(2)).

(1) Let n € Z>;. Using Nakayama’s lemma, show that the set {x € X | ¢(z) < n}
is open in X.

(2) Deduce that if X is irreducible with generic point 7, then we have ¢(z) > ¢(n)
for all z € X.

(3) Let us suppose that ¢ is constant of value n > 1 on X, and that X is reduced.
Show that F is locally free of rank n.
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(4) Assume that X is an irreducible scheme of finite type over a field k. Define
U:={xeX|¢()<p(n)}, where n € X is the generic point. Let X< C X be
the set of closed points of X. Show that UN X< # (. Conclude that there exists
a closed point x € X with ¢(x) = ¢(n).

(5) Assume X is an integral scheme of finite type over a field k. Let n € Z>;.
Suppose ¢(x) = n for every closed € X. Show that F is locally free of rank n.

Lemma 4.2.19. Let X be a scheme of finite type over a field k. Let k' D k be an
algebraic field extension, and let X' = X x, k'. Let p: X' — X be the natural map.
Let ' € X' and x € X be closed points with x = p(x').

(1) There is a natural isomorphism p*(Qx/k) = Qx/ /i

(2) In particular, there is a natural isomorphism Qx /w2 = Qx ke @0y, Oxr 2 and
hence QX’/k’,x’ ®(9X,72, k(l'/) = (QX/k,:Jc ®OX,.7: k(l?)) ®k(z) /{(SE,)

(8) Consequently, if k is perfect, we have a natural isomorphism of k(z')-vector
spaces Tp X Qpy k(z') = Ty X'

Proof. Exercise. O]

Non-Example 4.2.20. Let ¢ be a variable, let p be a prime number, and let k = F,(¢).
We consider the inseparable field extension k C k(«) where o = t. Let C' C A? be
the curve defined by the equation P + y? = t. Then C" .= C Xy, k(«a) is given by the
equation

(z+y) =a"+y" =t =a"

This equation can be rewritten as (z +y — «)? = 0. This implies that C” is everywhere
non-reduced. Therefore, since the curve C' is regular everywhere, we get that for each
closed point 2" € C" with image x € C, we have 1 = dimy,) T,,C < dimy ey T C".

Theorem 4.2.21. Let X be an algebraic variety over a perfect field k. Let d = dim(X).
Let x € X be a closed point. The following are equivalent:

(1) X is smooth at x;

(2) X is regular at x;

(8) dimpe) (Qx/ke Rox., k() = d.

(4) Qx/ke is a free module of rank d over Ox ;

(5) there exists an open neighbourhood U of x € X such that Qx/x|u is a locally free
Ovy-module of rank d.
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Proof. We may assume that X = Spec A C A} is a closed subscheme of A}.
We first prove the equivalence of (1), (2) and (3). Let € X} a closed point lying
over x € X. Then by Lemmas 4.2.2, 4.2.13 and 4.2.19, we have

dim(Ox ) < dimy() (7. X) = dimg(7:X;) = n — rank(Jz) = n —rank(J,).  (4.4)

By Proposition 4.2.15, we have that (1) holds if and only if dim(Ox ,) = n —rank(J,).
Thus, in view of (4.4), we see that (1) holds if and only if (2) holds. Moreover, by
Corollary 4.2.11, we see that (2) and (3) are equivalent.

Next, observe that (4) and (5) are equivalent in view of Lemma 3.4.7. Moreover,
(5) implies (4) implies (3) in a trivial way. We prove that (1) implies (5); then we will
be done. Note that if (1) holds, then there exists a neighbourhood U of x in X such
that U is smooth over k, see Lemma 4.2.16. Replacing X by U, we may assume that
X is smooth over k. We claim that (2x/, is locally free of rank d. Indeed, since we have
already shown the equivalence of (1) and (3), and since X is smooth at every closed
point z € X, we have that dimy.)(2x/x,. ®oy . k(2)) = d for every closed point z € X.
Thus, Q2x/ is locally free of rank d by Exercise 4.2.18. This proves the theorem. [

Example 4.2.22. Let k be a field and let C' = Spec k[z,y|/(f) C A for some non-
zero polynomial f € k[z,y]. Let R = k[z,y] and A == R/(f). By Proposition 4.1.6,
we have an exact sequence

(N/(F?) — A-de @ A-dy — Qe — 0,
where the map
(I)(F) — A-de @ A-dy
is the map that sends f to df = fudw + fydy with f. = 0f /0 and f, = Of/Dy.
Therefore:
A-de®d A-dy

Qo = (4.5)

In particular, for each p € C, we see that C' is smooth at p if and only if f.(p) # 0
or f,(p) # 0, which happens precisely when f.(p)dx + f,(p)dy # 0, that is, when
dimy ) (Qeykp o, k(p)) =1 (see (4.5)). This is in accordance with Theorem 4.2.21.

