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Chapter 1

Quasi-coherent sheaves on projective
schemes

1.1 Lecture 14 : Quasi-coherent sheaves and projective spectra

Definition 1.1.1. A graded ring is a ring S with a decomposition

S = ⊕d∈Z≥0
Sd

of the underlying abelian group into abelian subgroups Sd ⊂ S, such that Sd·Se ⊂ Sd+e.
A Z-graded ring is a ring S with a decomposition S = ⊕d∈ZSd of the underlying abelian
group into abelian subgroups Sd ⊂ S, such that Sd · Se ⊂ Sd+e.

Goal of this lecture: For a graded ring S, consider the scheme X = Proj(S), and
define a functor

M 7→ M̃

from the category of graded S-modules to the category of quasi-coherent OX-modules,
as in the affine case.

Recall. A graded abelian group is an abelian group M together with a decomposition
M = ⊕d∈ZMd into abelian subgroups Md ⊂M .

Recall. Let S = ⊕Sd be a graded ring, which is either graded or Z-graded.

(1) A graded S-module is an S-module M with the structure of a graded abelian
group M = ⊕Md, such that the gradings of S and M are compatible in the sense
that Sd ·Me ⊂Md+e for all d, e ∈ Z.

(2) An element x ∈M is called homogeneous if x ∈Md for some d ∈ Z.

(3) A graded submodule of a graded S-module M is a submodule N ⊂ M which is
generated by homogeneous elements.

(4) A morphism of graded S-modules ϕ : M → N is a morphism of S-modules such
that ϕ(Md) ⊂ Nd for d ∈ Z.
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Question 1.1.2. In which ways can you turn R = Z into a graded ring?

Definition 1.1.3. Let M = ⊕Md be a graded S-module. For n ∈ Z, define a new
graded S-module M(n) as follows:

M(n)d := Md+n, M(n) := ⊕M(n)d.

In particular, we have the graded S-module S(n) for n ∈ Z.

Lemma 1.1.4. Let S be a graded ring and M a graded S-module.

(1) An S-submodule N ⊂ M is a graded submodule if and only if N = ⊕Nd for
Nd := N ∩Md.

(2) If N ⊂M is a graded submodule, then M/N is naturally a graded S-module.

(3) Let ϕ : M → N be a morphism of graded S-modules. Then the kernel, image and
cokernel of ϕ are graded S-modules in a natural way.

Proof. (1) Consider a submodule N ⊂ M , and define Nd = N ∩Md for d ∈ Z. By
definition, N is graded if and only if N is generated by the submodules Nd ⊂ N
for d ∈ Z. As Nd ∩Nd′ = 0 for d 6= d′, this happens if and only if N = ⊕Nd.

(2) Define (M/N)d = Im(Md →M/N). Then the natural map

⊕(M/N)d −→M/N

is surjective. We need to show it is injective. In other words, we need to show,
for d 6= e ∈ Z, that (M/N)d ∩ (M/N)e = 0. Let

x ∈ (M/N)d ∩ (M/N)e.

There exists md ∈Md and me ∈Me which both have image x ∈M/N . Hence,

md ≡ me mod N.

In other words,md−me ∈ N . SinceN is graded, we can writemd−me =
∑

k∈Z nk
as a sum of homogeneous elements nk ∈ Nk. We have Nk ⊂ Mk, and it follows
that nk = 0 for k 6= d, e, and that md = nd and me = −ne. In particular,
md,me ∈ N , so that x = 0 ∈M/N .

(3) In view of item (2), it suffices to prove the statement for the kernel Ker(ϕ) of
ϕ : M → N . Indeed, we have Im(ϕ) = M/Ker(ϕ) and Coker(ϕ) = N/Im(ϕ).
Thus, let us show that K := Ker(ϕ) is a graded S-module. Let x ∈ K. Write
x =

∑
md for md ∈Md. Then

0 = ϕ(x) =
∑

ϕ(md).

As ϕ(md) ∈ Nd, this implies ϕ(md) = 0 for each d ∈ Z. Hence md ∈ K.
This proves the lemma.
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Remark 1.1.5. Let S be a graded ring, and M a graded S-module. Let p ∈ Proj(S).
Consider the multiplicatively closed subset T ⊂ S containing all homogeneous elements
in S \ p. Then T−1M is naturally a graded T−1S-module: we have

T−1M = ⊕
(
T−1M

)
k
, with(

T−1M
)
k

=
{m
t
∈ T−1M : m homogeneous of degree k + deg(t)

}
.

Definition 1.1.6. Consider the notation in Remark 1.1.5. We define

M(p) :=
(
T−1M

)
0
.

Notice that M(p) is an R(p)-module in a natural way.

Definition 1.1.7. Let M be a graded S-module. Let U ⊂ Proj(S) be open, and
define

M̃(U) =

{
(s(p)) ∈

∏
p∈U

M(p) : condition (?) holds

}
,

where (?) is the condition that for each p ∈ U , there exists an open neighbourhood
p ∈ Vp ⊂ U of p in U , together with homogeneous elements m ∈M, f ∈ S of the same
degree, such that for all q ∈ Vp, we have f 6∈ q and s(q) = m

f
∈M(q).

Proposition 1.1.8. Let X = Proj(S) for a graded ring S, and let M be a graded
S-module. The following assertions are true.

(1) For all p ∈ Proj(S), we have a canonical isomorphism(
M̃
)
p

∼= M(p).

(2) Let f ∈ S+ homogeneous, and consider the canonical isomorphism

ϕ : D+(f)
∼−→ Spec S(f).

Then there is a canonical isomorphism

M̃ |D+(f)
∼= ϕ∗

(
M̃(f)

)
.

Here, M(f) denotes the degree zero part of Mf (note that M(f) is an S(f)-module
in a natural way) and M̃(f) is the affine tilde construction.

(3) The sheaf M̃ is a quasi-coherent OX-module. If S is noetherian and M finitely
generated, then M̃ is coherent.
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Proof. (1). We have (
M̃
)
p

= lim−→
p∈U⊂X

M̃(U).

For U ⊂ X open with p ∈ U , define a map

fU : M̃(U)→M(p), (s(q)) 7→ s(p).

These maps are compatible with restrictions M̃(U) → M̃(V ) for p ∈ V ⊂ U open,
and hence we get a well-defined map

f :
(
M̃
)
p

= lim−→
p∈U⊂X

M̃(U)→M(p). (1.1)

We claim that (1.1) is an isomorphism. As for the surjectivity, let m/f ∈ M(p) with
m, f homogeneous, f 6∈ p and deg(m) = deg(f). Then for each q ∈ D+(f), put
s(q) = m/f ∈M(q). Then we get a section

s := (s(q)) ∈ M̃(D+(f)),

and we have fD+(f)(s) = m/f ∈M(p). Thus, the map (1.1) is surjective.
To prove the injectivity, let s, t ∈ (M̃)p such that f(s) = f(t). We can find an

open neighbourhood p ∈ U ⊂ X and s̄, t̄ ∈ M̃(U) that map to s, t ∈ (M̃)p. We have
s̄(p) = t̄(p), and hence there exists an open neighbourhood p ∈ Vp ⊂ U such that
s̄|Vp = t̄|Vp . In particular, s = t, and we are done.

(2). Exercise.
(3). By (2), quasi-coherence is clear. If S is noetherian and M finitely generated,

then S(f) is noetherian and M(f) is finitely generated, hence M is coherent by (2).

Recall that for a scheme X and a sheaf F on X, one defines the support of F as

Supp(F) = {x ∈ X | Fx 6= 0} .

Lemma 1.1.9. For a graded S-module M , Supp(M̃) =
{
p ∈ Proj(S) |M(p) 6= 0

}
.

Proof. Clear from item (1) in Proposition 1.1.8.

Lemma 1.1.10. Let 0→ A→ B → C → 0 be an exact sequence of graded S-modules.
Then for each d ∈ Z, the induced sequence

0→ Ad → Bd → Cd → 0

is exact.

Proof. Everything apart from possibly the surjectivity of Bd → Cd is trivial. To prove
this, let x ∈ Cd and lift x to an element y ∈ B. Write y =

∑
n yn. Then as y maps to

x, yn maps to zero for each n 6= d. Therefore, yd maps to x, and yd ∈ Bd.
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Lemma 1.1.11. For a graded ring S, and X = Proj(S), the tilde construction M 7→
M̃ defines an exact functor from the category of graded S-modules to the category of
quasi-coherent OX-modules.

Proof. Let
0→M1 →M2 →M3 → 0

be an exact sequence of graded S-modules. Let p ∈ Proj(S). Then the sequence

0→ (M1)p → (M2)p → (M3)p → 0

is exact. In particular, in view of Lemma 1.1.10, the sequence

0→ (M1)(p) → (M2)(p) → (M3)(p) → 0

is exact. By Proposition 1.1.8, we are done.

Recall that, for a ring R and an R-module M , we have

Supp(M) := {p ∈ Spec R |Mp 6= 0} .

Lemma 1.1.12. Let S be a graded ring and M,N graded S-modules.

(1) Suppose that Supp(M) ⊂ V (S+) ⊂ Spec S. Then M̃ = 0.

(2) Assume that N>d
∼= M>d for some d ∈ Z≥0. Then M̃ ∼= Ñ .

Proof. (1). The assumption implies that Supp(M) ∩ Proj(S) = ∅. Hence Mp = 0
for each p ∈ Proj(S). In particular, M(p) = 0 for each p ∈ Proj(S). It follows that
(M̃)p = 0 for each p ∈ Proj(S), see Proposition 1.1.8. Thus M̃ = 0.

(2). Since M>d ⊂ M is a graded submodule, the quotient L := M/M>d is graded
(see Lemma 1.1.4). Note that Supp(L) ⊂ V (S+). Therefore, L̃ = 0 by item (1). From
Lemma 1.1.11, it follows that the sequence

0→ M̃>d → M̃ → L̃→ 0

is exact. Hence M̃>d
∼= M̃ . Consequently,

M̃ ∼= M̃>d
∼= Ñ>d

∼= Ñ .

We are done.

Example 1.1.13. Let X = Proj(S) with S = k[x0, x1], where k is a field. Let M
be the graded S-module M = k[x0, x1]/(x2

0, x
2
1). Then M̃ = 0. Indeed, we have

S+ = (x0, x1). If Mp 6= 0 for some p ∈ Spec S, then r · 1 6= 0 for each r 6∈ p. Thus,
r 6∈ (x2

0, x
2
1) for each r 6∈ p. Thus, (x2

0, x
2
1) ⊂ p. Hence (x0, x1) ⊂ p, so that p ∈ V (S+).
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1.1.1 Serre’s twisting sheaf
Definition 1.1.14. Let S be a graded ring and X = Proj(S). For n ∈ Z, define

OX(n) := S̃(n).

We call OX(n) the n-th twisting sheaf (of Serre). If F is a sheaf of OX-modules, we
put

F(n) := F ⊗OX
OX(n),

and call F(n) the n-th twist of F .

Proposition 1.1.15. Let S be a graded ring such that S is generated by S1 as an
S0-algebra. Let X = Proj(S). Then:

(1) The sheaf OX(n) is invertible for all n ∈ Z.

(2) Let M , N be graded S-modules. There is a canonical isomorphism

M̃ ⊗S N ∼= M̃ ⊗OX
Ñ . (1.2)

(3) For all graded S-modules M and n ∈ Z, we have a canonical isomorphism

M̃(n)
∼−→ M̃(n).

(4) We have canonical isomorphisms OX(n)⊗OX(m) ∼= OX(n+m) for n,m ∈ Z.

Proof. (1). With respect to the identification D+(f) = Spec S(f), we have a canonical
isomorphism

OX(n)|D+(f)
∼= S̃(n)(f)

of sheaves on Spec S(f). For n ∈ Z and f ∈ S1, we have an isomorphism

S(f) −→ S(n)(f), s 7→ fn · s.

Thus, OX(n)|D+(f) is a free OX |D+(f)-module of rank one. Since S is generated by S1

over S0, we have S = 〈f | f ∈ S1〉, hence Proj(S) = ∪f∈S1D+(f).
(2). Indeed, let f ∈ S1, and consider the canonical isomorphismD+(f) = Spec S(f).

Using Proposition 1.1.8, we can define isomorphisms

M̃ ⊗S N |D+(f)
∼= (M ⊗S N)(f) →M(f) ⊗S(f)

N(f)
∼= M̃ ⊗ Ñ |D+(f),

m⊗ n
fdeg(m)+deg(n)

7→ m

fdeg(m)
⊗ n

fdeg(n)
.

These isomorphisms agree on overlaps D+(f) ∩D+(f), hence glue to give (1.2).
(3). This follows from (2), by taking N = OX(n).
(4). This follows from (2), by observing that there are canonical isomorphisms

S(n)⊗S S(m)
∼−→ S(n+m), s⊗ t 7→ s · t.
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1.2 Lecture 15 : Projective schemes

1.2.1 The associated graded module

In the affine case, we can recover M from F = M̃ by taking global sections. In the
projective setting, this will not work, as for instance Γ(P1

k,OP1
k
) = k. Instead, we will

have to look at the various Serre twists F(d), d ∈ Z.

Definition 1.2.1. Let S be a graded ring. Let X = Proj(S), and let F be an OX-
module. We define the graded S-module associated to F as

Γ∗(F) :=
⊕
d∈Z

Γ(X,F(d)).

In particular, from X we get an associated Z-graded ring

Γ∗(OX) :=
⊕
d∈Z

Γ(X,OX(d)).

Question 1.2.2. Note R = Γ∗(OX) has a grading R = ⊕d∈ZRd indexed by the full set
of integers Z. Hence R is a Z-graded ring in the sense of Definition 1.1.1. Is it always
true that Rd = 0 for d < 0? In other words, is R actually a graded ring, or not?

The S-module structures are defined as follows. Let M be a graded S-module.
There is a canonical morphism

α : M −→ Γ∗(M̃). (1.3)

To define α, let m ∈ Md for d ∈ Z. We need to provide a global section α(m) ∈
Γ(X, M̃(d)). It suffices to provide sections α(m) ∈ Γ(D+(f), M̃(d)) that agree on
overlaps. We have

Γ(D+(f), M̃(d)) = (M(d))(f) ,

and put
α(m) :=

m

1
∈ (M(d))(f) =

(
M(f)

)
d
.

This defines the map (1.3).
In particular, we get a canonical morphism

β : S −→ Γ∗(S̃) = Γ∗(OX) =
⊕
d∈Z

Γ(X,OX(d)). (1.4)

This turns Γ∗(OX) into a Z-graded S-algebra (with compatible gradings). Moreover,
for each OX-module F , we have that Γ∗(F) is a graded Γ∗(OX)-module in a canonical
way. Indeed, by item (4) of Proposition 1.1.15, we have canonical isomorphisms

OX(d)⊗OX
F(e) = OX(d)⊗OX

F ⊗OX
OX(e) ∼= F(d+ e).

In particular, for s ∈ OX(d) and t ∈ F(e), we get a canonical section s · t ∈ F(d+ e),
which defines the graded Γ∗(OX)-module structure on Γ∗(F). Via (1.4), we obtain the
graded S-module structure on Γ∗(F).
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Proposition 1.2.3. Let A be a ring, and S = A[x0, . . . , xr] for some r ≥ 1. Let X =
ProjS (projective r-space over A). Then (1.4) defines an isomorphism Γ∗(OX) ∼= S.

Proof. Cover X by the open subsets D+(xi) ⊂ X. By the sheaf axiom for OX(n), we
get an exact sequence

0→ Γ(X,OX(n))→ ⊕ri=0(Sxi)n →
⊕
i,j

(Sxixj)n.

Taking the direct sum over all n ∈ Z, we get an exact sequence

0→ Γ∗(OX)→
r⊕
i=0

Sxi →
⊕
i,j

Sxixj .

As the xi ∈ S are non-zero divisors, the maps

S → Sxi → Sxixj → S ′ := Sx0···xr

are all injective. We get

Γ∗(OX) =
r⋂
i=0

Sxi = S,

as subrings of S ′.

Exercise 1.2.4. More generally, let S be a graded ring finitely generated over S0 by
non-zero divisors x0, . . . , xr ∈ S1. Let X = Proj(S). Suppose that the x0, . . . , xr are
relatively prime. Show that S = Γ∗(OX).

Corollary 1.2.5. (1) Let X = Prk = Proj(k[x0, . . . , xn]). Then

Γ(X,OX(n)) = (k[x0, . . . , xr])n.

In particular,

Γ(X,OX(1)) = (k[x0, . . . , xr])1 =
r⊕
i=0

k · xi.

(2) Let X = Proj(S) where S satisfies the assumptions in Exercise 1.2.4. Then
S1 = Γ(X,OX(1)).

Definition 1.2.6. Let A be a ring and r ≥ 0. We let x0, . . . , xr ∈ OPr
A

(1) be the
above global sections.

Lemma 1.2.7. Let S be a graded ring, generated by S1 as an S0-module. Let F be a
quasi-coherent sheaf on X = Proj(S). Let f ∈ S1. There are canonical isomorphisms

F(d)|D+(f)
∼= fd · F|D+(f). (1.5)
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Proof. As F(d) = F ⊗OX(d), it suffices to prove the result for F = OX . Notice that

S(d)(f) = (S(d)f )0 = (Sf (d))0 ,

that
Sf (d) =

⊕
e∈Z

(Sf )d+e, (Sf )d+e =

{
x

fm
| x ∈ Sm+d+e

}
,

and that the map

S(f) −→ (Sf (d))0 = (Sf )d =

{
x

fm
| x ∈ Sm+d

}
,

y

fm
7→ fd · y

fm
∈ (Sf )d

is an isomorphism. More precisely, we have

fd · S(f) = (Sf )d ⊂ Sf .

Therefore, we have

OX(d)|D+(f) = S̃(d)(f) = ˜(S(d)f )0 = ˜(Sf )(d)0 = ˜fd · S(f) = fd · S̃(f) = fd · OX |D+(f).

This proves the lemma.

Proposition 1.2.8. Let S be a graded ring such that S is generated by S1 as an S0-
algebra. Let X = Proj(S). Let F be a quasi-coherent OX-module. Then there is a
natural isomorphism

ψ : Γ̃∗(F) ∼= F . (1.6)

Proof. Let f ∈ S1 and consider the scheme D+(f) = Spec S(f). We have

Γ(D+(f), Γ̃∗(F)) = (Γ∗(F))(f) =

(⊕
d∈Z

Γ(X,F(d))

)
f


0

This is an S(f)-module; an element of this module is given by an expression

x =
s

fd
, s ∈ Γ(X,F(d)).

The canonical isomorphism (1.5) shows that the section

s|D+(f) ∈ Γ(D+(f),F(d))

is of the form
s|D+(f) = fd · t for some t ∈ Γ(D+(f),F).
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We define ϕf (x) := t, which gives a map

ϕf : Γ(D+(f), Γ̃∗(F)) −→ Γ(D+(f),F).

Since D+(f) is affine, and Γ̃∗(F) and F quasi-coherent, this yields a map

ψf : Γ̃∗(F)|D+(f) −→ F|D+(f).

It is straightforward to show that the maps ψf and ψg agree on overlaps D+(f · g) =
D+(f)∩D+(g), hence glue to give the morphism (1.6). It is also readily checked that
ψf is an isomorphism for each f ∈ S1. The result follows.

Lemma 1.2.9. We have two functors

F = (−)∼ : GrModS −→ QCoh(X),

G = Γ∗ : QCoh(X) −→ GrModS,

with F ◦G ∼= id as functors QCoh(X)→ QCoh(X).

(1) The functor G is fully faithful, and that the functor F is essentially surjective.

(2) We do not in general have an isomorphism of functors G ◦ F ∼= id.

Proof. (1). Essential surjectivity of F is clear: any objectM∈ QCoh(X) is isomorphic
to (F ◦G) (M) = F (G(M)). As for the faithfulness of G: this holds, as we have maps

Hom(M,N ) −→ Hom(G(M), G(N )) −→ Hom(FG(M), FG(N )) ∼= Hom(M,N )

whose composition is the identity. Hence the first map in the composition is injective.
(2). We give an example of a graded module M with Γ∗(M̃) 6∼= M . Let M be

any non-zero graded S-module such that Supp(M) ⊂ V (S+). Then M̃ = 0 hence
Γ∗(M̃) = 0. This finishes the proof.

1.2.2 Projective schemes
Definition 1.2.10. Let A be a ring. Let X be a scheme and let

f : X → Spec A

be a morphism of schemes. We say that f is projective if f admits a factorization

PnA

##

X
/ �

>>

f
// Spec A

into a closed immersion X ↪→ PnA and the canonical morphism PnA → Spec A, for some
integer n ∈ Z≥0. We also say that X is a projective scheme over A.
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Comparison with the literature 1.2.11. See [Har77, Chapter II, Section 4.2, page
103]. See also [Liu02, Chapter 3, Section 3.1, Definition 1.12, page 83].

Lemma 1.2.12. Let S be a graded ring. Let S ′ be another graded ring, and ϕ : S → S ′

is a surjective morphism of graded rings.

(1) We have S+ 6⊂ ϕ−1(p) for any p ∈ Proj(S ′). In particular, Bs(ϕ) = ∅, and we
get a morphism of schemes Proj(S ′)→ Proj(S).

(2) The above morphism of schemes Proj(S ′)→ Proj(S) is a closed immersion.

Proof. As for part (1), note that for p ∈ Spec S ′ homogeneous, we have

S ′+ ⊂ p ⇐⇒ ϕ−1(S ′+) ⊂ ϕ−1(p) ⇐⇒ S+ ⊂ ϕ−1(p),

where we use the fact that ϕ is surjective.
As for part (2), note that the morphism is locally given by the maps

Spec (S ′(ϕ(f)))→ Spec (S(f)), f ∈ S.

These are induced by the ring maps

S(f) −→ S ′(ϕ(f)). (1.7)

In turn, the latter is induced via restriction by

Sf −→ S ′ϕ(f).

This map is surjective: let x/ϕ(f)n ∈ S ′ϕ(f); then we can find y ∈ S with ϕ(y) = x, so
that

ϕ(y/fn) = ϕ(y)/ϕ(f)n ∈ S ′ϕ(f).

Hence (1.7) is surjective (see Lemma (1.1.10)), proving (2).

Proposition 1.2.13. Let A be a ring.

(1) Let X be a closed subscheme of PrA. Then there exists a homogeneous ideal I ⊂
A[x0, . . . , xr] such that X is the closed subscheme determined by the surjective
morphism of graded rings A[x0, . . . , xr]→ A[x0, . . . , xr]/I.

(2) A scheme X over Spec A is projective if and only if X ∼= Proj(S) for some graded
ring S such that A = S0 and S is finitely generated by S1 as an S0-algebra.