Exercise 4.2.23. Let X be an irreducible scheme of finite type over a field k, all
whose irreducible components are of dimension d > 0. Let x € X be a closed point.
Show that Definitions 3.1.13 and 4.2.14 are equivalent. Prove Lemma 3.1.14.
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Chapter 5

Riemann—Roch for curves

5.1 Lecture 26 : Statement of the Riemann—Roch theorem

5.1.1 Diwvisors on curves

Lemma 5.1.1. Let C be a regular curve over a field k, with function field K. Let
x € C be a closed point. Then the maximal ideal m, C Oc,, is of the form m, = (t,)
for some t, € Oc,. Consequently, having fived such a generator t, for m,, for each
[ € K~ there are unique o € Of, and n € Z such that [ = aty. This defines a
valuation

vy K — ZU{oco},  with the property that v, (t}) = n.
Moreover, we have Oc, = {f € K | v,(f) > 0}.
Proof. See Theorem 3.1.21. n

Lemma 5.1.2. Let C' be a curve over a field k. Any closed subset Z C C' is either of
the form Z = C or of the form Z = {xy,...,z,} for closed points x; € C. If a point
x € C is not closed, then {x} = C, i.e. in that case, x = 1 is the generic point of C.

Proof. It Z C C' is a closed subset of C, then each irreducible component W C Z
of Z has dimension dim(W) < dim(C) = 1. Thus W must be a point. If z € C is
not closed, then {z} C {x} which implies that {x} is an irreducible closed subset of
dimension > 0. It must therefore equal C. n

Let C be a regular curve over a field k. Let

D = Z Ng T

z€C closed

be a Weil divisor on C. By Proposition 3.1.11, each residue field extension k(z) is a
finite field extension of k. Its degree is denoted by [k(z): k.

Definition 5.1.3. The degree of the Weil divisor D is the integer > n, - [k(x): k.
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Continue to consider the Weil divisor D = > n,z. We aim to give a Cartier divisor
D with the property that (D) = D, with respect to the isomorphism 7: CaDiv(C) =
Div(C), see Proposition 3.4.8. To do this, let € C be a closed point. Let U, C C
be an affine open neighbourhood disjoint of all the y € Supp(D) with y # x. Then
define g, = t7* € K*. This gives a Cartier divisor D defined by the Cartier datum
{(Usg, g.)} indexed by the closed points of C' (remark that U, ¢oseaUz = C' by Lemma
5.1.2). Moreover, we have 7(D) = D (verify this!). In particular:

deg(D) = > [k(x): k] - va(ga).
z€C closed

Lemma 5.1.4. Let C be a smooth curve over a field k and let x € C' be a closed point.
Then

oy = Qogre Roc, k(O), (5.1)

and this is a k(C)-vector space of dimension one.

Proof. Indeed, since the Oc-module Q¢yy is locally free of rank one (see Theorem
4.2.21), we get that for any point x € C', we have that Q¢ s, is an O¢-module free of
rank one. In particular, Qyc)/x = Qi is an Oc,, = k(C)-vector space of dimension
one. If x € C is a closed point, then Q¢ is a free O¢ ,-module of rank one, hence
Qcyke o, k(C) is a k(C)-vector space of dimension one. The maps

k— Oc. — k(C)
induce a morphism of one-dimensional k(C)-vector spaces
p: QC/k,x R0¢. . k(C’) = ro,z/k X0e, k((]) — Qk’(C)/k'

To prove (5.1), we need to show that ¢ is not the zero map. For this, let m C O¢,
be the maximal ideal; let ¢ € O¢, so that m = (¢). Since t € O¢, C k(C), we get
elements dt € Qcyp, and dt € Qpcy/p. As @(dt ®1) = dt, the map ¢ is non-trivial. [

Definition 5.1.5. Let C' be a smooth curve over a field k. Let w € Qi) — {0}. We
define div(w) € Div(C) as follows. For each closed point x € C, choose a generator 7,
for Qi and write w = g, - 1, for some g, € k(C)* (see Lemma 5.1.4). Then

div(w) = Z U2(gz) - T
z€C closed

Lemma 5.1.6. Let C' be a smooth curve over a field k. Fiz w € Q)i — {0}

(1) The element div(w) as defined above does not depend on the choice of the gen-
erator 1, € Qc ke for each closed x € C.