Proof. (1). Let I ⊂ OPr
A
be the corresponding quasi-coherent ideal sheaf. By Propo-

sition 1.2.8, there is a canonical isomorphism of graded S-modules

Γ̃∗(I) ∼= I.

Moreover, the map
Γ∗(I)→ Γ∗(OPr

A
)
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is injective and identifies Γ∗(I) with an ideal

I ⊂ Γ∗(OPr
A

) = A[x0, . . . , xr],

where the canonical isomorphism Γ∗(OPr
A

) = A[x0, . . . , xr] was provided in Proposition
1.2.3. Hence we have

I = Ĩ ⊂ R̃ = OPr
A
, R := A[x0, . . . , xr].

Item (1) follows from this.
(2). Suppose that X is projective. Then there is a closed immersion X ↪→ PrA of

schemes over A, for some r ≥ 0. By item (1), we get that X ∼= Proj(A[x0, . . . , xr]/I)
for some homogeneous ideal I ⊂ A[x0, . . . , xr]. Conversely, if X = Proj(S) for some
graded ring S with A = S0 and S finitely generated by S1 as S0-algebra, then we can
find elements y0, . . . , yr ∈ S1 that generate S as an A-algebra. This gives a surjective
morphism of graded A-algebras

A[x0, . . . , xr] −→ S, xi 7→ yi,

yielding a closed immersion Proj(S) ↪→ PrA of schemes over A.

1.2.3 Morphisms to projective space
Definition 1.2.14. Let F be an OX-module for a scheme X. We say F is generated
by global sections if there is an index set I and a surjective map of OX-modules⊕

i∈I

OX −→ F .

Note that to give such a morphism is to give global sections si ∈ F for i ∈ I. We say
that F is globally generated by the sections si.

Exercise 1.2.15. Let S = k[u4, u3v, uv3, v4] ⊂ k[u, v], where the generators of S are
considered as to have degree one (i.e. deg(u4) = 1, deg(u3v) = 1, etc.). Note that
dimS1 = 4. Show that dim Γ(X,OX(1)) = 5. Conclude that the canonical map
S1 → Γ(X,OX(1)) is not surjective.

Example 1.2.16. (1) Let A be a ring, X = Spec A, and F a quasi-coherent OX-
module. Then F ∼= M̃ for some A-module M , and any set of generators for
M ∼= Γ(X,F) will generate F .

(2) Let S be a graded ring generated over S0 by a subset I ⊂ S1. Then the map⊕
i∈I

OX −→ OX(1)

induced by the map β : S1 → Γ(X,OX(1)), is surjective.

13



Proof. Exercise. As for (2), suppose for instance that S = A[x0, . . . , xr], with S0 = A.
Then for each xi, we have that

S(1)(f) = A[x0, . . . , xr](1)(xi) = (A[x0, . . . , xr]xi)1

is generated by the xi as an A[x0, . . . , xr](xi)-module. In fact, the map

S(xi) −→ S(1)(xi) = (Sxi)1, s 7→ xi · s

is an isomorphism of S(xi)-modules, with inverse t 7→ x−1
i · t. Therefore, for each

i ∈ {0, . . . , r}, the images of the elements x0, . . . , xr ∈ S1 in S(1)xi = (Sxi)1 generate
S(1)xi as an S(xi)-module. Thus, the map

r⊕
i=0

S −→ S(1), (0, . . . , 1, . . . , 0) 7→ xi,

yields a surjection
⊕r

i=0OX −→ OX(1).

Lemma 1.2.17. Let A be a ring, let r ∈ Z≥0 and consider a morphism of A-schemes
ϕ : X → PrA. Then the global sections x0, . . . , xr ∈ OPr

A
(1), see Definition 1.2.6, give

rise to global sections

si = ϕ∗(xi) ∈ L := ϕ∗(OPr
A

(1)), i = 0, . . . , r,

that satisfy the property that L is globally generated by the sections si.

The following result shows that the converse is also true. An isomorphism between
pairs (L, (si)) and (M, (ti)), where L and M are line bundles on a scheme X and
s0, . . . , sr, t0, . . . , tr global sections, is an isomorphism f : L→M such that si = f ∗(ti).

Theorem 1.2.18. Let A be a ring. Let X be a scheme over A, and let L be a line
bundle globally generated by sections s0, . . . , sr ∈ L. Then there is a unique morphism

ϕ : X −→ PrA
such that

(ϕ∗(O(1)), ϕ∗(x0), . . . , ϕ∗(xr)) ∼= (L, s0, . . . , sr).

Proof. We do not prove this here. See e.g. [GW20, Corollary 13.33].

Corollary 1.2.19. Let A be a ring. Consider the functor

F : Sch/A −→ Set,

X 7→ {(L, s0, . . . , sr) | L line bundle globally generated by the si} / ∼= .

This functor is representable by PrA. More precisely, the association

ϕ 7→
(
ϕ∗(OPr

A
(1)), ϕ∗(x0), . . . , ϕ∗(xr)

)
defines a bijection

HomSch/A(X,PrA)
∼−→ F (X)

for each A-scheme X, compatible with morphisms of A-schemes X → Y .
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For schemes X and T over C, we define X(T ) := HomSch/C(T,X) as the set of
morphisms T → X of schemes over C.

Example 1.2.20. We make the following observations and definitions:

(1) For a finite dimensional complex vector space V , we get a graded ring

S = Sym∗(V ) = ⊕d≥0Symd(V )

with S0 = C. If we choose a basis {e0, . . . , er} for V , then each ei ∈ V defines an
element xi ∈ Sym1(V ) so that we get a set {x0, . . . , xr} ⊂ S1 = Sym1(V ) = V
of generators for S as an S0 = C-algebra, in a way that S = C[x0, . . . , xr].

(2) We define

P(V ) := Proj(Sym∗(V )), P̌(V ) := Proj(Sym∗(V ∨)).

This gives back PrC = P(Cr+1).

(3) We define
P̌rC := P((Cr+1)∨).

(4) Using Corollary 1.2.19, we can show that there is a canonical bijection

P̌(V )(C) = {lines ` ⊂ V } .

In particular, we get a canonical bijection

P̌rC(C) =
{
lines ` ⊂ Cr+1

}
.

(5) Via the canonical identification Cr+1 ∼= (Cr+1)∨ that sends ei to e∨i , this gives

PrC(C) = P̌rC(C) =
{
lines ` ⊂ Cr+1

}
.

In other words, we re-obtain the good old description of the projective space of
dimension n as the space of lines in the affine space of dimension n+ 1.

Proof. Exercise.

Example 1.2.21. Let k be a field. Let L ⊃ k be a field extension of k. Let M be a
line bundle on X := Spec L. Then M ∼= OX . Therefore,

Pnk(L) = HomSch/k(Spec L,Pnk) =
{

(s0, . . . , sn) ∈ Ln+1 − {0}
}
/∼

where (s0, . . . , sn) ∼ (t0, . . . , tn) if there exists λ ∈ L∗ with λ·(s0, . . . , sn) = (t0, . . . , tn).

Example 1.2.22. Let k be a field and let R be a k-algebra which is a discrete valuation
ring. Let X = Spec R. We will prove later (see Propositions 3.2.17 and 3.4.8) that
any line bundle L on X is isomorphic to OX . Let m ⊂ R be the maximal ideal. Then

Pnk(R) = HomSch/k(X,Pnk) =
{

(s0, . . . , sn) ∈ (Rn+1 − {0}) | ∃i | si(m) 6= 0
}
/∼

where (s0, . . . , sn) ∼ (t0, . . . , tn) if there exists λ ∈ R∗ with λ·(s0, . . . , sn) = (t0, . . . , tn).
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Chapter 2

Cohomology

In this chapter, we consider an abelian sheaf F on a scheme X, and define cohomology
groups Hi(X,F) for i ∈ Z≥0. They have the property that if 0→ F1 → F2 → F3 → 0
is a short exact sequence of abelian sheaves, then one gets a long exact sequence:

0→ Γ(X,F1)→ Γ(X,F2)→ Γ(X,F3)→ H1(X,F1)→ H1(X,F2)→ · · · .

Thus, the cohomology measures the failure of the right exactness of the global sections
functor Γ(X,−). Moreover, if (Xi,Fi) (i = 1, 2) are schemes with sheaves on them,
and if φ : X1 → X2 is an isomorphism with φ−1F2

∼= F1, then one has an isomorphism
Hp(X1,F1) ∼= Hp(X2,F2) for each p ≥ 0. Thus, sheaf cohomology forms an invariant
of the pair (X,F). This invariant turns out to be important in many situations.

2.1 Lecture 16 : Cech cohomology of sheaves on a scheme

2.1.1 Some homological algebra

Definition 2.1.1. A complex of abelian groups A• is a sequence of groups Ai indexed
by Z together with maps diA between them as follows:

· · ·
di−2
A−−→ Ai−1 di−1

A−−→ Ai
diA−→ Ai+1 di+1

A−−→ · · · ,

such that diA ◦ di−1
A = 0. A morphism of complexes

f • : A• → B•

is a collection of maps fp : Ap → Bp such that fi ◦ di−1
A = di−1

B ◦ fi−1 for each i ∈ Z.
In this way, we can talk about kernels, images, cokernels and exact sequences of
complexes of abelian groups. We define

Hp(A•) := Ker(dpA)/Im(dp−1
A ).

Lemma 2.1.2. Let 0 → F • → G• → H• → 0 be an exact sequence of complexes of
abelian groups. Then there is an associated long exact sequence of cohomology groups

· · · → Hp(F •)→ Hp(G•)→ Hp(H•)→ Hp+1(F •)→ · · · .
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Proof. We have a commutative diagram as follows:

0 // F p //

��

Gp //

��

Hp //

��

0

0 // F p+1 // Gp+1 // Hp+1 // 0

By the Snake lemma, we get an exact sequence

0→ Ker(dpF )→ Ker(dpG)→ Ker(dpH)→ F p+1/Im(dpF )→ · · · .

Consider now the diagram

F p/Im(dp−1) //

d
��

Gp/Im(dp−1) //

��

Hp/Im(dpH)

��

// 0

0 // Ker(dp+1) // Ker(dp+1) // Ker(dp+1
H ).

It has exact rows by the previous argument. Applying the Snake lemma again, gives
an exact sequence

Hp(F •)→ Hp(G•)→ Hp(H•)→ Hp+1(F •)→ Hp+1(G•)→ Hp+1(H•).

Since this sequence is exact for every p ∈ Z, the result follows.

Let f : C• → D• be a morphism of complexes C• and D•. Then, since f ◦ dC =
dD ◦ f , the map f induces a well-defined map on cohomology groups

f : H i(C•)→ H i(D•).

Definition 2.1.3. A chain homotopy between two morphisms f, g : C• → D• is a
collection of maps h : Cn → Dn−1 such that

f − g = dD ◦ h+ h ◦ dC .

Lemma 2.1.4. If there exists a chain homotopy between f and g, then f and g induce
the same map H i(C•)→ H i(D•).

Proof. Let c ∈ Ker(Ci → Ci+1). Then [f(c)− g(c)] = [dD(h(c))] = 0 ∈ H i(D•).

Exercise 2.1.5. Let C• be a complex.

(1) Show that C• is exact if and only if H i(C•) = 0 for all i.

(2) Assume that there exists a chain homotopy h : Cn → Cn−1 between the identity
id : C• → C• and the zero map 0: C• → C•. Show that c = dp ◦ h(c) + h ◦ d(c)
for every c ∈ Cp+1. Show that H i(C•) = 0 for each i, hence that C• is exact.
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2.1.2 Cech cohomology
Let X be a topological space. Let U = {Ui}i∈I be an open cover of X, indexed by
some set I. By the well-ordering theorem, there exists a well-ordering I, which we
choose once and for all. For any finite set of indices i0, . . . , ip ∈ I, we denote

Ui0,...,ip := Ui0 ∩ · · · ∩ Uip .

For a sheaf F on X, we have the sheaf sequence

0→ F(X)→
∏
i∈I

F(Ui)→
∏
i,j∈I

F(Ui ∩ Uj).

Definition 2.1.6. Let X and U be as above. Let F be a sheaf on X. We define the
Cech complex of F (with respect to U) as the complex C•(U ,F) with

Cp(U ,F) =
∏

i0<···<ip

F(Ui0,...,up).

Thus, to given an element α ∈ Cp(U ,F) is to give a (p+ 1)-tuple of elements

αi0,...,ip ∈ F(Ui0,...,ip)

for each strictly increasing (p + 1)-tuple i0 < · · · < ip of elements of I. We define the
coboundary map dp : Cp(U ,F)→ Cp+1(U ,F) as the map that sends α ∈ Cp(U ,F) to
the element dα ∈ Cp+1(U ,F) with

(dα)i0,...,ip+1 =

p+1∑
k=0

(−1)kαi0,...,îk,...,ip+1
|Ui0,...,ip+1

∈ F(Ui0,...,ip+1).

Here, the notation îk means that we omit ik.

Let α ∈ C0(U ,F) =
∏

i∈I F(Ui). Then

(dα)i0,i1 = αi1 |Ui0,i1
− αi0|Ui0,i1

∈ F(Ui0,i1).

Hence, for each i0, i1, i2 ∈ I with i0 < i1 < i2, we have:

(d2α)i0,i1,i2 = (dα)i1,i2|Ui0,i1,i2
− (dα)i0,i2 |Ui0,i1,i2

+ (dα)i0,i1|Ui0,i1,i2

=
((
αi2|Ui1,i2

− αi1|Ui1,i2

)
−
(
αi2|Ui0,i2

− αi0 |Ui0,i2

)
+
(
αi1|Ui0,i1

− αi0|Ui0,i1

))
|Ui0,i1,i2

=
(
αi2|Ui0,i1,i2

− αi1|Ui0,i1,i2

)
−
(
αi2 |Ui0,i1,i2

− αi0|Ui0,i1,i2

)
+
(
αi1|Ui0,i1,i2

− αi0|Ui0,i1,i2

)
= 0.

In particular, we get d ◦ d = 0 as maps C0(U ,F) → C2(U ,F). This generalizes as
follows.

Lemma 2.1.7. We have dp+1 ◦ dp = 0 as maps Cp(U ,F)→ Cp+2(U ,F).
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Proof. Exercise.

Definition 2.1.8. The p-th Cech cohomology group of F with respect to U is the
group

Hp(U ,F) := Hp(C•(U ,F)) = Ker(dp)/Im(dp−1).

Notice that a sheaf homomorphism F → G induces morphisms Cp(U ,F) →
Cp(U ,G), and it is not hard to show that these induce morphisms

Hp(U ,F)→ Hp(U ,G).

This gives functors Hp(U ,−) from abelian sheaves on X to abelian groups.

Example 2.1.9. Notice that

H0(U ,F) = Ker

(∏
i

F(Ui)→
∏
i<j

F(Ui ∩ Uj)

)
= F(X).

Example 2.1.10. The group H1(U ,F) is the group of sections σij ∈
∏

i<j F(Uij) such
that σik|Uijk

= σij|Uijk
+σjk|Uijk

, modulo the sections σij of the form σij = τj|Uij
−τi|Uij

.

Example 2.1.11. Consider a short exact sequence of abelian sheaves on X:

0→ A→ B f−→ C → 0.

Let c ∈ C(X). Let U = {Ui}i be an open covering of X such that c|Ui
= f(bi) for some

bi ∈ B(Ui). Define
σij := bj|Uij

− bi|Uij
∈ A(Uij).

(1) We have σik|Uijk
= σij|Uijk

+ σjk|Uijk
.

(2) Let
σ(c) ∈ H1(U ,A)

be the Cech cohomology class induced by the cij. Then σ(c) = 0 if and only if
there exists an element b ∈ B(X) with f(b) = c.

Definition 2.1.12. Let P be a property that a morphism of schemes can have. For
instance, P can be being a closed immersion, an open immersion, surjective, an iso-
morphism, etc. We say that the property P is stable under base change if for any
morphism of schemes X → Y that has property P, any scheme T and any morphism
of schemes T → Y , the resulting morphism of schemes X ×Y T → T has property P.

Lemma 2.1.13. The property of being a closed immersion is stable under base change.

Proof. Let f : X → Y be a closed immersion. We consider a morphism of schemes
T → Y ; the goal is to show that π : X ×Y T → T is a closed immersion. It suffices to
provide an affine open covering {Ti} of T such that π−1(Ti) is affine and π−1(Ti)→ Ti
is a closed immersion. We start with an affine open covering {Yi} of Y , which gives
an open covering of T (by taking inverse images under T → Y ) which we refine to an
affine open covering {Tj} of T . Thus, for each j ∈ J there is an i ∈ I such that Tj
maps into Yi under T → Y . Then π−1(Tj) = f−1(Yi) ×Yi Tj is affine, and the map
O(Tj)→ O(f−1(Yi))⊗O(Yi)O(Tj) is surjective as O(Yi)→ O(f−1(Yi)) is surjective.
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Lemma 2.1.14. Let X be a separated scheme. Let U ⊂ X and V ⊂ X be affine
opens. Then U ∩ V is affine.

Proof. Notice that U ∩ V = U ×X V . This is naturally a closed subscheme of U ×Z V ,
since it sits inside the cartesian diagram

U ×X V �
�

//

��

U ×Z V

��

X �
�

// X ×Z X,

and closed immersions are stable under base change by Lemma 2.1.13. Moreover,
U ×Z V = U ×Spec (Z) V is affine, because U , V and Spec (Z) are all affine. As closed
subschemes of affine schemes are affine, we are done.

Theorem 2.1.15. Let X be a noetherian separated scheme. Let U = {U0, U1, . . . , Ur}
be a finite covering of X by affine opens Ui ⊂ X. Then all the intersections Ui0,...,ip
are affine, and moreover:

(1) The Cech cohomology groups define functors Hi(U ,−) : AbShX → Ab.

(2) We have H0(U ,F) = F(X).

(3) Let 0→ F1 → F2 → F3 be a short exact sequence of quasi-coherent OX-modules.
Then there is an associated long exact sequence in cohomology:

· · · → Hi(U ,F1)→ Hi(U ,F2)→ Hi(U ,F3)→ Hi+1(U ,F1)→ Hi+1(U ,F2)→ · · · .

(4) If V = {Vj} is another finite covering of X by affine opens, then there is a
canonical isomorphism

Hp(U ,F) = Hp(V ,F)

for every p ≥ 0 and every quasi-coherent sheaf F on X.

(5) If X has dimension n, then Hp(U ,F) = 0 for every quasi-coherent sheaf F on
X and every integer p > n.

Proof. Finite intersections of affines on separated scheme are affine. Indeed, this fol-
lows from Lemma 2.1.14 above.

(1) & (2). We have already observed this above.
(3). Note that if U ⊂ X is an affine open subset, then the sequence

0→ F1(U)→ F2(U)→ F3(U)→ 0

is exact, because the functor F 7→ F(U) from quasi-coherent OU -modules to OX(U)-
modules is exact as U is affine. It follows that for each p ≥ 0 and each i0 < · · · < ip ∈ I,
the sequence

0→ F1(Ui0,...,ip)→ F2(Ui0,...,ip)→ F3(Ui0,...,ip)→ 0
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is exact (again since Ui0,...,ip is affine). Therefore, the sequence

0→ Cp(U ,F1)→ Cp(U ,F2)→ Cp(U ,F3)→ 0

is exact for each p ≥ 0, so that we get an exact sequence of complexes

0→ C•(U ,F1)→ C•(U ,F2)→ C•(U ,F3)→ 0.

Hence the desired long exact sequence comes from Lemma 2.1.2.
(4). We do not prove this here.
(5). We only prove this in case X is quasi-projective of finite type over a noetherian

ring A. In this case, X admits an open cover U = {Ui}i∈I consisting of m ≤ n + 1
affine open subsets Ui ⊂ X, see Exercise 2.1.16 below. In particular, Cp(U ,F) = 0 for
p ≥ m, since there are no (p+ 1)-tuples i0 < · · · < ip ∈ I, for p ≥ m.

Exercise 2.1.16. Let X be a quasi-projective scheme of finite type over a noetherian
ring A. Let n = dim(X). Then X admits an affine open cover U consisting of at most
n+ 1 affine open subsets Ui ⊂ X.

Proof hint: Suppose that X ⊂ Z ⊂ PrA, where Z is a closed subscheme of PrA and X
is an open subscheme of Z. Write W = Z − X. Write Z = ∪iZi as a union of its
irreducible components. If Zi ⊂ W , then X = Z −W ⊂ Z − Zi, so that X ∩ Zi = ∅,
hence X ⊂ ∪j 6=iZj. Therefore, one may assume that the irreducible components of Z
are not contained in W . Using induction on the dimension, one can prove that X is
covered by n+ 1 open affines induced from open affines in PrA.

We record here the following lemma, for later use:

Lemma 2.1.17. Let π : X → Y be a morphism of noetherian separated schemes, such
that the scheme π−1(U) is affine for every affine open U ⊂ Y . Let F be a quasi-coherent
sheaf on X, and let i ≥ 0 be an integer. Then we have a canonical isomorpism

Hi(Y, π∗F) = Hi(X,F).

Proof. Let U = {Ui} be a finite affine open covering of Y such that Hi(Y, π∗F) is
computed by the Cech complex C•(U , π∗F). Then V := {π−1(Ui)} forms an affine
open covering of X, and we have a canonical isomorphism C•(U , π∗F) = C•(V ,F).

2.2 Lecture 17 : Examples & Cohomology via resolutions

2.2.1 Some examples

Proposition 2.2.1. Let k be a field. We consider P1 := P1
k = Projk[x0, x1]. Then

there is a natural isomorphism between P1 and the scheme obtained by glueing together
U0 = Spec k[t] and U1 = Spec k[t−1] along Spec k[t, t−1].
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Proof. We have isomorphism

Ui := D+(xi) ∼= Spec k[x0, x1](xi)

for i = 0, 1. Moreover, there is a map of k-algebras

ϕ0 : k[t]→ k[x0, x1](x0), t 7→ x1

x0

.

Then ϕ0 is an isomorphism, with inverse s 7→ s(1, t). Similarly, we have

ϕ1 : k[t−1] ∼= k[x0, x1](x1), t−1 7→ x0

x1

.

Finally, D+(x0x1) = Spec k[x0, x1](x0x1), and there is an isomorphism k[t, t−1] ∼=
k[x0, x1](x0x1) defined as t 7→ x2

0/(x0x1) and t−1 7→ x2
1/(x0x1).

Example 2.2.2. Consider the projective line P1 = P1
k as above; it is covered by

the open affines U0 = Spec k[t] and U1 = Spec k[t−1] with intersection U0 ∩ U1 =
Spec k[t, t−1]. Let U = {U0, U1}. For the structure sheaf OP1 , the Cech complex

0→ C0(U ,OP1)→ C1(U ,OP1)→ 0

takes the form

0 // OP1(U0)×OP1(U1) // OP1(U0 ∩ U1) // 0

0 // k[t]× k[t−1] d //

OO

k[t, t−1]

OO

// 0,

with
d
(
f(t), g(t−1)

)
= g(t−1)− f(t).

If f(t) = g(t−1) ∈ k[t, t−1], then f = g ∈ k. In other words,

H0(P1,OP1) = H0(U ,OP1) = Ker(d) = k.

Furthermore, each element s ∈ k[t, t−1] is a sum of a polynomial in t and a polynomial
in t−1. Therefore, d is surjective, so that

H1(P1,OP1) = H1(U ,OP1) = 0.

Example 2.2.3. Let m ∈ Z, consider P1 := P1
k, the projective line over a field k, and

the sheaf O(m) := OP1(m). Let S = k[x0, x1]. We have

O(m)(D+(xi)) = S(m)(xi) = xmi · S(xi)

for i = 1, 2. Under the isomorphisms

S(x0) → k[t], f 7→ f(1, t)

S(x1) → k[t−1], f 7→ f(t−1, 1),

S(x0x1) → k[t, t−1], f 7→ f(1, t) = f(t−1, 1),
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see Proposition 2.2.1, the Cech complex takes the form

0 // OP1(m)(U0)×OP1(m)(U1) // OP1(m)(U0 ∩ U1) // 0

0 // xm0 · S(x0) × xm1 · S(x1)
d //

OO

xm1 · S(x0x1)
//

OO

0

0 // S(x0) × (x1

x0
)m · S(x1)

//

OO

(x1

x0
)m · S(x0x1)

//

OO

0

0 // k[t]× tm · k[t−1]

OO

// tm · k[t, t−1] //

OO

0.

Here, we have

d : xm0 · S(x0) × xm1 · S(x1) −→ xm1 · S(x0x1), d (xm0 · f, xm1 · g) = xm1 · g −
xm0
xm1
· xm1 · f,

corresponding to the map

d : k[t]× tm · k[t−1] −→ tm · k[t, t−1] = k[t, t−1], d(f(t), tm · g(t−1)) 7→ tm · g − f.

Suppose that m ≥ 0. Then the elements

(tm, tm · 1), (tm−1, tm · t−1), . . . , (t0, tm · t−m)

are linearly independent elements that generate the kernel of d. Therefore,

dim H0(P1,O(1)) = dim H0(U ,O(1)) = dimKer(d) = m+ 1.

If m < 0, then H0(P1,O(1)) = 0.

Example 2.2.4. Next, we compute the dimension of H1(P1,O(m)). If m ≥ 0, then
any polynomial in k[t, t−1] can be written in the form tmg(t−1) − f(t) for f(t) ∈ k[t]
and g(t−1) ∈ k[t−1]. We claim the same holds if m = −1. Indeed, let t−k ∈ k[t, t−1] for
some k ≥ 1 (for the non-negative powers of t, the claim is clear). Then t−k = t−1 ·t−k+1,
with t−(k−1) ∈ k[t−1] as k − 1 ≥ 0. Therefore, the map

k[t]× tm · k[t−1]→ tm · k[t, t−1], (f, tm · g) 7→ tm · g − f

is surjective if m ≥ −1. Hence H1(P1,O(m)) = 0 for m ≥ −1.
If m ≤ −2, then no linear combinations of the monomials

t−1, t−2, . . . , tm+1 = t−(−m−1)

lies in the image of d, but combinations of all the others do. It follows that H1(P1,O(m))
is a k-vector space of dimension −m− 1 in this case.
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Example 2.2.5. We now consider an example from topology. Let X = S1 be the
unit circle, with the standard euclidean topology. Let U = {U, V }, where U and V are
connected open intervals that intersect in two connected open intervals W1 and W2.
Let F = ZX be the constant sheaf associated to Z. Then, we have

C0(U ,F) = F(U)×F(V ) = Z×Z, C1(U ,F) = F(U ∩V ) = F(W1tW2) = Z×Z.

Under these identifications, the map d : C0(U ,F)→ C1(U ,F) is given by

d : Z× Z −→ Z× Z, (a, b) 7→ (b, b)− (a, a) = (b− a, b− a).

Hence:
H0(U ,F) = Ker(d) = Im(Z x 7→(x,x)−−−−→ Z× Z) ∼= Z.

and
H1(U ,F) = (Z× Z) /Im(d) ∼= Z.

This gives the same answer as singular cohomology.

Remark 2.2.6. This is no coincidence: the groups Hp(U ,Z) agree with the usual sin-
gular cohomology groups Hp

sing(X,Z) for any topological space X homotopy equivalent
to a CW complex, provided that the open sets in the covering U are contractible.

Exercise 2.2.7. Let X be a topological space and let U be an open cover of X.
Assume that Ui = X for some i ∈ I. Show that Hp(U ,F) = 0 for every abelian sheaf
F on X and every integer p ≥ 1.

Example 2.2.8. Let X be an irreducible topological space. Then X is connected and
any non-empty open subset U ⊂ X is irreducible, hence connected. Let AX be the
constant sheaf associated to an abelian group A. Then AX(U) = A for any non-empty
open U ⊂ X (so that AX agrees with the constant presheaf associated to A).

Let U be an open covering of X whose index set I is well-ordered. The Cech
complex takes the form

0→
∏
i0∈I

A→
∏
i0<i1

A→
∏

i0<i1<i2

A→ · · · ,

where for α ∈
∏

i0<···<ip A, we have its coordinate αi0,...,ip ∈ A, and:

d(α)i0,...,ip+1 =
∑

k=0,...,p+1

(−1)kαi0,...,îk,...,ip ∈ A.

Note also that Hp(U ,F) = 0 in view of Exercise 2.2.7. Indeed, by the above, the Cech
complex does not depend on the Ui, only on the index set I. Hence we may assume
Ui = X for some i.
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2.2.2 Cohomology as right derived functor
Definition 2.2.9. (1) Let A be an abelian group. Then A is injective if the con-

travariant functor Hom(−, A) from Ab to Ab, is exact. This is equivalent to say-
ing that it is right exact. In other words, for any injective morphism B1 ↪→ B2

of abelian groups, and any morphism B1 → A, there should exist a morphism
B2 → A that makes the obvious triangle commute.

(2) Let F be an abelian sheaf on a topological space X. Then F is injective if
the contravariant functor Hom(−,F) from AbSh(X) to Ab, is exact. This is
equivalent to saying that it is right exact. In other words, for any injective
morphism B1 ↪→ B2 of abelian sheaves, and any morphism B1 → F , there should
exist a morphism B2 → F that makes the obvious triangle commute.

Exercise 2.2.10. (1) Show that an abelian group A is injective if and only if it is
divisible: for each n ∈ Z≥1 and each x ∈ A there exists y ∈ A such that n ·y = x.

(2) Give an example of a non-zero divisible abelian group A such that for each a ∈ A
there exists n ∈ Z≥1 such that n · a = 0.

(3) Show that a finite abelian group which is divisible, is zero.

(4) Show that the quotient of a divisible abelian group is divisible.

Proposition 2.2.11. Let X be a topological space. Then any abelian sheaf F admits
an embedding F ↪→ I into an injective abelian sheaf I.

Proof. We first prove the proposition in the case where X = {x} is a point. Then F
corresponds to an abelian group A, and we need to find an injective morphism A ↪→ I
into a divisible abelian group I (see the above exercise). Consider the morphism

F :=
⊕
a∈A

Z −→ A,
∑
a

na 7→
∑
a

na · a.

This is clearly a surjective group homomorphism. Let K be the kernel. There is an
embedding

F ↪→ F ⊗Z Q =
⊕
a∈A

Q,

and hence an embedding

A = F/K ↪→ (F ⊗Z Q)/K.

As (F ⊗Z Q)/K is divisible, being the quotient of a divisible abelian group (see the
above exercise), we are done in the case X = {x}.

In the general case, for each x ∈ X, choose an injective abelian group Ix and an
embedding Fx ↪→ Ix. For each x ∈ X, let ϕx : {x} ↪→ X denote the natural inclusion.
We define

I :=
∏
x∈X

(ϕx)∗(Ix).
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We have
Hom(F , I) =

∏
x∈X

(F , (ϕx)∗Ix) =
∏
x∈X

Hom(Fx, Ix).

This yields a natural morphism of sheaves F → I, which is injective since it is so on
each stalk. It is also easily checked that I is injective. We are done.

Definition 2.2.12. Let F be an abelian sheaf on a topological space X. An injective
resolution of F is a complex I•, defined in degrees i ≥ 0, together with a morphism
ε : F → I0 such that I i is injective for each i ≥ 0 and such that the sequence

0→ F → I0 → I1 → · · ·

is exact.

Corollary 2.2.13. Let X be a topological space. Then any abelian sheaf F on X
admits an injective resolution.

Lemma 2.2.14. Let X be a topological space and let F → I• and F → J • be
two injective resolutions. Then there are morphisms of complexes f : I• → J • and
g : J • → I• whose compositions are homotopic to the identity (see Definition 2.1.3).

Proof. Exercise.

Note that if I• is an injective resolution of an abelian sheaf F on X, we get a
complex Γ(X, I•) whose terms are Γ(X, I i) = I i(X) for i ≥ 0.

Definition 2.2.15. Let X be a topological space. For each abelian sheaf F on X,
choose an injective resolution F → I•, and define Hi(X,F) = Hi(Γ(X, I•)).

Theorem 2.2.16. Let X be a topological space.

(1) For each i ≥ 0, the assocation F 7→ Hi(X,F) defines a functor from AbSh(X)
to Ab. Moreover, this functor is, up to natural isomorphism of functors, inde-
pendent of the choices of injective resolutions made.

(2) We have H0(X,F) = F(X).

(3) Let 0→ F1 → F2 → F3 be a short exact sequence of abelian sheaves. Then there
is an associated long exact sequence in cohomology:

· · · → Hi(X,F1)→ Hi(X,F2)→ Hi(X,F3)→ Hi+1(X,F1)→ Hi+1(X,F2)→ · · · .

Proof. Exercise. Hint: Use Lemmas 2.2.14 and 2.1.2.

Theorem 2.2.17. Let X be a noetherian separated scheme. Let F be a quasi-coherent
sheaf on X. Then there is a canonical isomorphism between the group Hp(X,F) in-
troduced in Definition 2.2.15 and the Cech cohomology group Hp(U ,F) introduced in
Definition 2.1.8, where U = {U0, . . . , Ur} is a finite cover of affine opens Ui ⊂ X.

Proof. Exercise.
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2.3 Lecture 18 : Coherent sheaves on projective schemes

2.3.1 Cohomology of twisting sheaves on projective space

Recall. See Examples 2.2.2, 2.2.3 and 2.2.4. We have H0(P1
k,O(m)) = k[x0, x1]m,

H1(P1
k,O(m)) = 0 for m ≥ −1, and dim H1(P1

k,O(m)) = −m− 1 for m ≥ −2.

We would like to generalize this to projective spaces of arbitrary dimension n ≥ 1.

Theorem 2.3.1. Let PnA = ProjA[x0, . . . , xn] where A is a noetherian ring. Then:

(1) For each m ∈ Z, H0(Pn,O(m)) = A[x0, . . . , xn]m.

(2) For all 0 < p < n and all m ∈ Z, Hp(PnA,O(m)) = 0.

(3) For each m ∈ Z,

Hn(PnA,O(m)) =
(
x−1

0 · · ·x−1
n · A[x−1

0 , . . . , x−1
n ]
)
m
.

In particular, Hn(PnA,O(−n− 1)) = A.

Proof. We consider the open cover U = {Ui} with Ui = D+(xi). This gives

I = {0, . . . , n} .

We get
Cp(U ,O(m)) =

∏
i0<···<ip

(
A[x0, . . . , xn]xi0 ···xip

)
m
.

The Cech complex takes the form∏
i

(A[x0, . . . , xn]xi)m
d0−→
∏
i<j

(
A[x0, . . . xn]xixj

)
m

d1−→
∏
i<j<k

(
A[x0, . . . , xn]xixjxk

)
m

d2−→ · · · .

For each i0 < · · · < ip ∈ I, we have a decomposition(
A[x0, . . . , xn]xi0 ···xip

)
m

=
⊕

e∈Zn+1 : deg(e)=m

ej≥0 ∀j 6∈{i0,...,ip}

Axe00 · · · xenn .

This gives a decomposition

Cp(U ,O(m)) =
∏

i0<···<ip

(
A[x0, . . . , xn]xi0 ···xip

)
m

=
∏

i0<···<ip

⊕
e∈Zn+1 : deg(e)=m

ej≥0 ∀j 6∈{i0,...,ip}

Axe00 · · ·xenn .

Note that (1) follows from Proposition 1.2.3. Let us prove (2) and (3). We have:

(A[x0, . . . , xn]x0···xn)m =
⊕

∑
ei=m

Axe00 · · ·xenn .
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More generally:
Cp(U ,O(m)) =

⊕
e∈Zn+1

Cp(U ,O(m))e,

with
Cp(U ,O(m))e =

∏
i0<···<ip : ej≥0 ∀j 6∈{i0,...,ip}

(xe00 · · ·xenn A)m .

Therefore, to prove (ii), it suffices to prove that the complex C•(U ,O(m))e is exact in
the range 0 < p < n, for each e ∈ Zn+1. For deg(e) 6= m, the complex is zero. For
deg(e) = m and 0 ≤ p ≤ n, we have a canonical split embedding∏

i0<···<ip≤n

ej≥0 ∀j 6∈{i0,...,ip}

xe00 · · ·xenn A ↪→
∏

i0<···<ip≤n

xe00 · · ·xenn A,

and the complex

→
∏

i0<···<ip−1≤n

xe00 · · ·xenn A→
∏

i0<···<ip≤n

xe00 · · · xenn A→
∏

i0<···<ip+1≤n

xe00 · · · xenn · A→ · · ·

identifies with the complex C• with Cp =
∏

i0<···<ip A, that is, with

→
∏

i0<···<ip−1≤n

A→
∏

i0<···<ip≤n

A→ · · · →
∏

i0<i1<···<in

A = A.

The latter is exact in degrees 0 < p < n (see Example 2.2.8), hence the former is exact
in those degrees as well. This proves (2).

To prove (3), observe that

Cn(U ,O(m)) = (A[x0, . . . , xn]x0···xn)m

is a free graded A-module spanned by the monomials of the form xe00 · · ·xenn with∑
ei = m. The image of dn−1 is spanned by the monomials xe00 · · ·xenn with

∑
ei = m

and at least one ej ≥ 0. Hence

Hn(Pn,O(m)) = Coker(dn−1) = A
{
xe00 · · ·xenn | ei < 0 ∀i and

∑
ei = m

}
=
(
x−1

0 · · ·x−1
n A[x−1

0 , . . . , x−1
n ]
)
m
.

This gives

Hn(Pn,O(−n− 1)) =
(
x−1

0 · · · x−1
n A[x−1

0 , . . . , x−1
n ]
)
−n−1

= A · x−1
0 · · ·x−1

n .

The proof is finished.
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Corollary 2.3.2. Let k be a field. For m ≥ 0, we have

dim H0(Pn,O(m)) =

(
m+ n

n

)
. (2.1)

Moreover, for m ≤ −n− 1, we have

dim Hn(Pn,O(m)) =

(
−m− 1

n

)
.

We have Hp(Pn,O(m)) = 0 for all other values of (p,m) ∈ Z⊕2.

Proof. Remark that (2.1) holds by item (1) of Theorem 2.3.1. Indeed, we have that
dim k[x0, . . . , xn]m =

(
m+n
n

)
. By item (3) of Theorem 2.3.1, we have Hn(Pnk ,O(m)) =

(x0 · · ·xn)−1 · k[x−1
0 , . . . , x−1

n ]. Now note that there are natural isomorphisms(
(x0 · · ·xn)−1 · k[x−1

0 , . . . , x−1
n ]
)
m

= k[x−1
0 , . . . , x−1

n ]m+n+1 = k[t0, . . . , tn]−m−n−1.

Therefore,

dim Hn(Pn,O(m)) = dim (k[t0, . . . , tn]−m−n−1) =

(
(−m− n− 1) + n

n

)
=

(
−m− 1

n

)
.

The corollary follows.

2.3.2 Cohomology of coherent sheaves on projective schemes
Theorem 2.3.3. Let A be a noetherian ring. Let X ⊂ PrA be a projective scheme over
A. For n ∈ Z, consider the sheaf OX(n) on X. Let F be a coherent sheaf on X. Then:

(1) The cohomology groups Hi(X,F) are finitely generated A-modules for each i ≥ 0.

(2) There exists an n0 > 0 such that

Hi(X,F(n)) = 0 (where F(n) = F ⊗OX
OX(n))

for all n ≥ n0 and i > 0.

Example 2.3.4. Let X be an integral projective scheme over a field k. Then

dimk H0(X,OX) = 1.

Indeed, consider a closed immersion i : X ↪→ Pnk for some n ≥ 0. Then X =
Proj(k[x0, . . . , xn]/I) for some homogeneous ideal I ⊂ k[x0, . . . , xn], see Proposition
1.2.13. Now S := k[x0, . . . , xn]/I is a graded k-algebra which is a domain (since X
is integral), generated by elements x0, . . . , xn ∈ S1 over k which are relatively prime.
Thus, by Exercise 1.2.4, the map β : S → Γ∗(OX) defined in (1.4) is an isomorphism.
In particular,

k = S0 = (Γ∗(OX))0 = Γ(X,OX) = H0(X,OX).
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To prove Theorem 2.3.3, we need a couple of results.

Lemma 2.3.5. Let X be a topological space and let i : Z ⊂ X be a closed subset. Let
U be an open cover of X, and let UZ be the induced open cover of Z. Then for any
sheaf F on Z and any p ≥ 0, we have Hp(Z,F) = Hp(X, i∗F).

Proof. This follows from the fact that for each open U ⊂ X, Γ(U ∩Z,F) = Γ(U, i∗F),
so the two cohomolgy groups arise from the same Cech complexes.

Lemma 2.3.6. Let f : X → Y be a morphism of schemes. Let X be a scheme and let
F be an OX-module. Let L be a line bundle on Y . Then there exists an isomorphism

ϕ : f∗(F)⊗OY
L ∼−→ f∗ (F ⊗OX

f ∗(L)) . (2.2)

Proof. Let {Ui} be an open cover of Y such that for each i ∈ I there exists an
isomorphism ρi : L|Ui

∼= OUi
. For i ∈ I, define an isomorphism

ϕi : (f∗(F)⊗OY
L) |Ui

∼−→ (f∗ (F ⊗OX
f ∗(L))) |Ui

as the composition

(f∗(F)⊗OY
L) |Ui

∼= f∗(F)|Ui
∼= (f∗ (F ⊗OX

f ∗(L))) |Ui
.

Note that ϕi|Ui∩Uj
= ϕj|Ui∩Uj

. Thus, the ϕi glue to an isomorphism (2.2).

Lemma 2.3.7. Let S be a graded ring and let M be a finitely generated graded S-
module. Then M is generated by finitely many homogeneous elements, and there is a
set of integers a1, . . . , an ∈ Z and a surjection of graded S-modules ⊕iS(−ai)→M .

Proof. First observe that there exists a set of generators {m1, . . . ,mn} ⊂ M for M
over S such that each mi is homogeneous. Let ai = deg(mi). The map S(−ai) → M
that sends 1 ∈ S(ai)ai = S0 to the element mi is a morphism of graded S-modules.
Moreover, the resulting map of graded S-modules ⊕iS(−ai)→M is surjective.

Proof of Theorem 2.3.3. Let i : X ↪→ PrA be the given closed embedding into PrA. Then
i∗F is coherent and

Hi(X,F) = Hi(PrA, i∗F),

see Lemma 2.3.5. Moreover, by Lemma 2.3.6, we have F⊗i∗OPr
A

(n) = i∗
(
F ⊗ i∗OPr

A
(n)
)
,

so that

Hi(X,F(n)) = Hi(X,F ⊗OX(n))

= Hi(X,F ⊗ i∗OPr
A

(n))

= Hi(Pr, i∗
(
F ⊗ i∗OPr

A
(n)
)

= Hi(PrA, i∗F ⊗OPr
A

(n)).

This reduces the theorem to the case X = PrA.
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Recall (see Proposition 1.2.8) that in this case, the coherent sheaf F on X = PrA
is of the form F = M̃ for some finitely generated graded S-module M , where S =
A[x0, . . . , xn]. Both parts of the theorem are trivially satisfied when i > dimPrA =
r+ dim(A). We take this as the base case, and proceed by downwards induction on i.

(1). As M is finitely generated, we may pick a surjection of graded A-modules⊕
k

A(−ak) −→M.

The kernel K of this surjection is graded and finitely generated (see Lemma 1.1.4), so
that we get an exact sequence of finitely generated graded A-modules

0→ K →
⊕
k

A(−ak)→M → 0.

Applying the tilde functor, which is exact by Lemma 1.1.11, we get an exact sequence
of coherent sheaves

0→ K = K̃ →
⊕
k

OPr
A

(−ak)→ F → 0. (2.3)

Taking the long exact sequence in cohomology yields:

· · · → Hi(PnA,K)→
⊕
k

Hi(PnA,OPr
A

(−ak))→ Hi(PnA,F)→ Hi+1(PrA,K)→ · · · .

By the induction hypothesis, we have that Hi+1(PrA,K) is a finitely generated A-
module. The A-module

⊕
k Hi(PnA,OPr

A
(−ak)) is also finitely generated, see Theorem

2.3.1. Hence, we get that Hi(PnA,F) is finitely generated.
(2). It suffices to prove that for each i > 0, there exists n0 > 0 such that

Hi(PrA,F(n)) = 0 for all n ≥ n0. Indeed, one then takes the max of all such n0

defined for the various 0 < i ≤ r + dim(A).
Twist the exact sequence (2.3) by OPr

A
(n) and take cohomology, to get an exact

sequence

· · · → Hi(PrA,K(n))→
⊕
k

Hi(PrA,OPr
A

(n−ak))→ Hi(PrA,F(n))→ Hi+1(PrA,K(n))→ · · · .

Again, by downward induction on i > 0, we get some n0 such that Hi+1(PrA,K(n)) = 0
for n ≥ n0, and enlarging n0 if necessary, we may assume Hi(PnA,O(n − ak)) = 0 for
n ≥ n0 and all k (see Theorem 2.3.1. This gives Hi(PnA,F(n)) = 0 for n ≥ n0.

2.3.3 Picard group of a scheme
Definition 2.3.8. Let X be a scheme.

(1) Let F be an OX-module. We say that F is finite locally free if there exists an
open covering {Ui}i∈I ofX together with an integer ni ∈ Z≥1 and an isomorphism
F|Ui

∼= Oni
Ui

for each i ∈ I.
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(2) An OX-module L is invertible if there exists an open covering {Ui} of X and for
each i an isomorphism L|Ui

∼= OUi
of OUi

-modules. We call L a line bundle.