(2) If &' = X w € Queyre with X € k(C)*, then div(w') = div(\) + div(w), hence

div(w') and div(w) are linearly equivalent.
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Proof. Exercise. O]

Definition 5.1.7. Let C be a smooth curve over a field k. We define the canonical
divisor class of C' as the Weil divisor class

K¢ = [div(w)] € CI(C)

where w is any element of Q) — {0}. Note that, by Lemma 5.1.6, the canonical
divisor class K¢ € Cl(C') does not depend on the choice of w.

Proposition 5.1.8. Let C' be a smooth curve over a field k. Then we have a canonical
isomorphism of line bundles Oc(K¢) = Qc.

Proof. Exercise. O

Example 5.1.9. Let k be a field. Consider the projective line P} = Proj(k[xo, z1])
over k. We claim that

Recall that Pic(P}) = Z - Op: (1), see Exercise 2.3.11. Therefore, in view of the iso-
morphism Op: (Kp1) = Qp1 ;. (see Proposition 5.1.8), to prove (5.2) it suffices to show
that deg(KP}c) = —2. Consider the open subscheme Uy C P}, with

Uo = Dy (x0) = Spec k[xo, T1](z) = Spec klt],
see Proposition 2.2.1. This gives a rational differential
w =dt € Q1)
which is non-zero. On U; = Spec k[t™!], we can write u = ¢, and have:
dt =d(u™t) = —u2du.

Thus div(w) = —2-(0: 1). In particular, deg(dlv( )) = —2, proving (5.2).
To construct a canonical isomorphism 2p1 L = OPI( 2), we use Theorem 4.1.10
which gives a canonical exact sequence

0 — Qp1jp — Opi(=1)> — Op1 — 0.
Consider then the composition

Q1 /1, — Opt (—1) P Op (—1) — Oy (—1) ®o, Op(-1) = Opy(-2),  (53)

in which the last map is the isomorphism of item (4) of Proposition 1.1.15. It remains
to verify that (5.3) is an isomorphism, which we leave as an exercise for the reader.
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5.1.2 Genus of a curve and Euler characteristic of a sheaf

Let C be a projective curve over a field k. Recall (cf. Definition 2.4.9), that the genus
of C' is the integer g(C') = dimy, H'(C, O¢). This is an integer by Theorem 2.3.3.

Examples 5.1.10. (1) We have g(P;) = 0 as H' (P}, Op:1) = 0 by Corollary 2.3.2.

(2) Let C' C P2 be a plane curve of degree d > 0. Then g(C) = (d —1)(d — 2)/2, see
Theorem 2.4.15.

Definition 5.1.11. Let X be a projective variety over a field k, and let F be a coherent
sheaf on X. For ¢ € Z>(, we define

RY(X, F) = dim H(X, F), (X, F) = i(—nihi(x, F).

1=0

Remark that h'(X, F) € Zsy and x(X,F) € Z>q by Theorems 2.3.3 and 2.1.15. The
integer x (X, F) is called the Euler characteristic of the coherent sheaf F.

Lemma 5.1.12. Let X be a projective variety over a field k. Consider a short exact
sequence
0—F — Fo— F3—0

of coherent sheaves on X. Then x (X, F2) = x(X, F1) + x(X, F3).
Proof. Taking cohomology gives a long exact sequence
0 — H'(X,F) — HY(X, F) — - — H"(X, F3) — 0.

The result follows then from Lemma 2.4.14. OJ

5.1.3 Riemann—Roch and Serre duality: statement of the theorems

We come to the statements of the Riemann—Roch theorem and the Serre duality the-
orem for curves.

Theorem 5.1.13 (Riemann—Roch). Let C' be a smooth projective curve over a field
k. Let g be the genus of C. Then for any Weil divisor D € Div(C'), we have:

X(C,0c(D)) = h"(C, Oc (D)) — h'(C, Oc(D)) = deg(D) + 1 — g. (5.4)

Theorem 5.1.14 (Serre duality for curves). Let C' be a smooth projective curve over a
field k. Let F be a finite locally free sheaf on C. Then there are canonical isomorphisms
HO<C7 *F)V = Hl(ca FV ®Oc QC/k)v (55)

H'(C,F) =H(C, F ®0, Qcyr)". (5.6)

In particular, if D € Div(C) is a Weil divisor on C, then there is a canonical isomor-

phism of k-vector spaces H (C, O¢(D)) = H°(C, Oc(K¢ — D))V.
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Remark 5.1.15. Observe that (5.6) follows from (5.5). Namely, the canonical mor-
phism F — (FY)Y that sends a local section s to the morphism of sheaves F¥ — O¢
defined on local sections as (f + f(s)), is an isomorphism. Thus, by (5.5), we have

H'(C, F) = H' (C,(FY @0 Qoyr)’ ®@oc Qo) = HY(C, FY @oc Qepn)” .

Corollary 5.1.16. Let C' be a smooth projective curve over a field k. Let g be the
genus of C. Then g = dimy H°(C, Q¢).

Proof. Indeed, we have g(C') = h*(C,O¢) = h°(C,Q¢) by Theorem 5.1.14. O
As a corollary of Theorems 5.1.13 and 5.1.14, we obtain:

Theorem 5.1.17 (Riemann—Roch). Let C be a smooth projective curve of genus g
over a field k. Let D € Div(C) be a Weil divisor on C'. Then

h%(C, Oc(D)) — h*(C, Oc(K¢ — D)) = deg(D) + 1 — g.

Corollary 5.1.18. Let C be a smooth projective curve of genus g over a field k.
Consider the canonical divisor class Ko € CI(C). Then deg(K¢) = 2g — 2.

Proof. We have
h'(C,Qc) — h*(C, Oc) = h’(C, Oc(Kc)) — h*(C, Oc(Ke — Kc)) = deg(Ke) +1—g,

where the second equality holds by Theorem 5.1.17. As h%(C,O¢) = 1 (see Example
2.3.4), we get:
deg(K¢) = h(C, Qo) + g — 2.

By Corollary 5.1.16, we have h°(C,Q¢) = g, thus deg(K¢) = 2g — 2 as desired. O

Exercise 5.1.19. Let D be a Weil divisor on a smooth projective curve C' over a field
k. Assume that deg(D) < 0. Show that H°(C, O¢(D)) = 0.

Corollary 5.1.20. Let C be a smooth projective curve of genus g over a field k. Let
D € Div(C) be a Weil divisor with deg(D) > 2g — 2. Then H(C,O¢(D)) =0 and

h°(C,Oc(D)) = deg(D) + 1 — g. (5.7)
Proof. Indeed, as deg(D) > 2g—2, we have that deg(Kc—D) = deg(K¢)—deg(D) < 0,

see Corollary 5.1.18. Therefore, h'(C, Oc(D)) = h°(C, Oc(Kc—D)) = 0, see Theorem
5.1.14 and Exercise 5.1.19. Thus, (5.7) follows from Theorem 5.1.13. O
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5.2 Lecture 27 : Proof of the Riemann—Roch theorem

5.2.1 Morphisms between a variety and a curve

Lemma 5.2.1. Let X be a projective variety over a field k. Let R be a k-algebra which
1s a discrete valuation ring, with fraction field K. Then for any morphism of k-schemes
f:Spec K — X there exists a unique morphism of k-schemes g: Spec R — X such
that f = g o @, where ¢ is the canonical morphism Spec K — Spec R.

Proof. First assume that the lemma is true for projective space of any dimension over
k. Then let X C P} be a closed embedding into P} for some n > 0. Then since the
lemma holds for P}, we get a morphism of k-schemes Spec R — P} fitting into the
commutative diagram

Spec R —— P}

| ]

Spec K —— X.

Let Z C P} be the closure of the image of the morphism Spec R — P}. Note that
dim(Z) € {0, 1}, and that Z N X # (). We claim that Z C X. Otherwise,

D+£XNZCZ,

which implies that dim(Z) = 1 (since Z is connected), and that X NZ C Z is a closed
subset of Z of dimension zero, whereas we have a factorization

p:Spec K — XNZ — Z

and the image of ¢ is dense in Z, as we have:

¢(Spec K) = ¢(Spec K) = ¢(Spec R) = Z.