(3) We let Pic(X) denote the set of isomorphism classes of line bundles on X.

Exercise 2.3.9. Let X be a scheme. For a line bundle L on X, show that the OX-
module

L−1 := H omOX
(L,OX)

is a line bundle on X. Show that L1 ⊗OX
L2 is a line bundle on X if L1,L2 are line

bundles on X. Show that Pic(X) admits a natural structure of an abelian group. It
is called the Picard group of X.

Exercise 2.3.10. Let k be a field. Show that Pic(A1
k) = 0.

Exercise 2.3.11. Let k be a field. Let X = P1
k.

(1) Show that OX(n)⊗OX
OX(m) ∼= OX(n+m).

(2) Show that
Pic(P1

k) = Z · OP1
k
(1).

In other words, for any line bundle L on X = P1
k, we have L ∼= OX(n) for some

n ∈ Z.

2.4 Lecture 19 : Hypersurfaces

2.4.1 Field-valued points of schemes
Let k be a field and let X be a scheme over k.

Definition 2.4.1. For a scheme T over k, we write

X(T ) := HomSch/k(T,X).

This is the set of morphisms of k-schemes T → X. If T = Spec A is affine, we write
X(A) = X(T ).

Note that for affine k-schemes X = Spec R and T = Spec A, we have that X(T ) =
X(A) is naturally in bijection with the set of morphisms of k-algebras R→ A.

Lemma 2.4.2. Suppose that X = Spec R with

R = k[t1, . . . , tn]/(f1, . . . , fm), fi ∈ k[t1, . . . , tn].

Let T = Spec A be an affine scheme over k. Then there are natural bijections

X(A) = X(T ) = HomSch/k(T,X)

= Homk--Alg(R,A) = {α ∈ An | fi(α) = 0 ∀i ∈ {1, . . . ,m}} .

32



Proof. Exercise.

Examples 2.4.3. (1) Let X = Spec R[x, y]/(x2 + y2). Then X(R) = ∅.

(2) Let X = Spec R[x, y]/(x+ y, x− y). Then X(R) = {(0, 0)} ⊂ A2(R) = R2.

Example 2.4.4. Let k be a field. Let V = kn+1. Then there is a natural isomorphism
of k-vector spaces V ∼−→ V ∨ given by ei 7→ e∨i . This gives an isomorphism

Pnk = P̌rk,

where we recall that

P̌rk = P(V ∨) and that P(W ) = Proj(Sym∗(W ))

for a finite dimensional k-vector space W . For each field extension k′ ⊃ k, one gets a
canonical bijection (see also Example 1.2.20):

Pnk(k′) =
{
lines ` ⊂ (k′)n+1

}
.

2.4.2 Hypersurfaces in projective space
Definition 2.4.5. (1) A hypersurface is a closed subscheme X ⊂ Pnk defined as

X = V (F ) = Proj(k[x0, . . . , xn]/(F )),

for some homogeneous polynomial F ∈ k[x0, . . . , xn] of positive degree. The
degree of this hypersurface is the degree of F .

(2) A complete intersection of two hypersurfaces X ⊂ Pnk is a closed subscheme

X = V (F ) ∩ V (G) = V (F,G) ⊂ Pnk

defined by two homogeneous polynomials F,G ∈ k[x0, . . . , xn] of positive de-
grees d > 0, e > 0 such that V (F ) and V (G) have no irreducible component in
common.

Example 2.4.6. Continue with the notation from Example 2.4.4. LetX = V (F ) ⊂ Pnk
be a hypersurface. Then for each field extension k′ ⊃ k, we have:

X(k′) = {α = [x0 : · · · : xn] ∈ Pn(k′) | F (α) = 0} ⊂ Pn(k′).

Exercise 2.4.7. For a hypersurface X = V (F ) ⊂ Pnk of degree d > 0, show that:

(1) dim(X) = n− 1;

(2) the ideal sheaf IX ⊂ OPn
k
is canonically isomorphic to the sheaf OPn

k
(−d).

Exercise 2.4.8. For a complete intersection X = V (F ) ∩ V (G) = V (F,G) ⊂ Pnk ,
where deg(F ) = d > 0 and deg(G) = e > 0, show that:
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(1) dim(X) = n− 2:

(2) for R = k[x0, . . . , xn], the sequence of graded R-modules

0→ R(−d− e) α−→ R(−d)⊕R(−e) β−→ (F,G)→ 0

is exact, where α(h) = (−hG, hF ) and β(h1, h2) = h1F + h2G.

(3) Applying the tilde functor, we get an exact sequence of OPn
k
-modules

0→ OPn
k
(−d− e)→ OPn

k
(−d)⊕OPn

k
(−e)→ IX → 0,

where IX ⊂ OPn
k
is the ideal sheaf of X ⊂ Pnk .

2.4.3 Genus of a plane curve
Definition 2.4.9. Let k be a field.

(1) A curve over k is an integral scheme C which is separated and of finite type over
k, with dim(C) = 1.

(2) The genus g(C) of a projective curve C is the dimension of the k-vector space
H1(C,OC). This dimension is finite by Theorem 2.3.3.

(3) A plane curve is a hypersurface C ⊂ P2
k which is integral. Remark that any

plane curve is a curve.

Example 2.4.10. The projective line P1
k is a curve with g(P1

k) = 0.

Definition 2.4.11. Let C ⊂ P2
C be a plane curve defined by a homogeneous polynomial

F ∈ k[x0, x1, x2] of positive degree. We say that C is smooth if there is no point
p ∈ C(C) ⊂ P2(C) such that ∂F/∂xi(p) = 0 for each i = 0, 1, 2. In other words, C is
smooth if there is no p ∈ P2(C) such that

F (p) = ∂F/∂x0(p) = ∂F/∂x1(p) = ∂F/∂x2(p) = 0.

Proposition 2.4.12. Let C ⊂ P2
C be a smooth plane curve. Then, with respect to the

natural complex manifold structure of P2(C), we have that C(C) ⊂ P2(C) is a complex
submanifold of dimension one.

In particular, C(C) is a connected and compact Riemann surface in a natural way.

Proof. Exercise.

Fact 2.4.13. Let C ⊂ P2
C be a smooth plane curve. Then g(C) equals the (topological)

genus of the Riemann surface C(C). In particular, rankZH
1(C(C),Z) = 2 · g(C).

Lemma 2.4.14. Let n ∈ Z≥3 and let 0→ V1 → · · · → Vn → 0 be an exact complex of
finite dimensional vector spaces V i over a field k. Then

∑n
i=1(−1)i dim(Vi) = 0.
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Proof. First assume n = 3. If 0 → V1 → V2 → V3 → 0 is a short exact sequence
of finite dimensional vector spaces, then there exists a injective linear map V3 → V2

whose composition with the given map V2 → V3 is the identity: the sequence splits.
Thus V2

∼= V1 ⊕ V3 in this case, whence the result.
We assume n ≥ 4 and apply induction on n, assuming the lemma to be true for

n − 1. Let Wn−1 = Coker(Vn−3 → Vn−2). Then we have exact sequences 0 → V1 →
· · · → Vn−3 → Vn−2 → Wn−1 → 0 and 0→ Wn−1 → Vn−1 → Vn → 0. By the induction
hypothesis, we have

n−2∑
i=1

(−1)i dim(Vi) + (−1)n−1 dim(Wn−1) = 0.

Moreover, the n = 3 case gives (−1)n−1 dim(Wn−1) = (−1)n−1 (dim(Vn−1)− dim(Vn)).
Hence,

0 =
n−2∑
i=1

(−1)i dim(Vi) + (−1)n−1 dim(Wn−1)

=
n−2∑
i=1

(−1)i dim(Vi) + (−1)n−1 (dim(Vn−1)− dim(Vn))

=
n−1∑
i=1

(−1)i dim(Vi) + (−1)n dim(Vn)

=
n∑
i=1

(−1)i dim(Vi).

We are done.

Theorem 2.4.15. Let C ⊂ P2
k be a plane curve of degree d > 0. Then

g(C) = (d− 1)(d− 2)/2.

Proof. Let i : C ↪→ P2
k be the natural closed immersion. Consider the ideal sequence

0→ IC → OP2 → i∗OC → 0.

Using Lemma 2.3.5, we get a long exact sequence

0→ H0(P2,O(−d))→ H0(P2,OP2)→ H0(C,OC)→
→ H1(P2,O(−d))→ H1(P2,OP2)→ H1(C,OC)→
→ H2(P2,O(−d))→ H2(P2,OP2)→ 0.

In view of Lemma 2.4.14 and Corollary 2.3.2, this gives:

0− 1 + 1− 0 + 0− g(X) +

(
d− 1

2

)
− 0 = 0.
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Therefore,

g(X) =

(
d− 1

2

)
=

(d− 1)!

2!(d− 3)!
=

(d− 1)(d− 2)

2
.

This proves the proposition.

Example 2.4.16. Consider P2
C = ProjC[x, y, z]. Let

C = V (zy2 − x3 − z3) ⊂ P2
C.

Then C is smooth (see Definition 2.4.11), and the Riemann surface C(C) is topolog-
ically a torus. Hence g(C) = 1 (see Fact 2.4.13). This is compatible with Theorem
2.4.15, since 1 = (3− 1)(3− 2)/2.
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Chapter 3

Divisors

3.1 Lecture 20 : Bézout’s theorem and Weil divisors

3.1.1 Bézout’s theorem

Let k be an algebraically closed field. Let C ⊂ P2
k and D ⊂ P2

k be two plane curves of
degrees d > 0 and e > 0, that have no irreducible component in common. This implies
that the scheme-theoretic intersection

Z = C ×P2
k
D ⊂ P2

k

is a zero-dimensional subscheme of P2
k. In particular, the underlying topological space

|Z| of Z consists of finitely many closed points p1, . . . , pr ∈ |P2
k|. Note that there exists

an automorphism φ ∈ Aut(P2
k) such that φ(|Z|) is contained in the affine open

U0 := D+(x0) = Spec (k[x0, x1, x2](x0)) ∼= Spec (k[x, y]).

Replacing C by φ(C) and D by φ(D), we get that Z ⊂ U0 ⊂ P2
k. Let

mi ⊂ k[x, y]

be the maximal ideal associated to the closed point pi ∈ U0 = Spec k[x, y] = A2
k.

Theorem 3.1.1 (Bézout’s theorem). Under the above notation and assumptions,

dim H0(Z,OZ) =
r∑
i=1

dimk

(
k[x, y]

(f, g)

)
mzi

= d · e.

Example 3.1.2. Let C = V (x1 − x2) and D = V (x1 + x2). Then Z = C ×P2
k
D =

V (x1 − x2, x1 + x2) = V (x1, x2) ⊂ U0. We get Z = Spec k with closed embedding
Spec k ↪→ U0 = A2

k given by 0 ∈ A2
k(k) = HomSch/k(Spec k,A2

k), see Lemma 2.4.2.

Proof of Theorem 3.1.1. Since Z is a zero-dimensional subscheme of U0 = Spec k[x, y],
it is clear that

OZ(Z) =
r⊕
i=1

OZ,pi ,
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and that

OZ,pi = OU0,pi/IZ,pi = (O(U0)/IZ(U0))mi
=

(
k[x, y]

(f, g)

)
mzi

∀i ∈ {1, . . . , r} .

Moreover, for the natural closed immersion i : Z ↪→ P2
k, we have the ideal sheaf se-

quence 0→ IZ → OP2
k
→ i∗OZ → 0, which gives exact sequences

0→ H0(P2
k, IZ)→ H0(P2

k,OP2
k
)→ H0(Z,OZ)→ H1(P2

k, IZ)→ 0

and
0 = H1(Z,OZ) = H1(P2, i∗OZ)→ H2(P2

k, IZ)→ H2(P2,OP2) = 0,

where H1(Z,OZ) = 0 because dim(Z) = 0. This gives:

dim H0(Z,OZ) = dim H0(P2
k,OP2

k
) + dim H1(P2

k, IZ)− dim H0(P2
k, IZ),

H2(P2
k, IZ) = 0.

Recall the exact sequence

0→ OP2
k
(−d− e)→ OP2

k
(−d)⊕OP2

k
(−e)→ IZ → 0, (3.1)

see Exercise 2.4.8. As H1(P2
k,OP2

k
(m)) = 0 for each m ∈ Z, see Corollary 2.3.2, we get

an exact sequence

0 = H0(P2
k,OP2

k
(−d)⊕OP2

k
(−e))→ H0(P2

k, IZ)→ H0(P2
k,OP2

k
(−d− e)) = 0,

which shows that H0(P2
k, IZ) = 0. Hence

dim H0(Z,OZ) = dim H0(P2
k,OP2

k
) + dim H1(P2

k, IZ) = 1 + dim H1(P2
k, IZ).

Furthermore, (3.1) gives a long exact sequence

0→ H1(P2
k, IZ)→ H2(P2

k,OP2
k
(−d− e))→ H2(P2

k,OP2
k
(−d))⊕ H2(P2

k,OP2
k
(−e))

→ H2(P2
k, IZ) = 0,

where the vanishing H2(P2
k, IZ) = 0 has been shown above. We conclude that

dimk H1(P2
k, IZ) = dimk H2(P2

k,OP2
k
(−d− e))

− dimk H2(P2
k,OP2

k
(−d))− dimk H2(P2

k,OP2
k
(−e))

=

(
d+ e− 1

2

)
−
(
d− 1

2

)
−
(
e− 1

2

)
,

see Corollary 2.3.2. Now(
d+ e− 1

2

)
−
(
d− 1

2

)
−
(
e− 1

2

)
=

(d+ e− 1)(d+ e− 2)

2
− (d− 1)(d− 2)

2
− (e− 1)(e− 2)

2

=
1

2
·
((
d2 + 2de− 3d+ e2 + 2

)
−
(
d2 − 3d+ 2

)
−
(
e2 − 3e+ 2

))
=

2de− 2

2
= de− 1.
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Therefore,

dimk H0(Z,OZ) = 1 + dim H1(P2
k, IZ) = 1 + de− 1 = de.

The theorem follows.

3.1.2 Definition of an algebraic variety
In this course, we follow the Stacks Project with our notion of algebraic variety :

Definition 3.1.3. Let k be a field.

(1) An algebraic variety (or simply a variety) over k is a scheme X over k such that
X is integral, and such that the structure morphism X → Spec k is separated
and of finite type.

(2) A curve (resp. surface, resp. threefold) is an algebraic variety of dimension one
(resp. two, resp. three).

Remark 3.1.4. Suppose that k′/k is an extension of fields. Suppose that X is a
variety over k. Then the base change Xk′ = X ×k k′ is not necessarily a variety over
k′. For instance, let k = Q, let X = Spec Q(i) and let k′ = Spec Q(i). Then

Xk′ = Spec (Q(i)⊗Q Q(i)) ∼= Spec Q(i) t Spec Q(i).

Remark 3.1.5. The same counterexample shows that the product of two varieties
need not be a variety. If the ground field is algebraically closed however, then the
product of varieties X and Y over k = k̄ is a variety over k. This statement readily
reduces to the affine case, and in fact to the statement that for an algebraically closed
field k and two finitely generated k-algebras A and B which are integral domains, the
tensor product A⊗k B is an integral domain. We leave this as an exercise.

Corollary 3.1.6. Let
X → Spec k

be a projective morphism, where k is a field and X is a scheme. Then X is separated
and of finite type over k. In particular, if X is integral, then X is a variety over k.

Proof. Indeed, the composition of two separated (resp. finite type) morphisms is sep-
arated (resp. of finite type), and Pnk is separated and of finite type over k.

Example 3.1.7. Let C be a curve over a field k. Then C is an algebraic variety.

Example 3.1.8. Let X = Spec C and consider the morphism X → Spec R. This
turns X into an algebraic variety over R.

Non-Example 3.1.9. Let k be a field and consider the scheme X = Spec k[x]/(x2)
with its natural morphism X → Spec k. Then X is irreducible, separated and of finite
type over k. However, X is not an algebraic variety over k, since X is not reduced.
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For an algebraic scheme, there is a natural characterization of its closed points.
For this, we need the following elementary lemma.

Lemma 3.1.10. Let X be a topological space. Let W ⊂ U ⊂ X be subsets equipped
with their induced topologies. Let WU be the closure of W in U , and let WX be the
closure of W in X. Then WU

= W
X ∩ U .

Proof. As WX is closed in X, we have that WX ∩ U is closed in U and contains W .
Thus, WU ⊂ W

X ∩ U . Conversely, we have that WX is the intersection ∩Z of all
closed subset Z ⊂ X that contain W . Hence WX ∩ U is contained in the intersection
of all closed subset of U that contain W . This gives WX ∩ U ⊂ W

U .

Proposition 3.1.11. Let X be a scheme of finite type over a field k. Let x ∈ X. Then
x is closed if and only if there exists an affine open neighbourhood U of x ∈ X with
OX(U) a finitely generated k-algebra, with x ∈ U corresponding to a maximal ideal in
OX(U). This happens if and only if the residue field k(x) is a finite extension of k.

Proof. Let x ∈ X be an arbitrary point. Let U = Spec A be any affine open neighour-
hood of x. If x is closed in X then x is closed in U . Conversely, assume x is closed
in U . Define Z = xX ⊂ X. Then Z is irreducible, and hence Z ∩ U is irreducible,
open and dense in Z. Thus dim(Z ∩U) = dim(Z). We have Z ∩U = xX ∩U = xU by
Lemma 3.1.10 above. As x is closed in U , we get Z ∩ U = xU = x. We conclude that
dim(Z) = dim(Z ∩ U) = dim({x}) = 0. Therefore, Z ⊂ X is an irreducible closed
subset of dimension zero, which gives that xX = x, i.e. that x is closed in X. We
conclude that x is closed in X if and only if x is closed in U .

Now x is closed in U = Spec A if and only if the prime ideal x = p ∈ Spec A is a
maximal ideal. Thus k(x) = k(p) = Ap/pAp = A/p. This field extension k(x) ⊃ k is
finitely generated as a k-algebra, and therefore finite by the Hilbert Nullstellensatz.

Conversely, assume the residue field k(x) of x ∈ U is a finite field extension of k,
and let p ⊂ A be the prime ideal corresponding to x. We get ring homomorphisms

k −→ A/p −→ Ap/pAp = k(x).

Since k(x) is finite as a module over k, we see that k(x) is finite as a module over A/p.
Therefore, we have dim(A/p) = dim(k(x)) = 0. Thus A/p is a field, hence A/p = k(x).
This implies that p is a maximal ideal. This proves the proposition.

Example 3.1.12. Let k be a field and A = k[t](t) the localization of k[t] in (t). Then
A is a one-dimensional local noetherian normal domain, hence a discrete valuation
ring (cf. Theorem 3.1.21) with maximal ideal m = (t) · A. The underlying topological
space |Spec A| consists of two points: |Spec A| = {η,m}. The point m is closed and
the point η = (0) is open. On the one hand, k(m) = k, which is a finite field extension
of k. On the other hand, k(η) = k(t), which is not a finite field extension of k.
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3.1.3 Smooth varieties
Let k be a field. Let A = k[t1, . . . , tn]/(f1, . . . , fm) be a finitely generated k-algebra,
with fi ∈ k[t1, . . . , tn] for i = 1, . . . ,m. Note that for each i ∈ {1, . . . ,m} and each
j ∈ {1, . . . , n}, we get a polynomial

∂fi
∂tj
∈ k[t1, . . . , tn],

and hence an element ∂fi
∂tj

(α) ∈ k̄ for each α ∈ (k̄)n.

Definition 3.1.13. Fix an integer d ≥ 0.

(1) Let X be a scheme of finite type over an algebraically closed field k, all whose
irreducible components have dimension d. Let x ∈ X be a closed point (thus
x ∈ X(k), cf. Proposition 3.1.11). We say that X is smooth at x if there exists
an affine open neighbourhood U of x and an open immersion

U ↪→ Spec k[t1, . . . , tn]/(f1, . . . , fr)

for suitable n ≥ d, where r = n− d, and f1, . . . , fr ∈ k[t1, . . . , tn], such that the
Jacobian matrix

Jx =

(
∂fi
∂tj

(x)

)
i,j

∈ Mr×n(k)

has rank r.

(2) Let X be a scheme of finite type over a field k, all whose irreducible components
have dimension d. Then Xk̄ is a scheme of finite type over k̄, all whose irreducible
components have dimension d. Let x ∈ X be a closed point. We say that X is
smooth at x if for any closed point x′ ∈ Xk̄ lying above x ∈ X, Xk̄ is smooth at
x′. We say X is smooth over k is X is smooth at every closed point x ∈ X.

Lemma 3.1.14. Let X be a scheme of finite type over an algebraically closed field k,
all whose irreducible components have dimension d ≥ 0. Let x ∈ X(k). Assume X is
smooth at x. Then for any affine open neighbourhood U of x, any integer n ≥ d, any
f1, . . . , fr ∈ k[t1, . . . , tn] where r = n− d, and any open immersion

U ↪→ Spec k[t1, . . . , tn]/(f1, . . . , fr),

the Jacobian matrix
Jx =

(
∂fi
∂tj

(x)

)
i,j

∈ Mr×n(k)

has rank r.

Proof. This follows from results in later chapters (see Exercise 4.2.23).

Lemma 3.1.15. Let X be a variety over k. If X is smooth over k then each open
subscheme U ⊂ X is smooth over k.
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Proof. Exercise.

Example 3.1.16. Let k be a field and let X = V (F ) ⊂ Pnk be a hypersurface. Then
X is smooth over k if and only if for each

α = [x0 : · · · : xn] ∈ X(k̄) ⊂ Pn(k̄),

there exists i ∈ {0, 1, . . . , n} such that (∂F/∂xi)(α) 6= 0. Indeed, this follows from
Lemma 3.1.14. In particular, Definitions 2.4.11 and 3.1.13 are equivalent, if k = C.

Example 3.1.17. Let k be a field and let p be a prime number. Consider the curve
C ⊂ P2

k defined by the equation xp0 + xp1 + xp2 = 0. In other words,

C = Proj (k[x0, x1, x2]/(xp0 + xp1 + xp2)) .

(1) If the characteristic of k is different from p, then C is smooth. Namely, we have
∂F/∂xi = p · xp−1

i for i = 0, 1, 2, and if, for each i ∈ {0, 1, 2}, this homogeneous
degree p− 1 polynomial p · xp−1

i vanishes at some α = [a0 : a1 : a2] ∈ P2(k̄), then
a0 = a1 = a2 = 0, which is absurd.

(2) If the characteristic of k equals p, then C is not smooth. Namely, we then
have ∂F/∂xi = p · xp−1

i = 0 for i = 0, 1, 2. Thus for any α ∈ C(k̄), we get
F (α) = ∂F/∂xi(α) = 0 for i = 0, 1, 2.