This contradiction shows that indeed, Z C X. This implies that the morphism
Spec R — P} factors as Spec R — Z C X C P}, proving what we want.
It remains to prove the lemma in case X = P}. Let m C R be the maximal ideal of
R, so that R = (t) for some t € R. Note that the morphism Spec K — P} corresponds
to the class
(sg: --+:8,) € (K™ — {0})/~

of some (n + 1)-tuple of elements of K, not all zero, see Example 1.2.21. Write
s; = a;-t" for unique o; € R (with a; =0 or o; € R*), and n; € Z. Let I C {0,...,n}
with «; # 0 if and only if ¢ € I. Let m be the minimum of the n; with n; € I. Then

tfm . tnl — tni7m7

and n;, —m >m —m = 0 for each ¢ € I. Hence t™™ -t" € R for each ¢+ € I. Moreover,
there exists ig € I such that m = n;,. Then by Example 1.2.22, the (n + 1)-tuple

™ (805 8n) = (pt™ ™™, apt™ ™) € (R — {0})
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gives rise to a unique morphism
Spec R — P},
whose composition with Spec K — Spec R gives the original map Spec K — P. [

Lemma 5.2.2. Let X and S be schemes. Let f,g: X — S be two S-scheme morphisms
that agree on U, a dense open subset of X. If X is reduced and S separated, then f = g.

Proof. Exercise. [

Proposition 5.2.3. Let X and C' be smooth projective curves over a field k. Let
f: X — C be a morphism of schemes over k. Then the following assertions are true.

(1) Fither f is surjective, of f is constant.

(2) If f is surjective, then the fibres of f are finite.

Proof. (1). Consider the subset f(X) C C. We get a closed connected subset f(X) C
C; this subset is either C' or a single point (see Lemma 5.1.2). We assume f(X) is not
a point, so that f(X) = C. We then need to show that f is surjective. As f(X) = C,
the generic point of C' is in the image of f, so we need to prove that for any closed
point x € C' there exists a closed point z € X such that f(z) = =.

For this, let x € C be a closed point. Let K = Frac(O¢,) be the function field
of C, which is also the fraction field of the discrete valuation ring O¢ . Let L be the
function field of the curve X. Let R be the integral closure of O¢, in L. Then R is a

discrete valuation ring with fraction field L, and we get a commutative diagram

X————C

]

Spéc R —— Spec O¢, (5.8)

Spec L Spec K.

By Lemma 5.8, there is a morphism Spec R — X that extends the map Spec L — X.
We claim that it makes the square on the top right of (5.8) commute. Indeed, the two
compositions Spec R — Spec O¢, — C and Spec R = X — (' yield two morphisms
Spec R — C that agree on the dense open subset Spec L C Spec R (cf. Lemma
3.1.12). By Lemma 5.2.2, these morphisms Spec R — C must then be the same. Now
let y € Spec R be the closed point of Spec R, and let z € X be the image of y under
Spec R — X. Then z € X is a closed point such that f(z) = .

(2). Assume f: X — C is surjective. Let x € C be a point. If x = £ is the generic
point of C, then f~!(z) = n is the generic point of X (indeed, this follows the fact
that f maps closed points to closed points, and that a point on a curve is closed if
and only if it is not the generic point; cf. Lemma 5.1.2). If x € C' is a closed point of
C, then f~!(z) C X is a closed subset of X strictly contained in X, and therefore, by
Lemma 5.1.2, f~!(z) consists of finitely many closed points of X. O
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Proposition 5.2.4. Let X and C be varieties over a field k, with X projective and
C a curve. Let U C C be a non-empty open subset of C, and let f°: U — X be a
morphism of k-schemes. Then f° admits a unique extension f: C' — X.

Proof. We may assume that X = P} for some n > 0 (verify this). If U # C, then
C — U =: Z consists of finitely many closed points of C' (see Lemma 5.1.2). To prove
the proposition, we may assume Z is a single closed point x € C. Thus U = C' — {«}.
Let K be the function field of C, so that K = Frac(O¢,). By Lemma 5.2.1, there
exists a unique morphism
Spec Oc, — P}

that extends the composition Spec L — U — P}. Thus we get n 4+ 1 sections
(to; - - - un) € OFL —{0} that do not vanish at the maximal ideal of O¢,, (see Exam-
ple 1.2 22) By Theorem 1.2.18, the morphism U — P} corresponds to a line bundle

= Oy(D) attached to some Weil divisor D on U, together with n + 1 sections
S0, -.-,8, € I'(U,Opy(D)) that globally generate L. If D = ) . n;z; € Div(U), define
D € Div(C) as the Weil divisor

D = anl'l € DIV(C)

We get a line bundle L := Og(D) on C. Let z € V C C be an open neighbourhood
such that L|y = Oy. By shrinking V around z if necessary, we may assume that the
elements u; € O"H extend to sections of L over V which, up to multiplication, agree
with the sections s; over V' — {z}. By further shrinking V" around x if necessary, we
may assume that the sections ug, ..., u, € I'(V, L) globally generate L. By Theorem
1.2.18, this gives a unique morphism

V — Py

that extends the composition V' — {z} C U — P}. The proposition follows. ]

5.2.2  Rational functions on curves

Proposition 5.2.5. Let X and Y be projective schemes over a ring A. Assume
f: X =Y is a morphism of schemes over A with finite fibers. Then for each affine
open subscheme U C 'Y, the subscheme f~Y(U) C X is affine.

Proof. We do not prove this here. O]

Let X be a variety over a field k, with generic point n € X. Then k(X)) = Oy, is a
field, and called the function field of X. For a non-empty affine open U = Spec A C X,
we have k(X) = Frac(A). Indeed, to prove this, we may assume X = Spec A is affine,
in which case the generic point corresponds to the zero ideal of A.

Lemma 5.2.6. Let X be a variety over a field k.

(1) For any open U C X, there is a natural bijection I'(U, Ox) = Homsen /i (U, Ay,).
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(2) There exists a natural bijection between k(X) and the set of equivalence classes
of tuples (U, f) where U C X is a non-empty open and

f:U— A}

is a morphism from U to the affine line over k, and where (U, f) ~ (V, g) if the
maps f and g agree on the open subset U NV C X.

Proof. As for (1): remark that
Homseh (U, A) = Homsen/i (U, Spec k[t]) = Homy_aig(k[t], Ox (U)) = Ox(U).

As for (2): this follows readily from (1) and the definition of k(X). O
In combination with the results of Section 5.2.1, the following lemma yields:

Proposition 5.2.7. Let C be a smooth projective curve over a field k. Let Py =
Proj(k[zo, z1]) with oo = (0: 1) € PL(k). Then P} — {oo} = A}. We have:

(1) There is a natural bijection

k(C) = {f € Homsei(C,P}) | f(C) # {00} } .

(2) In particular, C' admits a non-constant morphism f: C — Pj.

et f:C — e non-constant. en [ 1s surjective wi nite fivers. Moreover,
3) Let f: C — P b tant. Th ' ective with finite fibers. M,
or any ajfine open U C Iy, the inverse image | C 15 ajjine.
U C P}, the i j WWycci

Proof. (1). By Lemma 5.2.6, any element of £(C') corresponds to the equivalence class
of a morphism f°: U — A} defined on a non-empty open U C C. By Proposition
5.2.4, the composition

U — AL — Py

extends to a unique morphism
f: C— P,

Note that f(C') # {oo}. This construction yields the desired bijection.

(2). The subfield k& C k(C') corresponds to the set of constant maps C — A} C P;}.
For a non-empty affine open U C C, we have k(C) = Frac(O¢(U)). Thus k C k(C) is
strictly contained in k(C'), so that there exists a non-constant map f: C' — P;.

(3). Let f: C — P} be non-constant. Then f is surjective with finite fibers by
Proposition 5.2.3. Since C' and P} are projective over k, we get that for each affine
open U C P}, the inverse image f~(U) is an affine scheme, see Proposition 5.2.5. [
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5.2.3  Proof of Serre—Duality for the projective line

We first prove Serre-Duality for the curve C' = Pj. For this, we use the following
theorem as a blackbox.

Theorem 5.2.8. Let k be a field. Let F be a locally free sheaf of finite rank n € Z>,
on the projective line P.. Then there are integers ay, . ..,a, € Z such that

.F = Opl(al) EB R EB Op}c(an)
Proof. When n = 1, this is Exercise 2.3.11. We do not prove the general case here. []

We can then show:

Lemma 5.2.9 (Serre duality on P}). Let F be a finite locally free sheaf on P}. Then
there is a natural isomorphism of k-vector spaces

HO(Py, F)Y = H' (P, F* ®0,, Qen). (5.9)
k

Proof. By Theorem 5.2.8, we have F = @i(’)p}c (a;) for some integers ay, ..., a, € Z. In
particular, as taking cohomology of a sheaf commutes with direct sums, it suffices to
prove (5.9) in the case where ' = Op1 (a) for some a € Z. Notice that Qp: 5, = Op1 (—2)
by Example 5.1.9. Hence

FY B0, Qp1 1, = Op1 (—a = 2),
see item (1) of Exercise 2.3.11. Therefore, we need to provide a natural isomorphism
HO (B, Oy (@) = H(BL, Oy (—a — 2)). (510

We have H°(P}, Opi (a)) = k[zo, 1] and

H (P, Opy (—a = 2)) = ((zoz1) " - klag,21]) _,
see Theorem 2.3.1. Now we have a pairing

klxo, x1]a X ((xoarl)_l . k[:val,zl_l])_a_Q — k,
(f,9) = f a5t g.