3.1.4 Normal schemes
We consider the following important notion in scheme theory.

Definition 3.1.18. (1) Let A be a ring which is a domain. Then A is called normal
if A is integrally closed in its field of fractions Q(A). This means that for each
α ∈ Q(A) which is integral over A, we have α ∈ A. Equivalently: for each monic
polynomial f ∈ A[x] and each α ∈ Q(A) with f(α) = 0, we have α ∈ A.

(2) A ring R is normal if for each prime ideal p ⊂ R, the localization Rp is a normal
domain.

(3) A scheme X is called normal if for all x ∈ X, the local ring OX,x is a normal
domain.

Suppose X = Spec A is an affine scheme such that A is reduced. Then saying that
X is normal is not equivalent to saying that A is integrally closed in its total ring of
fractions. However, if A is noetherian, then this is the case (exercise).

Lemma 3.1.19. Let X be a scheme. The following are equivalent:

(1) The scheme X is normal.

(2) For every affine open U ⊂ X, the ring OX(U) is normal.
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(3) There exists an affine open covering X = ∪iUi such that each ring OX(Ui) is
normal.

(4) There exists an open covering X = ∪iXi such that the scheme Xi is normal for
each i.

Moreover, if X is normal, then every open subscheme U ⊂ X is normal.

Proof. Exercise.

Lemma 3.1.20. Let X be a normal integral scheme. Then for each non-empty open
U ⊂ X, the scheme U is normal and integral, and OX(U) is a normal integral domain.

Proof. The fact that U is normal and integral is clear. Thus, it suffices to show that
OX(X) is a normal integral domain. For this, see e.g. [Stacks Project, tag 0358].

Theorem 3.1.21. Let A be a noetherian local domain of dimension one, with maximal
ideal m. The following are equivalent:

(1) A is a discrete valuation ring;

(2) A is normal;

(3) m is a principal ideal.

Proof. See Atiyah–Maconald (Proposition 9.2 on page 94).

Corollary 3.1.22. Let k be an algebraically closed field and let C be a curve over k.
Then C is smooth over k if and only if C is normal.

Proof. This uses: (1) any discrete valuation ring is a regular local ring of dimension
one, and conversely; (2) since k is algebraically closed, any variety X over k is smooth
over k if and only if for each x ∈ X there exists an affine open neighbourhood U ⊂ X
such that the localizations Rp of R = OX(U) are all regular. Details omitted.

In arbitrary dimensions, one has:

Proposition 3.1.23. Let X be a smooth variety over a field k. Then X is normal.

Proof. We do not prove this here.

3.1.5 Codimension
Definition 3.1.24. Let X be a scheme. Let Y ⊂ X be an irreducible closed subset
of X. The codimension of Y in X, denoted by codim(Y,X), is the supremum of all
integers n such that there exists a chain

Y = Y0 ( Y1 ( · · · ( Yn ⊂ X

of irreducible closed subsets Yi of X.
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Proposition 3.1.25. Let X be a scheme, let x ∈ X and define Y = {x} ⊂ X. Then
Y is irreducible, and codim(Y,X) = dimOX,x.

Proof. Since Y has a generic point, it is irreducible. Let Y = Y0 ( · · · ( Yn ⊂ X be
a chain of irreducible closed subsets. Let U ⊂ X be an affine open neighbourhood of
x in X. Since U ∩ Yi 6= ∅ for each i, we have ηi ∈ U for each i. Moreover, for each i,
Yi ∩ U is a closed subset in U , defined by a prime ideal pi ⊂ R, where R = OX(U).
Thus we get a chain of prime ideals

pn ( · · · ( p0 = p,

where p is the prime ideal that defines Y ∩ U in U . Hence we have

codim(Y,X) = supn (∃pn ( · · · ( p0 = p ⊂ R) = height(p) = dim(Rp).

As Rp = OX,x, we get dimOX,x = dimRp = codim(Y,X), whence the result.

Theorem 3.1.26. Let k be a field and let X be a variety over k, with generic point
η ∈ X. Let k(X) = OX,η be the function field of X. Then:

(1) the dimension of X agrees with the transcendence degree of k(X) over k;

(2) for each non-empty open subset U ⊂ X, we have dim(U) = dim(X);

(3) if Y ⊂ X is a closed subvariety, then all maximal chains of irreducible subvari-
eties

Y ( Z1 ( Z2 ( · · · ( Zn ⊂ X

have the same length;

(4) we have codim(Y,X) = dim(X)− dim(Y ).

Proof. We will not prove this here.

3.1.6 Weil divisors
Definition 3.1.27. Let X be a normal integral noetherian scheme.

(1) A prime divisor is an integral subscheme Z ⊂ X of codimension one.

(2) A Weil divisor of X is an element of the free abelian group generated by the
prime divisors of X. We denote the group of Weil divisors by Div(X). Thus,
an element D ∈ Div(X) can be written as a formal linear combination of prime
divisors

D =
∑

Z⊂Xprime

nZ · Z

with nZ ∈ Z for each prime divisor Z ⊂ X, and such that nZ = 0 for all but
finitely many prime divisors Z ⊂ X.
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(3) We say that a Weil divisor D =
∑
nZ · Z is effective if nZ ≥ 0 for each prime

divisor Z.

(4) Any Weil divisor D =
∑
nZZ can be written as D =

∑k
i=1 ni · Zi where Zi is

a prime divisor and ni ∈ Z − {0} for each i ∈ {1, . . . , k}. This gives a closed
subset ∪iZi ⊂ X called the support of the Weil divisor D.

(5) Given two Weil divisors D =
∑

Z nZZ and D′ =
∑
mZZ, we say that D ≥ D′

if D −D′ is effective, or equivalently, if nZ ≥ mZ for all prime divisors Z. This
turns Div(X) into a partially ordered group.

Example 3.1.28. Let k be a field and let X = P1
k be the projective line over k. Since

C is a curve, any irreducible closed subset of codimension one on X is a closed point.
For example, for any

f ∈ HomSch/k(Spec k,P1
k) = P1

k(k) =
{
lines in k2

}
,

the image f(Spec k) in P1
k is a closed point (see Proposition 3.1.11), and the map

P1
k(k)→

{
closed points x ∈ P1

k

}
is injective. In this way, we get some examples of Weil divisors on P1

k:

D1 := 3 · (1 : 0)− 5 · (0 : 1),

D2 := (1: 1) + 5 · (0 : 1),

D1 +D2 = 3 · (1 : 0) + (1: 1).

3.2 Lecture 21 : The divisor class group of a scheme

3.2.1 Principal Weil divisors
Let X be a normal integral noetherian scheme with generic point η ∈ X and fraction
field K = k(X) = OX,η. Since X is normal, for each x ∈ X, the local ring OX,x is a
domain which is integrally closed in its field of fractions Q(OX,x) = K.

Lemma 3.2.1. Let X be a normal integral noetherian scheme. Let ξ ∈ X be a point
such that codim({ξ}, X) = 1.

(1) The reduced closed subscheme {ξ} ⊂ X is a prime divisor, and every prime
divisor arises uniquely in this way.

(2) The local ring A = OX,ξ is a discrete valuation ring.

Proof. Note that {ξ} is irreducible since it has a generic point, hence it is a prime
divisor. For an arbitrary prime divisor Z ⊂ X, the generic point ηZ of Z gives a
codimension one point ηZ ∈ X. As for part (2), this follows from Theorem 3.1.21.
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This has the following implication. By Theorem 3.1.21, for each codimension one
point ξ ∈ X, the local ring OX,ξ is a discrete valuation ring. Thus, this ring is equipped
with an associated valuation

v : K −→ Z ∪ {∞} ,

such that A = v−1 (Z≥0 ∪ {∞}).
In fact, one can define v explicitly as follows. Given a ∈ A−{0}, the ideal (a) ⊂ A

has the property that (a) = mn for some n ∈ Z≥0, and we define v(a) = n. This gives
a function v : A − {0} → Z which extends to K∗ =

{
a
b

: a, b ∈ A− {0}
}

by putting
v(a/b) = v(a)− v(b), and then to a map v : K → Z ∪ {∞} by putting v(0) =∞.

Definition 3.2.2. Let f ∈ K = k(X). For every prime divisor Z ⊂ X, we get by the
above a valuation vZ : K → Z ∪ {∞}, which allows us to define

ordZ,X(f) := v(f).

Lemma 3.2.3 (Algebraic Hartog’s lemma). Let A be a normal noetherian integral
domain and let x ∈ K. Let K = Q(A) = Frac(A) be the fraction field of A. Then
x ∈ A if and only if x ∈ Ap ⊂ K for all height one primes ideals p ⊂ A.

Proof. We do not prove this here.

Corollary 3.2.4. Let A be a noetherian normal domain, and f ∈ Q(A). Then
ordV (p),Spec A(f) ≥ 0 for all primes p ⊂ A of height one if and only if f ∈ A, and
ordV (p),Spec A(f) = 0 for all primes p ⊂ A of height one if and only if f ∈ A∗.

Proof. Let f ∈ Q(A)∗. Then apply Lemma 3.2.3 to f and to f−1 ∈ Q(A).

Lemma 3.2.5. Suppose that X is a normal integral noetherian scheme with fraction
field K and let f ∈ K∗. Then ordZ,X(f) = 0 for all but finitely many primes Z ⊂ X.

Proof. We proceed in two steps:
Step 1: Reduction to the case where X = Spec A is affine and f ∈ A: Consider a

non-empty affine open subset V of X. Let R = OX(V ). Then K is the fraction field
of R, so that f = a/b for some a, b ∈ R which are both non-zero. We then look at
the affine open U := D(b) ⊂ V ⊂ X. This is an affine open where b is invertible, so
that f = a/b ∈ Rb = Γ(U,OX). The complement W := X − U is a closed subset of
codimension at least one, since X is integral (which implies U is non-empty). Notice
that ∑

Z

ordZ,X(f) · Z =
∑
Z⊂W

ordZ,X(f)Z +
∑
Z 6⊂W

ordZ,X(f)Z,

and that there are only finitely many prime divisors Z ⊂ X that satisfy Z ⊂ W .
Thus, it suffices to show that ordZ(f) = 0 for almost all prime divisors Z ⊂ X with
Z ∩ U 6= ∅. Notice that, for primes Z ⊂ X with Z ∩ U 6= ∅, we have

ordZ,X(f) = ordZ∩U,U(f),

46



since OX,ξ = OU,ξ for the generic point ξ ∈ Z. Now the sum
∑

Z⊂W ordZ,X(f)Z is
finite since W has finitely many irreducible components of codimension one. Hence it
remains to show that ordZ∩U,U(f) = 0 for f ∈ Γ(U,OX) and almost all primes Z ⊂ X
with Z ∩U 6= ∅, so that indeed, we may assume that X = Spec A is affine and f ∈ A.

Step 2: Case where X = Spec A is affine and f ∈ A: We now have ordZ(f) ≥ 0,
and ordZ(f) > 0 if and only if p|(f)p ⊂ Ap for all p of height one in Z if and only if
f ∈ p for all primes p in Z if and only if Z is contained in V (f) ⊂ Spec A. Since V (f)
has finitely many irreducible components of codimension one, we are done.

Definition 3.2.6. Let X be a normal integral noetherian scheme with fraction field
K. For f ∈ K∗, define its corresponding Weil divisor div(f) as

div(f) :=
∑
Z

ordZ,X(f) · Z,

where the sum runs over all prime divisors. Any Weil divisor D of the form D = div(f)
for some f ∈ K∗ is called a principal Weil divisor.

Example 3.2.7. Let A be a normal noetherian integral domain and let X = Spec A.
Let K be the fraction field of A. Then for any f ∈ K∗, we have

div(f) =
∑

p height 1

ordV (p),Spec A(f) · V (p).

Example 3.2.8. Let A be a discrete valuation ring with maximal ideal m ⊂ A. Let
t ∈ A such that m = (t) ⊂ A. The underlying topological space |Spec A| consists of
two points: |Spec A| = {η,m}. The point m is closed and the point η = (0) is open.
We have (0) ( m and m is the only prime ideal of height one. For f ∈ K = Frac(A),
we can write f = u · tn for some n ∈ Z and u ∈ A∗. Then div(f) = ordV (m),Spec A(f)
and this equals v(f) = v(u · tn) = v(tn) = n, where v : K → Z∪ {∞} is the valuation.

Lemma 3.2.9. Let X be a normal integral noetherian scheme. The set of principal
Weil divisors forms a subgroup of Div(X).

Proof. For f, g ∈ K∗, we have div(f)− div(g) = div(f/g).

In fact, the map K∗ → Div(X) sending f to div(f), is a group homomorphism. If
X = Spec A is affine, then div(f) = 0 if and only if f ∈ A∗ (see Corollary 3.2.4); thus
we get an exact sequence 0→ A∗ → K∗ → Div(X) in that case.

3.2.2 Examples
Example 3.2.10. Let X = Spec Z with function field Q(Z) = Q. We claim that the
map Q∗ → Div(X) is surjective. Indeed, any element D ∈ Div(X) is a finite sum D =∑

i ni · V (pi), where the pi are prime numbers and ni ∈ Z; we have div(
∏

i p
ni
i ) = D.

Example 3.2.11. Let X = A1
k. Consider f = t2(t − 1)−1 ∈ k(t) = k(A1

k). Then
div(f) = 2 · [0]− [1], where 0, 1 ∈ A1(k) give closed points of A1

k.
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Example 3.2.12. Let k be a field and consider X = P1
k = Proj(k[x0, x1]), whose

function field is k(X) = k(t), where t = x1/x0. Consider the rational function

f = t2(t− 1)−1 ∈ K.

Notice that P1
k − U0 = {∞}, where U0 = D+(x0) = Spec k[x0, x1](x0) = Spec k[t], and

where ∞ = [0 : 1] ∈ U1(k). Therefore:

div(f) =
∑
p∈U0

ordp(f) + ord∞(f) · ∞

= 2 · [1 : 0]− [1 : 1] + ord∞(f) · ∞,

because ∑
p∈U0

ordp(f) =
∑

p∈Spec k[t]

ordp(f) = 2 · [0]− [1]

by Example 3.2.11. Moreover, using the identification

U1 = D+(x1) = Spec k[x0, x1](x1) = Spec k[u]

with u = x0/x1 = t−1, we get

f = t2(t− 1)−1 = u−2(u−1 − 1)−1 =
1

u2(u−1 − 1)
=

1

u− u2
.

Therefore, if we let g = (u− u2)−1 = u−1(1− u)−1 ∈ k(u), then

ord∞(f) = ord0(g) = −1.

All in all, this gives

div(f) =
∑
p∈U0

ordp(f) + ord∞(f) · [0 : 1] = 2 · [1 : 0]− [1 : 1]− [0 : 1].

3.2.3 The divisor class group
Definition 3.2.13. Let X be a noetherian integral normal scheme with function field
K. We define the divisor class group of X (or simply the class group of X) as the
group of Weil divisors modulo principal Weil divisors, and we denote it by Cl(X).
Thus, we have

Cl(X) = Div(X)/ 〈div(f) | f ∈ K∗〉 .
Two Weil divisors D and D′ are said to be linearly equivalent (written D ∼ D′) if they
have the same image in Cl(X); in other words, if D −D′ = div(f) for some f ∈ K∗.

Example 3.2.14. Let A be a noetherian normal domain with fraction field K. Write
Div(A) = Div(Spec A) and Cl(A) = Cl(Spec A). In view of Corollary 3.2.4, there is
an exact sequence of abelian groups

0 −→ A∗ −→ K∗ −→ Div(A) −→ Cl(A) −→ 0. (3.2)

48



Remark 3.2.15. Let K be a number field. Then K is the fraction field of its ring of
integers OK , and in this case, Div(OK) can be identified with the group of fractional
ideals (these are non-zero finitely generated OK-submodules of K, which form a group
under ideal multiplication), and Cl(OK) with the group of fractional ideals modulo
the principal fractional ideals (these are the fractional ideals generated by an element
of K∗). A classical result in number theory says that the group Cl(OK) is finite. Note
that Cl(OK) = 0 if and only if OK is a unique factorization domain. For example,
Z[
√
−5] is not a UFD since 2 ·3 = (1−

√
−5)(1+

√
−5), and in fact Cl(Z[

√
−5]) = Z/2.

Example 3.2.16. Consider the ring Z. Then Cl(Z) = 0, see Example 3.2.10.

This generalizes as follows:

Proposition 3.2.17. Let A be a normal noetherian integral domain and let X =
Spec A. Then Cl(X) = 0 if and only if A is a unique factorization domain.

Proof. Suppose that A is a unique factorization domain. Let Z ⊂ X be a non-zero
prime divisor in X. Then Z = V (p) for some prime ideal p ⊂ A of height one. Take
f ∈ p non-zero, and let f = f1 · · · fn be a factorization of f into irreducible elements
of A. Since p is prime, we see that fi ∈ p for some i. Since A is a UFD, the element fi
is prime. Thus p contains the prime ideal (fi). As p has height one, we have p = (fi).
Thus gives Z = V (p) = V (fi) ⊂ X. But note that div(f) = V (fi). Therefore,
Z = div(fi), and we get that Cl(X) = 0.

Conversely, assume Cl(X) = 0. Then every height one prime ideal p is principal.
Indeed, there is an f ∈ K∗ such that div(f) = V (p), one has f ∈ A (in view of the exact
sequence (3.2)), and one can show that p = (f) (exercise). Now since A is noetherian,
every non-zero non-unit element a ∈ A has a factorization into irreducibles, hence it
suffices to show that an irreducible element a ∈ A is prime. Let (a) ⊂ p be a minimal
prime over (a). Then p has height one (exercise). By the above, p is principal, so that
p = (b) for some b ∈ A. Hence a ∈ (b) so that a = bc for some c ∈ A, which must be a
unit because a is irreducible. Thus, (a) = (b) = p is prime, and we win.

Corollary 3.2.18. Let k be a field and let n ∈ Z≥0. Then Cl(An
k) = 0.

3.3 Lecture 22 : Weil divisors and invertible sheaves

3.3.1 Class group of projective space
Let k be a field and consider Pnk = Proj(R) with R = k[x0, . . . , xn]. Prime divisors
Z on Pnk are of the form Z = V (p) for a non-zero homogeneous height one prime
ideal p ⊂ R. For such a prime ideal p we have p = (g) for some non-zero irreducible
homogeneous polynomial g ∈ R (see the proof of Proposition 3.2.17). The generator
g is unique up to scalar, so the degree deg(p) := deg(g) of a homogeneous height one
prime ideal p is well-defined. This gives a group homomorphism

deg : Div(Pnk) −→ Z,
k∑
i=1

niV (pi) 7→
k∑
i=1

ni deg(pi).
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Exercise 3.3.1. Let k be a field.

(1) For a rational function f ∈ K(Pnk), show that deg(div(f)) = 0.

(2) Show that deg factors through an isomorphism

Cl(Pnk)
∼−→ Z,

and compare this statement with Exercise 2.3.11.

3.3.2 The sheaf associated to a Weil divisor
Definition 3.3.2. Let X be a normal integral noetherian scheme with function field
K, and let D =

∑
nZZ be a Weil divisor on X. We define a presheaf OX(D) by

defining, for U ⊂ X an open subset,

OX(U) := {f ∈ K | ordZ,X(f) ≥ −nZ for all Z with generic point ηZ ∈ U} .

Exercise 3.3.3. Check that this presheaf OX(D) is actually a sheaf. As such, it is
a subsheaf of the constant sheaf of fields K on X, associated to the field K. Finally,
verify that OX(D) has a natural OX-module structure.

Proposition 3.3.4. The OX-module OX(D) is quasi-coherent.

Proof. Let U = Spec A ⊂ X be an affine open subset. The proposition follows from
the fact that for f ∈ A, the canonical injective map

Γ(U,OX(D))f −→ Γ(D(f),OX(D))

induced by restriction to the open subset D(f) ⊂ U , is an isomorphism. We leave this
fact as an exercise for the reader.

Lemma 3.3.5. Let X be a normal integral noetherian scheme with function field K.

(1) For each non-empty open U ⊂ X, the ring OX(U) is a normal integral domain.

(2) For each non-empty open U ⊂ X, we have that η ∈ U for the generic point η of
X, and the natural map

ϕ : OX(U) −→ OX,η = K

is injective. This gives an embedding of sheaves OX ↪→ K.

(3) For the Weil divisor D = 0, we have OX = OX(D) as subsheaves of K. Con-
versely, if for some Weil divisor D on X, OX(D) = OX ⊂ K, then D = 0.

(4) For Weil divisors D,E on X, we have OX(D) = OX(E) as subsheaves of K if
and only if D = E.
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Proof. For part (1), see Lemma 3.1.20.
For part (2): let f ∈ OX(U) such that ϕ(f) = 0. We claim that f = 0. To prove

this, consider a cover U = ∪iUi by affine opens Ui. As it suffices to show that f |Ui
= 0

for each i, we may assume that U = Spec A is affine. Then f ∈ A, and K = Q(A)
is the fraction field of A. Since A is an integral domain (see Lemma 3.1.20), the map
A→ Q(A) = K is injective. Hence, f = 0 as desired.

As for part (3), consider a non-empty open U ⊂ X. We have

OX(0)(U) = {f ∈ K | ordZ,X(f) ≥ 0 for all Z prime with generic point ηZ ∈ U} .

This implies that
OX ⊂ OX(0) ⊂ K

as subsheaves of K. To prove that the inclusion OX ⊂ OX(0) is an equality of sub-
sheaves of K, it suffices to show that OX(U) = OX(0)(U) ⊂ K for each non-empty
affine open U ⊂ X. If U = Spec A for a normal noetherian integral domain A, then
this follows from the fact that

A =
{
f ∈ K | ordV (p),U(f) ≥ 0 for all height one p ∈ U

}
,

see Corollary 3.2.4.
Conversely, let D be a Weil divisor so that OX(D) = OX ⊂ K. Write D =∑
nZZ. Assume that nZ 6= 0 for some prime divisor Z ⊂ X; our goal is to arrive at

a contradiction. We may assume that nZ > 0. Let z ∈ Z be the generic point of Z,
and let U ⊂ X be an affine open neighbourhood of z in X. Let A = OX(U), and let
p ⊂ A be the height one prime ideal corresponding to z ∈ U . Then OU,z = Ap, and
this is a discrete valuation ring. Moreover, we have Z ∩U = V (p) ⊂ U = Spec A, and

OX(D)z =
{
f ∈ K | ordV (p),U(f) ≥ −nZ

}
.

As we assume that OX(D) = OX , we get OX(D)z = OX,z = Ap, hence{
f ∈ K | ordV (p),U(f) ≥ −nZ

}
= OX(D)z = Ap =

{
f ∈ K | ordV (p),U(f) ≥ 0

}
. (3.3)

We claim this is a contradiction. Indeed, Ap is a discrete valuation ring with maximal
ideal pAp, which is generated by a single element t ∈ pAp, see Theorem 3.1.21. This
gives an element

f := t−1 ∈ K
that has the property that

ordV (p),U(f) = v(t−1) = −1.

Hence f ∈ OX(D)z (since nZ > 0) but f 6∈ OX,z, which violates (3.3).
Finally, to prove part (4), we apply part (3) to the Weil divisor D − E. The fact

that OX(D) = OX(E) implies that OX(D − E) = OX ⊂ K, so that D = E.

Lemma 3.3.6. Let X be a normal integral noetherian scheme with function field K.
Let D be a Weil divisor on X.
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(1) If f ∈ K, then

OX(div(f)) = f−1 · OX ⊂ K (3.4)

as subsheaves of the constant sheaf K associated to K.

(2) Then D is a principal divisor if and only if OX(D) ∼= OX .

Proof. For item (1), let U ⊂ X be a non-empty affine open with U = Spec A. We
claim that

Γ(U,OX(div(f))) = f−1 · A ⊂ K. (3.5)

Indeed,

Γ(U,OX(div(f))) =
{
g ∈ K | ordV (p),U(g) ≥ −ordV (p),U(f) for all p of height one

}
,

so that

f · Γ(U,OX(div(f))) =
{
g ∈ K | ordV (p),U(g) ≥ 0 for all primes p of height one

}
= A,

where the second equality holds by Corollary 3.2.4. Hence (3.5) follows, proving (3.4).
For item (2), assume that D = div(f) for some f ∈ K∗. Then OX(div(f)) = f−1 ·

OX by item (1), and multiplication by f ∈ K∗ defines an isomorphism f−1 ·OX ∼= OX .
Conversely, assume that D =

∑
nZZ is a Weil divisor such that OX(D) ∼= OX .

Since OX(D) is an OX-submodule of K, the fact that it is free of rank one over OX
implies that there exists g ∈ K∗ such that OX(D) = OX · g ⊂ K. Define f = g−1. We
claim that D = div(f). Note that

OX(div(f)) = f−1 · OX = g · OX ⊂ K

by item (1). Therefore,

OX(D) = OX · g = OX(div(f)) ⊂ K

as subsheaves of K. Thus, we have D = div(f) by item (4) of Lemma 3.3.5.

Definition 3.3.7. Let X be a normal integral noetherian scheme. Let D be a Weil
divisor on X. For a non-empty open subscheme U , U is a normal integral noetherian
scheme, see Lemma 3.1.20. We define a Weil divisor D|U on U as follows: if D =∑k

i=1 niZi for some ni ∈ Z and prime divisors Zi ⊂ X, we let J ⊂ {1, . . . , k} be the
subset of those j ∈ {1, . . . , k} such that Zj∩U 6= ∅ (equivalently, such that the generic
point ηj of Zj is contained in U). We then define D|U =

∑
j∈J nj (Zj ∩ U). The fact

that Zj ∩ U ⊂ U is a prime divisor (whenever Zj ∩ U 6= ∅) follows from the fact that
codim(Zj ∩ U,U) = dimOU,ηj = OX,ηj = codim(Zj, X) = 1, see Lemma 3.1.25.

Corollary 3.3.8. Let X be a normal integral noetherian scheme. Let D be a Weil
divisor on X. Then the following are equivalent:
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(1) The OX-module OX(D) is invertible (i.e. locally free of rank one).

(2) The Weil divisor D is locally principal; that is, there exists an open covering
X = ∪Ui of X and rational functions fi ∈ K∗ such that D|Ui

= div(fi).

Proof. Let U ⊂ X be a non-empty open subscheme. Then U is a normal integral
noetherian scheme, see Lemma 3.1.20, and OX(D)|U = OU(D|U). Moreover, by item
(2) of Lemma 3.3.6, we have that OU(D|U) ∼= OU if and only if D|U is a principal
divisor. Consequently, we see that the OU -module OX(D)|U is trivial (i.e. isomorphic
to OU) if and only if D|U is a principal divisor. In particular, the sheaf OX(D) is
locally free of rank one if and only if the Weil divisor D is locally principal.

Exercise 3.3.9. Let X be a normal integral noetherian scheme. Let D ⊂ X be an
integral closed subscheme of codimension one, and I ⊂ OX the ideal sheaf of D in X.

(1) Show that the subsheaf OX(−D) ⊂ K is contained in OX ⊂ K.

(2) Show that I = OX(−D) as subsheaves of OX .

3.3.3 Cartier divisors
Definition 3.3.10. Let X denote a normal integral noetherian scheme with function
field K and sheaf of rational functions K. Consider the exact sequence of sheaves of
abelian groups:

0 −→ O∗X −→ K∗ −→ K∗/O∗X −→ 0.

It induces a short exact sequence

0 −→ Γ(X,O∗X) −→ Γ(X,K∗) −→ Γ(X,K∗/O∗X).

(1) A Cartier divisor onX is a global sectionD ∈ Γ(X,K∗/O∗X) of the sheaf K∗/O∗X .

(2) We define
CaDiv(X) := Γ(X,K∗/O∗X)

as the abelian group of Cartier divisors.

(3) A Cartier divisor is principal if it is in the image ofK∗ = Γ(X,K∗)→ Γ(X,K∗/O∗X).

(4) Two Cartier divisors are called linearly equivalent if their difference is principal.

(5) A Cartier datum is an open covering {Ui} of X by non-empty opens Ui ⊂ X,
together with elements fi ∈ K∗ satisfying fif−1

j ∈ O∗X(Ui ∩ Uj) for all i, j.

Lemma 3.3.11. (1) For a Cartier divisor D ∈ Γ(X,K∗/O∗X), there exists an open
cover {Ui} (with Ui 6= ∅ for all i) of X, and for each i an element fi ∈ Γ(Ui,K∗),
such that for each i, j, we have fi/fj ∈ Γ(Ui ∩ Uj,O∗X). In other words, each
Cartier divisor D defines a Cartier datum {(Ui, fi)}.

(2) Conversely, each Cartier datum {(Ui, fi)} defines a Cartier divisor D on X.
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(3) Two Cartier data {(Ui, fi)} and {(Vj, gj)} define the same Cartier divisor if and
only if fig−1

j ∈ Γ(Ui ∩ Vj,O∗X) for all i, j.

Proof. Exercise.

3.4 Lecture 23 : Cartier divisors, Weil divisors and sheaves

Lemma 3.4.1. Let X be a noetherian normal integral scheme. Then there is a natural
injective homomorphism

π : CaDiv(X) −→ Div(X),

whose image consists of the Weil divisors D on X which are locally principal (in the
sense of Corollary 3.3.8).

Proof. Let
{(Ui, fi)}i∈I

be a Cartier divisor on X. We define the associated Weil divisor D =
∑
nZZ as

follows. Define a function

ϕ : {prime divisors Z ⊂ X} −→ I,

by choosing for each prime divisor Z ⊂ X, an element i = ϕ(Z) ∈ I such that
Ui ∩ Z 6= ∅. We then put nZ := ordZ,X(fϕ(Z)).

This does not depend on the function ϕ. Indeed, if Uj∩Z 6= ∅, then the generic point
of Z is contained in Ui and in Uj, hence Ui ∩Uj 6= ∅, and fi/fj ∈ Γ(Ui ∩Uj,O∗X) ⊂ K,
so that ordZ,X(fif

−1
j ) = 0, which implies that ordZ,X(fi) = ordZ,X(fj).

Note that the sum D =
∑
nZZ =

∑
ordZ,X(fϕ(Z))Z is finite. Indeed, we can fix

i ∈ I such that Ui 6= ∅. Then the complement W := X − Ui is a closed subset of
codimension at least one, which has finitely many irreducible components (since it is
noetherian), hence there are finitely many prime divisors Z ⊂ X which are contained
in W ; moreover, we can write

D =
∑

Z∩Ui 6=∅

ordZ∩Ui,Ui
(fi)Z +

∑
Z⊂W

ordZ,X(fϕ(Z))Z,

and the sum
∑

Z∩Ui 6=∅ ordZ∩Ui,Ui
(fi)Z is finite because of Lemma 3.2.5.

This defines a group homomorphism, because if {(Ui, fi)} and {(Vj, gj)} are two
Cartier divisors on X, then ordZ,X(fi · gj) = ordZ,X(fi) + ordZ,X(gj) for each prime
divisor Z ⊂ X.

It remains to show that the image of π is the subgroup of locally principal divisors.
It is clear that

D := π
(
{(Ui, fi)}i∈I

)
=
∑
Z

ordZ,X(fϕ(Z))

is locally principal for a Cartier divisor {(Ui, fi)}i∈I on X, since D|Ui
is principal for

each i ∈ I. Conversely, if D ∈ Div(X) is locally principal, then there exists an open
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covering X = ∪Ui such that D|Ui
= div(fi) ∈ Div(Ui) for some fi ∈ K∗. Then

{(Ui, fi)} gives a Cartier divisor on X. Indeed, we have

div(fi)|Ui∩Uj
= D|Ui

|Uj
= D|Uj

|Ui
= div(fj)|Ui∩Uj

,

so that fi, fj ∈ K∗ define the same Weil divisor on Ui ∩ Uj, which means that
div(fif

−1
j ) = 0 as a Weil divisor on Ui ∩ Uj, so that

OUi∩Uj
= OUi∩Uj

(div(fif
−1
j )) = f−1

i fj · OUi∩Uj
⊂ K|Ui∩Uj

,

see Lemmas 3.3.5 and 3.3.6. Therefore, f−1
i fj ∈ Γ(Ui ∩ Uj,O∗X).

To prove that π is injective, assume that D =
∑

ordZ,X(fϕ(Z))Z = 0 for some
Cartier divisor {(Ui, fi)} on X. Then D|Ui

= 0 for each i ∈ I, and D|Ui
= div(fi) ∈

Div(Ui). By the above argument, fi ∈ Γ(Ui,O∗X). Hence the Cartier divisor {(Ui, fi)}
is trivial, that is, {(Ui, fi)} ∈ Γ(X,K∗/O∗X) is the identity element.

Definition 3.4.2. LetX be a noetherian integral normal scheme. For a Cartier divisor
D = {(Ui, fi)} on X, we define a sheaf of OX-modules OX(D) := OX(π(D)).

Lemma 3.4.3. Let X be a normal integral noetherian scheme and let D and E be two
Cartier divisors on X. Then the following hold:

(1) OX(D + E) ∼= OX(D)⊗OX
OX(E);

(2) we have OX(D) ∼= OX(E) if and only if D and E are linearly equivalent.

Proof. As for item (1): choose an affine open cover {Ui} of X such that D|Ui
= div(fi)

and E|Ui
= div(gi). Let i ∈ I and Ai = OX(Ui). Since OX(D), OX(E) and OX(D+E)

are quasi-coherent, it suffices to show that the canonical map

Γ(Ui,OX(D))⊗Ai
Γ(Ui,OX(E)) −→ Γ(Ui,OX(D + E))

is an isomorphism for each i ∈ I. But as D|Ui
= div(fi) and E|Ui

= div(gi), this map
can be identified with the map

Γ(Ui,OX(div(fi)))⊗Ai
Γ(Ui,OX(div(gi))) −→ Γ(Ui,OX(div(figi))

and as OX(div(f)) = f−1 · OX for f ∈ K∗, this map corresponds to the map

f−1
i Ai ⊗Ai

g−1
i Ai −→ f−1

i g−1
i Ai. (3.6)

The map (3.6) is an isomorphism, which proves (1).
To prove item (2), notice that, in view of item (1), it suffices to prove that OX(D) ∼=

OX if and only if D is a principal Cartier divisor. For this, note that OX(D) ∼= OX if
and only if D = div(f) is a principal Weil divisor (see Lemma 3.3.6), and moreover,
for D ∈ CaDiv(X), have π(D) = div(f) for some f ∈ K∗ if and only if D is in the
image of K∗ → Γ(X,K∗/O∗X), which is to say, D is a principal Cartier divisor.
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Proposition 3.4.4. Let X be a noetherian normal integral scheme. Then the associ-
ation D 7→ OX(D) defines a natural homomorphism

ρ : CaCl(X) −→ Pic(X),

where, as usual, Pic(X) denotes the group of isomorphism classes of invertible sheaves.

Proof. This follows from Corollary 3.3.8 together with Lemmas 3.4.1 and 3.4.3.

Proposition 3.4.5. Let X be a noetherian normal integral scheme. The map

ρ : CaCl(X) −→ Pic(X), D 7→ OX(D)

is an isomorphism.

Proof. Injectivity: If D and E are Cartier divisors with OX(D) ∼= OX(E), then D is
linearly equivalent to E (see Lemma 3.4.3), so that ρ is injective.

Surjectivity: Let L be a line bundle on X. Let V ⊂ X be a non-empty open subset
of X such that there exists a non-zero section f ∈ Γ(V,L). Let {Ui} be an open
cover of X by non-empty affine opens Ui ⊂ X such that L|Ui

∼= OUi
. Then f induces

elements fi ∈ Γ(Ui ∩ V,OX) ⊂ K; in particular, we get fi ∈ K for each i ∈ I. We
remark that D := {Ui, fi} is a Cartier divisor, and that OX(D) ∼= L (exercise).

Lemma 3.4.6. Let X = Spec A where A is a noetherian normal domain. Let D ∈
Div(A), write D =

∑
q nqV (q), where q ranges over the primes in A of height one.

Consider the sheaf OX(D) on X. Let p ∈ X. Define a Weil divisor Dp on Spec Ap as

Dp :=
∑
q

nϕ(q)V (q), (with ϕ : Spec Ap → Spec A the canonical morphism),

where q ranges over the prime ideals of Ap of height one. Then OX(D)p = OSpec Ap(Dp).

Proof. Exercise.

Lemma 3.4.7. Let A be a noetherian ring. Let M be a finitely generated A-module.
Let X = Spec A, p ∈ X, and n ∈ Z≥1. The coherent sheaf F = M̃ is locally free (of
rank n) around p ∈ X if and only if the stalk Mp is a free Ap-module (of rank n).

Proof. Exercise.

Proposition 3.4.8. Let X be a normal integral noetherian scheme. Suppose that OX,x
is a UFD for each x ∈ X. The map π : CaDiv(X)→ Div(X) is an isomorphism.

Proof. Let D ∈ Div(X). We need to show that D is locally principal (see Lemma
3.4.1), or equivalently, that OX(D) is locally free of rank one (see Lemma 3.3.8).
Equivalently (see Lemma 3.4.7), we need to show that OX(D)x is a free OX,x-module
for each x ∈ X. Thus we may assume that X = Spec A is affine, and need to show
that OX(D)x is a free OX,x-module, for any x ∈ X corresponding to a prime p ⊂ A.
To then prove that OX(D)x ∼= OX,x, it suffices, in view of Lemma 3.4.6, to prove that
OX(D) ∼= OX for any D ∈ Div(Spec A) in case A is a local noetherian domain and
a UFD. But in this case, we have Cl(Spec A) = 0 by Proposition 3.2.17, so that D is
principal, and hence OX(D) ∼= OX (see Lemma 3.3.6) as desired.
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Theorem 3.4.9. Let X be a smooth variety over a field k. Then for each x ∈ X,
we have dimk(x) mx/m

2
x = dim(OX,x), where mx ⊂ OX,x denotes the maximal ideal of

OX,x. In particular, the local ring OX,x is a UFD for each x ∈ X.

Proof. We do not prove this here.

Corollary 3.4.10. Let X be a smooth variety over a field. Then the natural maps

π : CaCl(X) −→ Cl(X) and ρ : CaCl(X) −→ Pic(X)

are isomorphisms.

Corollary 3.4.11. Let k be a field. Then Pic(An
k) = 0. In particular, for the k-algebra

R = k[x1, . . . , xn], we have that any R-module M such that Mp
∼= Rp for each prime

ideal p ⊂ R is in fact isomorphic to R.

Proof. Indeed, we saw that Cl(An
k) = 0, see Corollary 3.2.18. Thus Pic(An

k) = 0 by
Corollary 3.4.10. The other statement follows then from Lemma 3.4.7.

3.4.1 Restricting divisors to an open subscheme
Theorem 3.4.12. Let X be a noetherian normal integral scheme and let U ⊂ X be a
non-empty open subscheme. Let W = X − U . Let Z1, . . . ,Zr ⊂ W be the irreducible
components of W of codimension one in X. Then the natural sequence

r⊕
i=1

Z · [Zi] −→ Cl(X) −→ Cl(U) −→ 0

is exact.

Proof. Right exactness follows from the fact that if Z ⊂ U is a prime divisor on
U , then its closure Z ⊂ X is a prime divisor on X, and Z|U = Z ∩ U = Z. It
is also clear that for any i ∈ {1, . . . , r}, we have Zi|U = 0 as Weil divisors on U .
Conversely, let Z ⊂ X be a prime divisor such that Z|U = div(f) for some f ∈ K∗.
Then D := Z − div(f) ∈ Div(X) satisfies D|U = 0 as Weil divisors on U . Thus D is
supported on W , hence D =

∑r
i=1 niZi for some ni ∈ Z, and the theorem follows.

Corollary 3.4.13. Let X be a noetherian normal integral scheme. Let Y ⊂ X be an
integral closed subscheme of codimension at least two. Then the natural map

Cl(X)→ Cl(X − Y )

is an isomorphism.

Example 3.4.14. Let k be a field. The map Cl(A2
k)→ Cl(A2

k−{0}) is an isomorphism.
Thus Cl(A2

k − {0}) = 0 in view of Corollary 3.2.18.
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Example 3.4.15. Let k be a field and let P ∈ P1
k be the image of a k-point Spec k →

P1
k (cf. Example 3.1.28). Let U = P1

k −{P}. Then U ∼= A1
k. We get an exact sequence

Z · [P ] −→ Cl(P1
k) −→ Cl(A1

k) = 0.

This gives a surjection Z→ Cl(P1
k) sending 1 to the class of P in Cl(P1

k). This map is
injective, for if [nP ] = 0 ∈ Cl(P1

k), then nP = div(f) for some f ∈ k(P1
k), and we have

nP |U = 0 so that div(f)|U = 0, which implies that f ∈ k(P1
k) = k(t) has neither zeros

nor poles on U ∼= A1
k so that f ∈ Γ(A1

k,O∗A1
k
) = k∗. Hence f is constant, so n = 0.

We conclude that Cl(P1
k) = Z · [P ] (compare Exercise 3.3.1). Under the isomor-

phism Cl(P1
k) = Pic(P1

k), the generator P is sent to OP1
k
(1), hence this also shows that

Pic(P1
k) = Z · OP1

k
(1) (compare Exercise 2.3.11).
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Chapter 4

Differentials

In this chapter, we introduce Kähler differentials, which allow us to the sheaf of Kähler
differentials for an algebraic variety. Differentials appear in many areas of mathemat-
ics, including multivariable analysis, differential geometry and complex geometry. In
algebraic geometry, they are introduced algebraically, and referred to as Kähler differ-
entials. For a smooth variety, the sheaf of Kähler differentials is locally free of rank
equal to the dimension of the variety, and forms the algebraic analogue of the cotan-
gent bundle of a smooth manifold. Namely, if the variety is defined over a perfect field,
then for each point of the variety, the fibre of this sheaf above this point is canonically
isomorphic to the dual of the Zariski tangent space of the variety at that point.

4.1 Lecture 24 : Kähler differentials

Definition 4.1.1. Let A→ B be a morphism of rings. Let M be a B-module. Then
an A-derivation from B with values in M is an A-linear map D : B → M such that,
for all b1, b2 ∈ B, we have

D(b1b2) = b1D(b2) + b2D(b1).

Note that, in particular, D(a) = 0 for every a ∈ A (indeed, this follows from the string
of equalities D(a) = a ·D(1 · 1) = 2a ·D(1) = 2 ·D(a)).

Let DerA(B,M) be the set of A-derivations of B into M . Note that DerA(B,M)
has a natural B-module structure.

Example 4.1.2. Let t1, . . . , tn be variables and let B = M = k[t1, . . . , tn]. Then for
each i ∈ {1, . . . , n}, we have that ∂/∂ti : B → B is an A-derivation.

Note that, for a fixed morphism of rings A→ B, the association

M 7→ DerA(B,M)

defines a functor DerA(B,−) from ModB to itself.
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Proposition 4.1.3. Let A→ B be a morphism of rings. The covariant functor

DerA(B,−) : ModB −→ ModB

is representable. In other words, there exists a B-module ΩB/A and a derivation

dB : B −→ ΩB/A

such that for any B-module M and any A-derivation D : B →M there exists a unique
B-module morphism α : ΩB/A →M such that α ◦ dB = D.

Proof. Define G as the free B-module on the set underlying B, and for b ∈ B, let
db ∈ G be the canonically attached element. Thus G =

⊕
b∈B B · db. Let H ⊂ G be

the submodule generated over B by elements of the form

d(b+ b′)− db− db′ and d(bb′)− bdb′ − b′db and da,

for a ∈ A, b, b′ ∈ B. Define ΩB/A = G/H, and the map dB : B → ΩB/A as the map
with dB(b) = db. This is a group homomorphism (by the first constraint), it satisfies
d(bb′) = bd(b′) + b′d(b) for b, b′ ∈ B (by the second constraint), and it is A-linear (since
dB(A) = 0 and d(bb′) = bd(b′) + b′d(b) for b, b′ ∈ B).

Let D : B → M be an A-derivation into a B-module M . Define a B-morphism
α : ΩB/A → M by putting α(db) = D(b) for b ∈ B and extending linearly. Then α is
the unique B-module map ΩB/A →M such that α ◦ d = D.

Example 4.1.4. Let A → A′ be a morphism of rings, let A′ → B be a morphism of
rings, and let M be a B-module. We get an inclusion DerA′(B,M) ⊂ DerA(B,M). In
particular, DerA′(B,ΩB/A′) ⊂ DerA(B,ΩB/A′). Thus, by the universal property, the
A-derivation dB/A′ : B → ΩB/A′ factors as

B −→ ΩB/A −→ ΩB/A′ .

Proposition 4.1.5. Let A be a ring, B = A[t1, . . . , tn]. Then ΩB/A is the free B-
module generated by dt1, . . . , dtn, and dB : B → ΩB/A =

⊕
iBdti is defined as

dB(f) =
∑

(∂f/∂ti)dti, f ∈ B = A[t1, . . . , tn].

Proof. Consider the map d : B →
⊕

iBdti with d(f) =
∑

(∂f/∂ti)dti for f ∈ B. Let
M be any B-module, and D : B → M an A-derivation. There is a unique morphism
of B-modules

⊕
iBdti →M making the obvious triangle commute (exercise).