This pairing is perfect, providing the desired isomorphism (5.10). ]

5.2.4  Preliminary results for Serre duality for curves
In this section, we gather several results that we need in the proof of Theorem 5.1.14.

Proposition 5.2.10. Let C be a smooth projective curve over a field k. Letw: C — P}
be a non-constant morphism. Let F be a finite locally free Oc-module. Then the Op: -
module w,F is finite locally free, and we have an isomorphism of Op}c—modules

T (A omoy (F,Qcpr)) = %Om%i (e, Q1 )
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Proof. We first prove that m,F is finite locally free. Since F is finite locally free, we
have that for each affine open W C C, we have that F(WW) is a flat O¢(W)-module
(verify this!).

Let V' C P; be any affine open. Then U := 7~!(V) is affine by Proposition 5.2.5.
Let A= Opi (V) and B = O¢(U). The resulting ring map A — B is flat (verify this!).
Moreover, by the above, the module (7,F)(V) = F(U) is flat over B. Therefore, F(U)
is flat over A.

Hence we see that for each affine open V' C P}, the Op: (V))-module (. F)(V) is
flat. In particular, for each x € P}, we get that (7.F), is a flat Opbx-module of finite
type. Since OP}Q . 18 a discrete valuation ring, any flat finite type module over it is finite
free. This proves that (7. F), is a finite free Op1 ,-module for all = € P}. Therefore
mF is finite locally free by Lemma 3.4.7.

Next, we prove that there exists a canonical isomorphism

T (A omo (F,Qcpr)) = f%”omo% (M, Qp1 ) (5.11)
To provide the isomorphism (5.11), we define
wpt = Op1 (—2).
Note that wpr = Qﬂmi /& canonically by Example 5.1.9. We then proceed in two steps:
Step 1 We construct a coherent Oc-module we, together with a canonical isomorphism

T (A omo, (F,we)) = Homo,, (1.F, wpt ). (5.12)
k

Step 2 We construct a canonical isomorphism Q¢ /i, = we.
Step 1. The definition of we goes as follows. Consider
Ui = D, (x;) CP}.

We have Uy = Spec k[t] and U; = Spec k[t™!], which are glued along Uy N U; =
Spec k[t,t7!]. Define
CO = 7T_1(U0), Ol = 7T_1<U1).

Moreover, define

Then the C; C C' are open subschemes, affine by Proposition 5.2.5, and the restrictions
of 7 gives two morphisms

Define
M; == Hom, (B;, wp1 (A;)).
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Then M; is a finitely generated B;-module. Thus ]\AjZ is a coherent O¢,-module. We

then glue together My and M; to get a coherent sheaf we on C.
We claim that we have an isomorphism as in (5.12). To prove this, we work locally
again: define F; := F(C;). Then F; is a finitely generated B;-module, and the map

U;: Homp, (F;, Homy, (B, w1 (4;))) — Homuy, (£}, wp1 (4;))
defined as
Hom, (F;, Homa, (Bi, wpy (4:))) 2 ¢ = (£ = ¢(£)(1)) € Homy, (£, wey (Ai))
is an isomorphism. The maps ¥, for i € {0, 1} sheafify to an isomorphism (5.12).

Step 2. It remains to construct a canonical isomorphism
Qo — wo (5.13)
For this, see [OE15, pages 402 & 403]. ]

We proceed with the following lemmas, which we need (together with Proposition
5.2.10) in order to prove Theorem 5.1.14.

Lemma 5.2.11. Let f: X — Y be a morphism of schemes. Let F be an Ox-module
and let € be a finite locally free Oy -module. Then there is a natural isomorphism

[(F ®ox [7E) & fuF ®o, E.

Proof. Let A — B be a morphism of rings. Let M be a B-module. Let n € Z>; and
consider the free A-module A™. Then there is a natural isomorphism of A-modules

M®p (A" @4 B) = M ®4 A™.
The lemma follows from this. O

Lemma 5.2.12. Let X be a noetherian scheme and let F and G be finite locally free
Ox-modules. Then we have a canonical isomorphism F¥ ®p, G = Homo, (F,G).