Proposition 4.1.6. Let A → B be a morphism of rings. Let C = B/I for some
ideal I ⊂ B. Let α : B → C be the quotient map. Note that I/I2 is a C-module in a
canonical way. The sequence of C-modules

I/I2 δ−→ ΩB/A ⊗B C
f−→ ΩC/A −→ 0

is exact, where δ(x̄) = dx⊗1 for x ∈ I with image x̄ ∈ I/I2, and where f(db⊗c) = c·db.
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Proof. It suffices to show that for each C-module N , the sequence

0 // HomC(ΩC/A, N)
f∗
// HomC(ΩB/A ⊗B C,N) δ∗ // HomC(I/I2, N)

0 // DerA(C,N) // DerA(B,N) // HomC(I ⊗B C,N)

HomB(I,N)

is exact. Since α : B → C is surjective, the map f is surjective, too (verify this). Thus,
the map f ∗ : DerA(C,N) −→ DerA(B,N) is injective. The map

δ∗ : DerA(B,N) −→ HomB(I,N)

associates to an A-derivation D : B → N its restriction to I, which is an A-linear
map D|I : I → N , which is in fact B-linear, since for b ∈ B and a ∈ I, we have
D(b · a) = aD(b) + bD(a) = bD(a) ∈ N . If D|I = 0 then D factors as

B
α−→ C

D′−→ N,

and the induced map D′ : C → N is an A-derivation from C into N .

Proposition 4.1.7. Let A be a ring and let B be a finitely generated A-algebra. Then
ΩB/A is finitely generated over B.

Proof. Write B = A[t1, . . . , tn]/I for some ideal I ⊂ A[t1, . . . , tn]. Then we get an
exact sequence

I/I2 −→ ΩA[t1,...,tn]/A ⊗A B −→ ΩB/A −→ 0.

As ΩA[t1,...,tn]/A =
⊕n

i=1 Adti (see Example 4.1.2), we are done.

4.1.1 Kähler differentials on schemes
Definition 4.1.8. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Then an f−1(OS)-linear morphism D : OX → F is called an
OS-derivation if for all affine open subset V ⊂ S and U ⊂ X with f(U) ⊂ V , the map

D|U : OX(U) −→ F(U)

is an OS(V )-derivation (with respect to the natural ring morphism OS(V )→ OX(U)).

For a morphism of schemes f : X → S, and a quasi-coherent OX-module F ,
let DerOS

(OX ,F) denote the set of OS-derivations OX → F , which is naturally an
OX(X)-module. Remark that the association

F 7→ DerOS
(OX ,F)

defines a functor

DerOS
(OX ,−) : QCoh(X) −→ ModOX(X) (4.1)

from the category of quasi-coherent OX-modules to the category of OX(X)-modules.
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Theorem 4.1.9. Let f : X → S be a morphism of schemes.

(1) The functor (4.1) is representable. In other words, there exists a quasi-coherent
OX-module ΩX/S together with an OS-derivation

dX : OX → ΩX/S

that satisfies the following universal property: for any quasi-coherent OX-module
F and any OS-derivation D : OX → F , there exists a unique morphism of OX-
modules α : ΩX/S → F such that D = α ◦ dX .

(2) The sheaf ΩX/S is a quasi-coherent sheaf on X that has the property that for each
affine open V = Spec A ⊂ S and each affine open U = Spec B ⊂ f−1(V ) ⊂ X,
we have a canonical isomorphism of OU -modules

ΩX/S|U ∼= Ω̃B/A.

(3) For each x ∈ X, we have a canonical isomorphism (ΩX/S)x ∼= ΩOX,x/OS,f(x)
.

(4) If f is of finite type, then ΩX/S is coherent.

Proof. Items (1), (2) and (3): either prove this by adapting the proof of the affine
case, or use the result from the affine case to define ΩX/S|U for affine opens U ⊂ X
and V ⊂ S with f(U) ⊂ V , and then glue. For item (4), see Proposition 4.1.7.

4.1.2 Euler sequence
Theorem 4.1.10. Let A be a ring. There is a natural exact sequence

0 −→ ΩPn
A/A
−→ OPn

A
(−1)n+1 −→ OPn

A
−→ 0.

Proof. We do not prove this here. See e.g. [OE15, Theorem 19.24].

4.2 Lecture 25 : Regular and smooth schemes

4.2.1 Regular local rings
Lemma 4.2.1. Let B be a noetherian local ring with maximal ideal m. Let e ∈ Z≥0.
Let K = B/m. Then m can be generated by e elements if and only if dimK(m/m2) ≤ e.

Proof. Assume m = (x1, . . . , xe) can be generated by e elements. Then dimK(m/m2) ≤
e. Conversely, let x1, . . . , xe ∈ m be such that they generate m/m2. We get an inclusion
I := (x1, . . . , xe) ⊂ m. Consider the ring R̄ := R/I. Let m̄ ⊂ R̄ be the image of m. We
get m̄ ≡ 0 mod R̄/m̄2. Hence m̄ = m̄2 ⊂ R̄. Thus m̄ = 0 by Nakayama’s lemma.

Lemma 4.2.2. Let B be a noetherian local ring with maximal ideal m. Let K = B/m.
Then dim(B) ≤ dimK(m/m2).
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Proof. Note that ht(m) = dim(B): the height of m equals the dimension of B. Now
assume dimK(m/m2) = e. By Lemma 4.2.1, we see that m can be generated by e
elements. Thus m = (x1, . . . , xe) for some xi ∈ B. This implies ht(m) ≤ e (verify
this). Therefore, we get dim(B) ≤ e = dimK(m/m2) as desired.

Definition 4.2.3. Let B be a noetherian local ring with maximal ideal m. Then B is
called regular if there exist n := dim(B) elements x1, . . . , xn with m = (x1, . . . , xn).

Lemma 4.2.4. B is regular if and only if dim(B) = dimK(m/m2), where K = B/m.

Proof. Let n = dim(B). By Lemma 4.2.2, n ≤ dimK(m/m2). By Lemma 4.2.1, we have
thatm can be generated by n elements if and only if dimK(m/m2) ≤ n. Combining this,
we see that m can be generated by n elements if and only if n ≤ dimK(m/m2) ≤ n.

4.2.2 Regular schemes
Definition 4.2.5. Let X be a noetherian scheme and let x ∈ X. We say that X is
regular at x if the noetherian local ring OX,x is regular. We say that X is regular if X
is regular at all of its points.

Definition 4.2.6. Let X be a scheme and let x ∈ X. The Zariski tangent space of X
at x, denoted by TxX, is the k(x)-vector space

TxX := (m/m2)∨ = Homk(x)(m/m
2, k(x))

where m is the maximal ideal of OX,x and k(x) = OX,x/m is the residue field of x.

Lemma 4.2.7. Let X be a noetherian scheme and let x ∈ X.

(1) The scheme X is regular at x if and only if dim(OX,x) = dimk(x)(TxX).

(2) If X is a variety over a field k, and if x ∈ X is a closed point (cf. Proposition
3.1.11), then X is regular at x if and only if dim(X) = dimk(x)(TxX).

Proof. Item (1) follows from Lemma 4.2.4 and the definitions. Item (2) follows from
item (1) together with the equality

dim(X) = codim({x}, X) = dim(OX,x),

see Proposition 3.1.25.

Exercise 4.2.8. Let X be a regular noetherian scheme. Show that X is reduced, that
is, that OX,x is reduced for each x ∈ X.
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4.2.3 Regular schemes and Kähler differentials
Proposition 4.2.9. Let (B,m) be a local k-algebra with residue field K = B/m ⊃ k.
Suppose that k ⊂ K is finite and separable. Then the map

δ : m/m2 −→ ΩB/k ⊗B K
from the conormal sequence (4.1.6) is an isomorphism.

Proof. Note that the conormal sequence (4.1.6) reads

m/m2 −→ ΩB/k ⊗B K −→ ΩK/k −→ 0.

We claim that ΩK/k = 0. Indeed, K is finite and separable over k, so that by the
primitive element theorem, we have

K = k(α) = k[x]/(f)

for some f ∈ f [x] with f(α) = 0 and f ′(α) 6= 0. Let M be a K-vector space and let
d : K →M be a k-derivation. Then

0 = d(0) = d(f(α)) = f ′(α) · d(α).

Since f ′(α) ∈ K∗, it follows that d(α) = 0. Now K is generated as a k-vector space by
the powers αi for i ∈ Z≥0, and we have d(αi) = i · αi−1 · d(α) = 0 for each i ≥ 1. Thus
d = 0. By the universal property of dK : K → ΩK/k, we conclude that ΩK/k = 0.

It remains to verify that δ : m/m2 → ΩB/k ⊗B K is injective. We leave this as an
exercise for the reader.

Corollary 4.2.10. Let B be an algebra satisfying the assumptions in Proposition 4.2.9.
Assume in addition that B is noetherian. Then B is a regular local ring if and only if

dim(B) = dimk

(
ΩB/k ⊗B K

)
.

Proof. By Proposition 4.2.9, we see that dimK(m/m2) = dimK(ΩB/k ⊗k K).

Recall that a field k is called perfect if every algebraic extension k′/k of k is sep-
arable. Examples include algebraically closed fields, finite fields, and fields of charac-
teristic zero. For a non-example: the field Fp(t) is not perfect. Namely, the extension
Fp(t) ⊂ Fp(t1/p) is not separable.

For varieties over a perfect fieldX, Kähler differentials are closely related to tangent
vectors at closed points (i.e., elements of TxX for x ∈ X closed).

Corollary 4.2.11. Let X be a variety over a perfect field k. Let x ∈ X be a closed
point. Then there is a canonical isomorphism of k(x)-vector spaces

(TxX)∨
∼−→ ΩX/k,x ⊗OX,x

k(x).

Proof. This is clear from Proposition 4.2.9, as the field extension k ⊂ k(x) is finite
(see Proposition 3.1.11) hence separable since k is perfect.

This justifies why the sheaf ΩX/k is often called the cotangent bundle. However,
note that ΩX/k is not a vector bundle in general, that is, this OX-module is not always
locally free of finite rank. If X is smooth, then this turns out to be the case, as we
will show next. Conversely, if k is perfect and ΩX/k is locally free, then X is smooth.
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4.2.4 Smooth schemes, regular schemes and Kähler differentials
Definition 4.2.12. Let k be a field. Let X ⊂ An

k be a closed subscheme of An
k , cut out

by polynomials f1, . . . , fr ∈ k[t1, . . . , tn]. Let x ∈ X be a closed point, cf. Proposition
3.1.11. Remark that, in view of Lemma 2.4.2, we can associate to x ∈ X an element

x ∈ Homk(Spec k(x), X) = X(k(x)) ⊂ An(k(x)) = (k(x))n ,

We define the Jacobian matrix of X ⊂ An
k at the point x as follows:

Jx :=

(
∂fi
∂tj

(x)

)
1≤i≤r,1≤j≤n

∈ Mr×n(k(x)). (4.2)

Lemma 4.2.13. Let k be a field. Let X ⊂ An
k be a closed subscheme of An

k , cut out
by polynomials f1, . . . , fr ∈ k[t1, . . . , tn]. Let x ∈ X be a closed point. Then

dimk(x)(TxX) ≤ n− rank(Jx), (4.3)

with Jx ∈ Mr×n(k(x)) as in (4.2). If k = k̄, then (4.3) is an equality.

Proof. Exercise.

Definition 4.2.14. Let X be a scheme of finite type over a field k. Let x ∈ X be a
closed point (cf. Proposition 3.1.11).

(1) Assume k = k̄. We say that X is smooth at x if there exists an affine open
neighbourhood U of x in X with U ∼= Spec A ⊂ An

k for a finitely generated
k-algebra A = k[t1, . . . , tn]/(f1, . . . , fr), such that the rank rk(Jx) of the matrix
(4.2) satisfies the equality

rk(Jx) = n− dim(OX,x).

Remark that if X is irreducible, then dim(OX,x) = dim(X) since x is closed, see
Proposition 3.1.25.

(2) In general, we say that X is smooth at x if for any closed point x′ ∈ Xk̄ = X×k k̄
lying over x, the scheme Xk̄ is smooth at x′. We say that the scheme X is smooth
over k if X is smooth at x for any x ∈ X.

Proposition 4.2.15. Let X be a scheme of finite type over a field k. Let x ∈ X be a
closed point. Then the following assertions are equivalent:

(1) The scheme X is smooth at x.

(2) For any closed point x′ ∈ Xk̄ lying over x ∈ X, the scheme Xk̄ is smooth at x′.

(3) For any closed point x′ ∈ Xk̄ lying over x ∈ X, the scheme Xk̄ is regular at x′.

(4) For any affine open neighbourhood U of x in X with U ∼= Spec A ⊂ An
k for a

finitely generated k-algebra A = k[t1, . . . , tn]/(f1, . . . , fr), the rank rk(Jx) of the
matrix (4.2) satisfies the equality rk(Jx) = n− dim(OX,x).
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(5) There exists an affine open neighbourhood U of x in X with U ∼= Spec A ⊂ An
k

for a finitely generated k-algebra A = k[t1, . . . , tn]/(f1, . . . , fr), such that the rank
rk(Jx) of the matrix (4.2) satisfies the equality rk(Jx) = n− dim(OX,x).

Proof. Assume (1). Then (2) holds by definition. Assume (2) and let x′ ∈ Xk̄ be a
closed point lying over x ∈ X. We claim that Xk̄ is regular at x′. Since Xk̄ is smooth at
x′, there exists an affine open neighbourhood V of x′ in Xk̄ with V ∼= Spec A ⊂ An

k̄
for

a finitely generated k̄-algebra A = k̄[t1, . . . , tn]/(f1, . . . , fr), such that the rank rk(Ix′)
of the matrix Ix′ = (∂fi/∂tj(x

′)) satisfies the equality

rk(Ix′) = n− dim(OXk̄,x
′).

By Lemma 4.2.13, we have dimk̄(Tx′Xk̄) = n − rk(Ix′). It follows that dim(OXk̄,x
′) =

dimk̄(Tx′Xk̄). Thus, Xk̄ is regular at x′ ∈ Xk̄, proving (3). We claim that (4) also holds.
Namely, let U be any affine open neigbourhood of x ∈ X with U ∼= Spec B ⊂ An

k for
a finitely generated k-algebra B = k[t1, . . . , tn]/(g1, . . . , gs). Let Jx = (∂gi/∂tj(x))ij
and Jx′ = (∂gi/∂tj(x

′))ij. Then rk(Jx′) = rk(Jx) and dim(OX,x) = dim(OXk̄,x
′). By

Lemma 4.2.13, we have dimk̄(Tx′Xk̄) = n− rk(Jx′). Therefore:

rk(Jx) = rk(Jx′) = n− dimk̄(Tx′Xk̄) = n− dim(OXk̄,x
′) = n− dim(OX,x).

This proves (4) as desired.
Clearly, (4) proves (5). Finally, assume (5). Let x′ ∈ Xk̄ be a closed point lying

over x ∈ X. Let U ⊂ X as in (5). We have Uk̄ ∼= Spec (A ⊗k k̄) ⊂ An
k̄
, and

rk(Jx′) = rk(Jx) = n− dim(OX,x) = n− dim(OXk̄,x
′), proving (1). We are done.

Lemma 4.2.16. Let X be an irreducible scheme of finite type over a field k. Let
x ∈ X be a closed point. Assume that X is smooth at x. Then there exists an open
neighbourhood x ∈ U ⊂ X of x in X such that the scheme U is smooth over k.

Proof. We may assume X = Spec k[t1, . . . , tn]/(f1, . . . , fr) with the Jacobian matrix
(∂fi/∂tj(x)) of rank m := n − dim(X) at x ∈ X. Thus, there exists a m ×m-minor
of the matrix (∂fi/∂tj) which does not vanish at x ∈ X. Hence this minor does not
vanish in an open neighbourhood U of x in X. This scheme U is smooth over k.

Exercise 4.2.17. Let X be a scheme of finite type over a field k. Let Xcl be the set
of closed points of X. Show that Xcl is dense in X.

Exercise 4.2.18. Let F be a coherent sheaf on a noetherian scheme X. Define a
function φ : X → Z as φ(x) = dimk(x)(Fx ⊗OX,x

k(x)).

(1) Let n ∈ Z≥1. Using Nakayama’s lemma, show that the set {x ∈ X | φ(x) ≤ n}
is open in X.

(2) Deduce that if X is irreducible with generic point η, then we have φ(x) ≥ φ(η)
for all x ∈ X.

(3) Let us suppose that φ is constant of value n ≥ 1 on X, and that X is reduced.
Show that F is locally free of rank n.
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(4) Assume that X is an irreducible scheme of finite type over a field k. Define
U := {x ∈ X | φ(x) ≤ φ(η)}, where η ∈ X is the generic point. Let Xcl ⊂ X be
the set of closed points of X. Show that U ∩Xcl 6= ∅. Conclude that there exists
a closed point x ∈ X with φ(x) = φ(η).

(5) Assume X is an integral scheme of finite type over a field k. Let n ∈ Z≥1.
Suppose φ(x) = n for every closed x ∈ X. Show that F is locally free of rank n.

Lemma 4.2.19. Let X be a scheme of finite type over a field k. Let k′ ⊃ k be an
algebraic field extension, and let X ′ = X ×k k′. Let p : X ′ → X be the natural map.
Let x′ ∈ X ′ and x ∈ X be closed points with x = p(x′).

(1) There is a natural isomorphism p∗(ΩX/k) ∼= ΩX′/k′.

(2) In particular, there is a natural isomorphism ΩX′/k′,x′
∼= ΩX/k,x ⊗OX,x

OX′,x′ and
hence ΩX′/k′,x′ ⊗OX′,x′

k(x′) ∼=
(
ΩX/k,x ⊗OX,x

k(x)
)
⊗k(x) k(x′).

(3) Consequently, if k is perfect, we have a natural isomorphism of k(x′)-vector
spaces TxX ⊗k(x) k(x′) ∼= Tx′X

′.

Proof. Exercise.

Non-Example 4.2.20. Let t be a variable, let p be a prime number, and let k = Fp(t).
We consider the inseparable field extension k ⊂ k(α) where αp = t. Let C ⊂ A2

k be
the curve defined by the equation xp + yp = t. Then C ′ := C ×k k(α) is given by the
equation

(x+ y)p = xp + yp = t = αp.

This equation can be rewritten as (x+y−α)p = 0. This implies that C ′ is everywhere
non-reduced. Therefore, since the curve C is regular everywhere, we get that for each
closed point x′ ∈ C ′ with image x ∈ C, we have 1 = dimk(x) TxC < dimk(x′) Tx′C

′.

Theorem 4.2.21. Let X be an algebraic variety over a perfect field k. Let d = dim(X).
Let x ∈ X be a closed point. The following are equivalent:

(1) X is smooth at x;

(2) X is regular at x;

(3) dimk(x)(ΩX/k,x ⊗OX,x
k(x)) = d.

(4) ΩX/k,x is a free module of rank d over OX,x;

(5) there exists an open neighbourhood U of x ∈ X such that ΩX/k|U is a locally free
OU -module of rank d.
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Proof. We may assume that X = Spec A ⊂ An
k is a closed subscheme of An

k .
We first prove the equivalence of (1), (2) and (3). Let x̄ ∈ Xk̄ a closed point lying

over x ∈ X. Then by Lemmas 4.2.2, 4.2.13 and 4.2.19, we have

dim(OX,x) ≤ dimk(x)(TxX) = dimk̄(Tx̄Xk̄) = n− rank(Jx̄) = n− rank(Jx). (4.4)

By Proposition 4.2.15, we have that (1) holds if and only if dim(OX,x) = n− rank(Jx).
Thus, in view of (4.4), we see that (1) holds if and only if (2) holds. Moreover, by
Corollary 4.2.11, we see that (2) and (3) are equivalent.

Next, observe that (4) and (5) are equivalent in view of Lemma 3.4.7. Moreover,
(5) implies (4) implies (3) in a trivial way. We prove that (1) implies (5); then we will
be done. Note that if (1) holds, then there exists a neighbourhood U of x in X such
that U is smooth over k, see Lemma 4.2.16. Replacing X by U , we may assume that
X is smooth over k. We claim that ΩX/k is locally free of rank d. Indeed, since we have
already shown the equivalence of (1) and (3), and since X is smooth at every closed
point z ∈ X, we have that dimk(z)(ΩX/k,z⊗OX,z

k(z)) = d for every closed point z ∈ X.
Thus, ΩX/k is locally free of rank d by Exercise 4.2.18. This proves the theorem.

Example 4.2.22. Let k be a field and let C = Spec k[x, y]/(f) ⊂ A2
k for some non-

zero polynomial f ∈ k[x, y]. Let R := k[x, y] and A := R/(f). By Proposition 4.1.6,
we have an exact sequence

(f)/(f 2) −→ A · dx⊕ A · dy −→ ΩC/k −→ 0,

where the map
(f)/(f 2) −→ A · dx⊕ A · dy

is the map that sends f to df = fxdx + fydy with fx = ∂f/∂x and fy = ∂f/∂y.
Therefore:

ΩC/k =
A · dx⊕ A · dy
fxdx+ fydy

. (4.5)

In particular, for each p ∈ C, we see that C is smooth at p if and only if fx(p) 6= 0
or fy(p) 6= 0, which happens precisely when fx(p)dx + fy(p)dy 6= 0, that is, when
dimk(p)

(
ΩC/k,p ⊗OC,p

k(p)
)

= 1 (see (4.5)). This is in accordance with Theorem 4.2.21.

Exercise 4.2.23. Let X be an irreducible scheme of finite type over a field k, all
whose irreducible components are of dimension d ≥ 0. Let x ∈ X be a closed point.
Show that Definitions 3.1.13 and 4.2.14 are equivalent. Prove Lemma 3.1.14.
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Chapter 5

Riemann–Roch for curves

5.1 Lecture 26 : Statement of the Riemann–Roch theorem

5.1.1 Divisors on curves
Lemma 5.1.1. Let C be a regular curve over a field k, with function field K. Let
x ∈ C be a closed point. Then the maximal ideal mx ⊂ OC,x is of the form mx = (tx)
for some tx ∈ OC,x. Consequently, having fixed such a generator tx for mx, for each
f ∈ K∗ there are unique α ∈ O∗C,x and n ∈ Z such that f = αtnx. This defines a
valuation

vx : K −→ Z ∪ {∞} , with the property that vx(t
n
x) = n.

Moreover, we have OC,x = {f ∈ K | vx(f) ≥ 0}.

Proof. See Theorem 3.1.21.

Lemma 5.1.2. Let C be a curve over a field k. Any closed subset Z ⊂ C is either of
the form Z = C or of the form Z = {x1, . . . , xn} for closed points xi ∈ C. If a point
x ∈ C is not closed, then {x} = C, i.e. in that case, x = η is the generic point of C.