Proof. There is indeed a morphism of sheaves F¥ ®p, G — S omo, (F,G) defined as
f'®@g— (f — f'(f)-g). This map is an isomorphism, as can be verified on stalks. [

5.2.5  Proof of the Serre duality theorem for curves

Proof of Theorem 5.1.14. We can now prove Theorem 5.1.14. Let C' be a smooth
projective curve over a field k, and let F be a finite locally free sheaf on C'. In view of
Remark 5.1.15, it suffices to prove (5.5). By Lemma 5.2.7, there exists a non-constant
morphism

m: C — Py

80



By Proposition 5.2.10, we have a canonical isomorphism
T (A omoy (F,Qcpr)) = %ﬂom@% (e, Q1)

This yields:

H(C, F)Y = HY(P}, 7. F)" (5.14)
~ ! (IP}C, (n.F)" ®o, QP}C> (5.15)
gH%Ew%mmMmFﬁ%D (5.16)
=~ H' (P, 7. (S omo.(F, Qo)) (5.17)
= Hl (O, %Om(gc (./—", QC/k)) (518)
>~ H' (C,F' ®o. Qcyn) - (5.19)

Let us explain the above isomorphisms. The isomorphism (5.14) holds since we have
H(P;, 7. F) = T'(P;, m.F) =T(C, F) = H(C, F).

Then (5.15) follows from Lemma 5.2.9. The isomorphism (5.16) holds by Lemma
5.2.12. Then (5.17) follows from Proposition 5.2.10. The isomorphism (5.18) follows
from Lemma 2.1.17 together with item (3) in Lemma 5.2.7. Finally, (5.19) holds by
Lemma 5.2.12 again.

This proves (5.5), and hence we are done. O

5.2.6 Proof of the first version of Riemann—Roch

Lemma 5.2.13. Let C' be a smooth projective curve over a field k. Let D € Div(C)
be a Weil divisor on C. Let p € C be a closed point. Then:

X(C,0c(D +p)) = x(C, Oc(D)) + [k(p): k], (5.20)
deg(D + p) = deg(D) + [k(p): k. (5.21)

Proof. Let Z C O¢ be the ideal sheaf of the closed subscheme i: Spec k(p) — C
attached to the closed point p € C. By Exercise 3.3.9, we have Z = O¢(—p) as
subsheaves of O¢. This gives an exact sequence

0— Oc(—p) — Oc — i*OSpec k(p) — 0.

Consider the line bundle O¢(D+p) on C. Since this Oc-module is invertible, tensoring
the above sequence with it gives a sequence which remains exact:

0— OC(D) — Oc(D —|—p) — i*(’)gpec k(p) — 0. (5.22)
Here, we used Lemma 5.2.11, which implies that for any line bundle L on C, we have

L ®0c 1:Ospec k(p) = ix (i*(L) BOspec niy Dspec k<p>) = 1:Ospec k(p):
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Consider the exact sequence (5.22). By Lemma 5.1.12, we obtain:
X(C,Oc(D +p)) = X(C, Oc(D)) + x(C' i+Ospec k(p))-
Since

X(C,ixOspee k(p)) = dimy H(C, i, O08pec k(p) = dimg(Ospec r(p) (Spec k(p)))
= dimy(k(p)) = [k(p): K],

the equality (5.20) follows.
Consider p € C as a Weil divisor on C. Then deg(p) = [k(p): k], so that we have
deg(D + p) = deg(D) + deg(p) = deg(D) + [k(p): k|. In particular, (5.21) follows. [

Proof of Theorem 5.1.13. Let C' be a smooth projective curve over a field k. Let g be
the genus of C, and let D € Div(C) be a Weil divisor on C'. Write

m
i=1

for closed points py,...,p, € C. By Lemma 5.2.13, we have

X(C,0c(D)) = x(C,0c) + > _ni - [k(pi): K],

=1

deg(D) = an [k(pi): K.

Therefore, to prove (5.4), it suffices to prove that

X(C,0¢) =1—g.

As x(C,0¢) = h°(C,O¢) — hY(C,O¢), and as h°(C,O¢) = 1 by Example 2.3.4, this
amounts to proving that h'(C,O¢) = g, which holds by Corollary 5.1.16. O
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