Proof. If Z ( C is a closed subset of C, then each irreducible component W ⊂ Z
of Z has dimension dim(W ) < dim(C) = 1. Thus W must be a point. If x ∈ C is
not closed, then {x} ( {x} which implies that {x} is an irreducible closed subset of
dimension > 0. It must therefore equal C.

Let C be a regular curve over a field k. Let

D =
∑

x∈C closed

nx · x

be a Weil divisor on C. By Proposition 3.1.11, each residue field extension k(x) is a
finite field extension of k. Its degree is denoted by [k(x) : k].

Definition 5.1.3. The degree of the Weil divisor D is the integer
∑
nx · [k(x) : k].
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Continue to consider the Weil divisor D =
∑
nxx. We aim to give a Cartier divisor

D with the property that π(D) = D, with respect to the isomorphism π : CaDiv(C)
∼−→

Div(C), see Proposition 3.4.8. To do this, let x ∈ C be a closed point. Let Ux ⊂ C
be an affine open neighbourhood disjoint of all the y ∈ Supp(D) with y 6= x. Then
define gx = tnx

x ∈ K∗. This gives a Cartier divisor D defined by the Cartier datum
{(Ux, gx)} indexed by the closed points of C (remark that ∪x closedUx = C by Lemma
5.1.2). Moreover, we have π(D) = D (verify this!). In particular:

deg(D) =
∑

x∈C closed

[k(x) : k] · vx(gx).

Lemma 5.1.4. Let C be a smooth curve over a field k and let x ∈ C be a closed point.
Then

Ωk(C)/k = ΩC/k,x ⊗OC,x
k(C), (5.1)

and this is a k(C)-vector space of dimension one.

Proof. Indeed, since the OC-module ΩC/k is locally free of rank one (see Theorem
4.2.21), we get that for any point x ∈ C, we have that ΩC/k,x is an OC,x-module free of
rank one. In particular, Ωk(C)/k = ΩC/k,η is an OC,η = k(C)-vector space of dimension
one. If x ∈ C is a closed point, then ΩC/k,x is a free OC,x-module of rank one, hence
ΩC/k,x ⊗OC,x

k(C) is a k(C)-vector space of dimension one. The maps

k −→ OC,x −→ k(C)

induce a morphism of one-dimensional k(C)-vector spaces

ϕ : ΩC/k,x ⊗OC,x
k(C) = ΩOC,x/k ⊗OC,x

k(C) −→ Ωk(C)/k.

To prove (5.1), we need to show that ϕ is not the zero map. For this, let m ⊂ OC,x
be the maximal ideal; let t ∈ OC,x so that m = (t). Since t ∈ OC,x ⊂ k(C), we get
elements dt ∈ ΩC/k,x and dt ∈ Ωk(C)/k. As ϕ(dt⊗1) = dt, the map ϕ is non-trivial.

Definition 5.1.5. Let C be a smooth curve over a field k. Let ω ∈ Ωk(C)/k−{0}. We
define div(ω) ∈ Div(C) as follows. For each closed point x ∈ C, choose a generator ηx
for ΩC/k,x and write ω = gx · ηx for some gx ∈ k(C)∗ (see Lemma 5.1.4). Then

div(ω) :=
∑

x∈C closed

vx(gx) · x.

Lemma 5.1.6. Let C be a smooth curve over a field k. Fix ω ∈ Ωk(C)/k − {0}.

(1) The element div(ω) as defined above does not depend on the choice of the gen-
erator ηx ∈ ΩC/k,x for each closed x ∈ C.

(2) If ω′ = λ · ω ∈ Ωk(C)/k with λ ∈ k(C)∗, then div(ω′) = div(λ) + div(ω), hence
div(ω′) and div(ω) are linearly equivalent.
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Proof. Exercise.

Definition 5.1.7. Let C be a smooth curve over a field k. We define the canonical
divisor class of C as the Weil divisor class

KC := [div(ω)] ∈ Cl(C)

where ω is any element of Ωk(C)/k − {0}. Note that, by Lemma 5.1.6, the canonical
divisor class KC ∈ Cl(C) does not depend on the choice of ω.

Proposition 5.1.8. Let C be a smooth curve over a field k. Then we have a canonical
isomorphism of line bundles OC(KC) ∼= ΩC.

Proof. Exercise.

Example 5.1.9. Let k be a field. Consider the projective line P1
k = Proj(k[x0, x1])

over k. We claim that

ΩP1
k/k
∼= OP1

k
(−2). (5.2)

Recall that Pic(P1
k) = Z · OP1

k
(1), see Exercise 2.3.11. Therefore, in view of the iso-

morphism OP1
k
(KP1

k
) ∼= ΩP1

k/k
(see Proposition 5.1.8), to prove (5.2) it suffices to show

that deg(KP1
k
) = −2. Consider the open subscheme U0 ⊂ P1

k with

U0 = D+(x0) = Spec k[x0, x1](x0)
∼= Spec k[t],

see Proposition 2.2.1. This gives a rational differential

ω = dt ∈ Ωk(P1
k)/k

which is non-zero. On U1 = Spec k[t−1], we can write u = t−1, and have:

dt = d(u−1) = −u−2du.

Thus div(ω) = −2 · (0 : 1). In particular, deg(div(ω)) = −2, proving (5.2).
To construct a canonical isomorphism ΩP1

k/k
∼= OP1

k
(−2), we use Theorem 4.1.10

which gives a canonical exact sequence

0 −→ ΩP1
k/k
−→ OP1

k
(−1)2 −→ OP1

k
−→ 0.

Consider then the composition

ΩP1
k/k
−→ OP1

k
(−1)

⊕
OP1

k
(−1) −→ OP1

k
(−1)⊗OP1

k

OP1
k
(−1) ∼= OP1

k
(−2), (5.3)

in which the last map is the isomorphism of item (4) of Proposition 1.1.15. It remains
to verify that (5.3) is an isomorphism, which we leave as an exercise for the reader.
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5.1.2 Genus of a curve and Euler characteristic of a sheaf
Let C be a projective curve over a field k. Recall (cf. Definition 2.4.9), that the genus
of C is the integer g(C) = dimk H1(C,OC). This is an integer by Theorem 2.3.3.

Examples 5.1.10. (1) We have g(P1
k) = 0 as H1(P1

k,OP1
k
) = 0 by Corollary 2.3.2.

(2) Let C ⊂ P2
k be a plane curve of degree d > 0. Then g(C) = (d− 1)(d− 2)/2, see

Theorem 2.4.15.

Definition 5.1.11. LetX be a projective variety over a field k, and let F be a coherent
sheaf on X. For i ∈ Z≥0, we define

hi(X,F) := dimk Hi(X,F), χ(X,F) =
∞∑
i=0

(−1)ihi(X,F).

Remark that hi(X,F) ∈ Z≥0 and χ(X,F) ∈ Z≥0 by Theorems 2.3.3 and 2.1.15. The
integer χ(X,F) is called the Euler characteristic of the coherent sheaf F .

Lemma 5.1.12. Let X be a projective variety over a field k. Consider a short exact
sequence

0 −→ F1 −→ F2 −→ F3 −→ 0

of coherent sheaves on X. Then χ(X,F2) = χ(X,F1) + χ(X,F3).

Proof. Taking cohomology gives a long exact sequence

0 −→ H0(X,F1) −→ H0(X,F2) −→ · · · −→ Hn(X,F3) −→ 0.

The result follows then from Lemma 2.4.14.

5.1.3 Riemann–Roch and Serre duality: statement of the theorems
We come to the statements of the Riemann–Roch theorem and the Serre duality the-
orem for curves.

Theorem 5.1.13 (Riemann–Roch). Let C be a smooth projective curve over a field
k. Let g be the genus of C. Then for any Weil divisor D ∈ Div(C), we have:

χ(C,OC(D)) = h0(C,OC(D))− h1(C,OC(D)) = deg(D) + 1− g. (5.4)

Theorem 5.1.14 (Serre duality for curves). Let C be a smooth projective curve over a
field k. Let F be a finite locally free sheaf on C. Then there are canonical isomorphisms

H0(C,F)∨ = H1(C,F∨ ⊗OC
ΩC/k), (5.5)

H1(C,F) = H0(C,F∨ ⊗OC
ΩC/k)

∨. (5.6)

In particular, if D ∈ Div(C) is a Weil divisor on C, then there is a canonical isomor-
phism of k-vector spaces H1(C,OC(D)) = H0(C,OC(KC −D))∨.
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Remark 5.1.15. Observe that (5.6) follows from (5.5). Namely, the canonical mor-
phism F → (F∨)∨ that sends a local section s to the morphism of sheaves F∨ → OC
defined on local sections as (f 7→ f(s)), is an isomorphism. Thus, by (5.5), we have

H1(C,F) = H1
(
C, (F∨ ⊗OC

ΩC/k)
∨ ⊗OC

ΩC/k

)
= H0(C,F∨ ⊗OC

ΩC/k)
∨.

Corollary 5.1.16. Let C be a smooth projective curve over a field k. Let g be the
genus of C. Then g = dimk H0(C,ΩC).

Proof. Indeed, we have g(C) = h1(C,OC) = h0(C,ΩC) by Theorem 5.1.14.

As a corollary of Theorems 5.1.13 and 5.1.14, we obtain:

Theorem 5.1.17 (Riemann–Roch). Let C be a smooth projective curve of genus g
over a field k. Let D ∈ Div(C) be a Weil divisor on C. Then

h0(C,OC(D))− h0(C,OC(KC −D)) = deg(D) + 1− g.

Corollary 5.1.18. Let C be a smooth projective curve of genus g over a field k.
Consider the canonical divisor class KC ∈ Cl(C). Then deg(KC) = 2g − 2.

Proof. We have

h0(C,ΩC)− h0(C,OC) = h0(C,OC(KC))− h0(C,OC(KC −KC)) = deg(KC) + 1− g,

where the second equality holds by Theorem 5.1.17. As h0(C,OC) = 1 (see Example
2.3.4), we get:

deg(KC) = h0(C,ΩC) + g − 2.

By Corollary 5.1.16, we have h0(C,ΩC) = g, thus deg(KC) = 2g − 2 as desired.

Exercise 5.1.19. Let D be a Weil divisor on a smooth projective curve C over a field
k. Assume that deg(D) < 0. Show that H0(C,OC(D)) = 0.

Corollary 5.1.20. Let C be a smooth projective curve of genus g over a field k. Let
D ∈ Div(C) be a Weil divisor with deg(D) > 2g − 2. Then H1(C,OC(D)) = 0 and

h0(C,OC(D)) = deg(D) + 1− g. (5.7)

Proof. Indeed, as deg(D) > 2g−2, we have that deg(KC−D) = deg(KC)−deg(D) < 0,
see Corollary 5.1.18. Therefore, h1(C,OC(D)) = h0(C,OC(KC−D)) = 0, see Theorem
5.1.14 and Exercise 5.1.19. Thus, (5.7) follows from Theorem 5.1.13.
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5.2 Lecture 27 : Proof of the Riemann–Roch theorem

5.2.1 Morphisms between a variety and a curve
Lemma 5.2.1. Let X be a projective variety over a field k. Let R be a k-algebra which
is a discrete valuation ring, with fraction field K. Then for any morphism of k-schemes
f : Spec K → X there exists a unique morphism of k-schemes g : Spec R → X such
that f = g ◦ ϕ, where ϕ is the canonical morphism Spec K → Spec R.

Proof. First assume that the lemma is true for projective space of any dimension over
k. Then let X ⊂ Pnk be a closed embedding into Pnk for some n ≥ 0. Then since the
lemma holds for Pnk , we get a morphism of k-schemes Spec R → Pnk fitting into the
commutative diagram

Spec R // Pnk

Spec K //

OO

X.

OO

Let Z ⊂ Pnk be the closure of the image of the morphism Spec R → Pnk . Note that
dim(Z) ∈ {0, 1}, and that Z ∩X 6= ∅. We claim that Z ⊂ X. Otherwise,

∅ 6= X ∩ Z ( Z,

which implies that dim(Z) = 1 (since Z is connected), and that X ∩Z ( Z is a closed
subset of Z of dimension zero, whereas we have a factorization

ϕ : Spec K −→ X ∩ Z ↪→ Z

and the image of ϕ is dense in Z, as we have:

ϕ(Spec K) = ϕ(Spec K) = ϕ(Spec R) = Z.

This contradiction shows that indeed, Z ⊂ X. This implies that the morphism
Spec R→ Pnk factors as Spec R→ Z ⊂ X ⊂ Pnk , proving what we want.

It remains to prove the lemma in case X = Pnk . Let m ⊂ R be the maximal ideal of
R, so that R = (t) for some t ∈ R. Note that the morphism Spec K → Pnk corresponds
to the class

(s0 : · · · : sn) ∈ (Kn+1 − {0})/∼
of some (n + 1)-tuple of elements of K, not all zero, see Example 1.2.21. Write
si = αi · tni for unique αi ∈ R (with αi = 0 or αi ∈ R∗), and ni ∈ Z. Let I ⊂ {0, . . . , n}
with αi 6= 0 if and only if i ∈ I. Let m be the minimum of the ni with ni ∈ I. Then

t−m · tni = tni−m,

and ni−m ≥ m−m = 0 for each i ∈ I. Hence t−m · tni ∈ R for each i ∈ I. Moreover,
there exists i0 ∈ I such that m = ni0 . Then by Example 1.2.22, the (n+ 1)-tuple

t−m · (s0, . . . , sn) = (α0t
n0−m, . . . , αnt

nn−m) ∈ (Rn+1 − {0})
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gives rise to a unique morphism

Spec R −→ Pnk

whose composition with Spec K → Spec R gives the original map Spec K → Pnk .

Lemma 5.2.2. Let X and S be schemes. Let f, g : X → S be two S-scheme morphisms
that agree on U , a dense open subset of X. If X is reduced and S separated, then f = g.

Proof. Exercise.

Proposition 5.2.3. Let X and C be smooth projective curves over a field k. Let
f : X → C be a morphism of schemes over k. Then the following assertions are true.

(1) Either f is surjective, of f is constant.

(2) If f is surjective, then the fibres of f are finite.

Proof. (1). Consider the subset f(X) ⊂ C. We get a closed connected subset f(X) ⊂
C; this subset is either C or a single point (see Lemma 5.1.2). We assume f(X) is not
a point, so that f(X) = C. We then need to show that f is surjective. As f(X) = C,
the generic point of C is in the image of f , so we need to prove that for any closed
point x ∈ C there exists a closed point z ∈ X such that f(z) = x.

For this, let x ∈ C be a closed point. Let K = Frac(OC,x) be the function field
of C, which is also the fraction field of the discrete valuation ring OC,x. Let L be the
function field of the curve X. Let R be the integral closure of OC,x in L. Then R is a
discrete valuation ring with fraction field L, and we get a commutative diagram

X // C

Spec R //

OO

Spec OC,x

OO

Spec L

88

99

// Spec K.

OO
(5.8)

By Lemma 5.8, there is a morphism Spec R→ X that extends the map Spec L→ X.
We claim that it makes the square on the top right of (5.8) commute. Indeed, the two
compositions Spec R → Spec OC,x → C and Spec R → X → C yield two morphisms
Spec R → C that agree on the dense open subset Spec L ⊂ Spec R (cf. Lemma
3.1.12). By Lemma 5.2.2, these morphisms Spec R→ C must then be the same. Now
let y ∈ Spec R be the closed point of Spec R, and let z ∈ X be the image of y under
Spec R→ X. Then z ∈ X is a closed point such that f(z) = x.

(2). Assume f : X → C is surjective. Let x ∈ C be a point. If x = ξ is the generic
point of C, then f−1(x) = η is the generic point of X (indeed, this follows the fact
that f maps closed points to closed points, and that a point on a curve is closed if
and only if it is not the generic point; cf. Lemma 5.1.2). If x ∈ C is a closed point of
C, then f−1(x) ⊂ X is a closed subset of X strictly contained in X, and therefore, by
Lemma 5.1.2, f−1(x) consists of finitely many closed points of X.
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Proposition 5.2.4. Let X and C be varieties over a field k, with X projective and
C a curve. Let U ⊂ C be a non-empty open subset of C, and let f 0 : U → X be a
morphism of k-schemes. Then f 0 admits a unique extension f : C → X.

Proof. We may assume that X = Pnk for some n ≥ 0 (verify this). If U 6= C, then
C − U =: Z consists of finitely many closed points of C (see Lemma 5.1.2). To prove
the proposition, we may assume Z is a single closed point x ∈ C. Thus U = C − {x}.

Let K be the function field of C, so that K = Frac(OC,x). By Lemma 5.2.1, there
exists a unique morphism

Spec OC,x −→ Pnk
that extends the composition Spec L → U → Pnk . Thus we get n + 1 sections
(u0, . . . , un) ∈ On+1

C,x −{0} that do not vanish at the maximal ideal of OC,x (see Exam-
ple 1.2.22). By Theorem 1.2.18, the morphism U → Pnk corresponds to a line bundle
L = OU(D) attached to some Weil divisor D on U , together with n + 1 sections
s0, . . . , sn ∈ Γ(U,OU(D)) that globally generate L. If D =

∑
i nixi ∈ Div(U), define

D̄ ∈ Div(C) as the Weil divisor

D̄ :=
∑
i

nixi ∈ Div(C).

We get a line bundle L̄ := OC(D̄) on C. Let x ∈ V ⊂ C be an open neighbourhood
such that L̄|V ∼= OV . By shrinking V around x if necessary, we may assume that the
elements ui ∈ On+1

C,x extend to sections of L̄ over V which, up to multiplication, agree
with the sections si over V − {x}. By further shrinking V around x if necessary, we
may assume that the sections u0, . . . , un ∈ Γ(V, L̄) globally generate L̄. By Theorem
1.2.18, this gives a unique morphism

V −→ Pnk

that extends the composition V − {x} ⊂ U → Pnk . The proposition follows.

5.2.2 Rational functions on curves
Proposition 5.2.5. Let X and Y be projective schemes over a ring A. Assume
f : X → Y is a morphism of schemes over A with finite fibers. Then for each affine
open subscheme U ⊂ Y , the subscheme f−1(U) ⊂ X is affine.

Proof. We do not prove this here.

Let X be a variety over a field k, with generic point η ∈ X. Then k(X) = OX,η is a
field, and called the function field of X. For a non-empty affine open U = Spec A ⊂ X,
we have k(X) = Frac(A). Indeed, to prove this, we may assume X = Spec A is affine,
in which case the generic point corresponds to the zero ideal of A.

Lemma 5.2.6. Let X be a variety over a field k.

(1) For any open U ⊂ X, there is a natural bijection Γ(U,OX) = HomSch/k(U,A1
k).
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(2) There exists a natural bijection between k(X) and the set of equivalence classes
of tuples (U, f) where U ⊂ X is a non-empty open and

f : U −→ A1
k

is a morphism from U to the affine line over k, and where (U, f) ∼ (V, g) if the
maps f and g agree on the open subset U ∩ V ⊂ X.

Proof. As for (1): remark that

HomSch/k(U,A1
k) = HomSch/k(U, Spec k[t]) = Homk--Alg(k[t],OX(U)) = OX(U).

As for (2): this follows readily from (1) and the definition of k(X).

In combination with the results of Section 5.2.1, the following lemma yields:

Proposition 5.2.7. Let C be a smooth projective curve over a field k. Let P1
k =

Proj(k[x0, x1]) with ∞ = (0: 1) ∈ P1
k(k). Then P1

k − {∞} ∼= A1
k. We have:

(1) There is a natural bijection

k(C) =
{
f ∈ HomSch/k(C,P1

k) | f(C) 6= {∞}
}
.

(2) In particular, C admits a non-constant morphism f : C → P1
k.

(3) Let f : C → P1
k be non-constant. Then f is surjective with finite fibers. Moreover,

for any affine open U ⊂ P1
k, the inverse image f−1(U) ⊂ C is affine.

Proof. (1). By Lemma 5.2.6, any element of k(C) corresponds to the equivalence class
of a morphism f 0 : U → A1

k defined on a non-empty open U ⊂ C. By Proposition
5.2.4, the composition

f 0 : U −→ A1
k −→ P1

k

extends to a unique morphism
f : C −→ P1

k.

Note that f(C) 6= {∞}. This construction yields the desired bijection.
(2). The subfield k ⊂ k(C) corresponds to the set of constant maps C → A1

k ⊂ P1
k.

For a non-empty affine open U ⊂ C, we have k(C) = Frac(OC(U)). Thus k ( k(C) is
strictly contained in k(C), so that there exists a non-constant map f : C → P1

k.
(3). Let f : C → P1

k be non-constant. Then f is surjective with finite fibers by
Proposition 5.2.3. Since C and P1

k are projective over k, we get that for each affine
open U ⊂ P1

k, the inverse image f−1(U) is an affine scheme, see Proposition 5.2.5.
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5.2.3 Proof of Serre–Duality for the projective line

We first prove Serre–Duality for the curve C = P1
k. For this, we use the following

theorem as a blackbox.

Theorem 5.2.8. Let k be a field. Let F be a locally free sheaf of finite rank n ∈ Z≥1

on the projective line P1
k. Then there are integers a1, . . . , an ∈ Z such that

F ∼= OP1(a1)⊕ · · · ⊕ OP1
k
(an).

Proof. When n = 1, this is Exercise 2.3.11. We do not prove the general case here.

We can then show:

Lemma 5.2.9 (Serre duality on P1
k). Let F be a finite locally free sheaf on P1

k. Then
there is a natural isomorphism of k-vector spaces

H0(P1
k,F)∨ = H1(P1

k,F∨ ⊗OP1
k

ΩP1
k/k

). (5.9)

Proof. By Theorem 5.2.8, we have F ∼= ⊕iOP1
k
(ai) for some integers a1, . . . , an ∈ Z. In

particular, as taking cohomology of a sheaf commutes with direct sums, it suffices to
prove (5.9) in the case where F ∼= OP1

k
(a) for some a ∈ Z. Notice that ΩP1

k/k
∼= OP1

k
(−2)

by Example 5.1.9. Hence

F∨ ⊗OP1
k

ΩP1
k/k
∼= OP1

k
(−a− 2),

see item (1) of Exercise 2.3.11. Therefore, we need to provide a natural isomorphism

H0(P1
k,OP1

k
(a))∨ = H1(P1

k,OP1
k
(−a− 2)). (5.10)

We have H0(P1
k,OP1

k
(a)) = k[x0, x1]a and

H1(P1
k,OP1

k
(−a− 2)) =

(
(x0x1)−1 · k[x−1

0 , x−1
1 ]
)
−a−2

,

see Theorem 2.3.1. Now we have a pairing

k[x0, x1]a ×
(
(x0x1)−1 · k[x−1

0 , x−1
1 ]
)
−a−2

−→ k,

(f, g) 7→ f · x2
0x

2
1 · g.

This pairing is perfect, providing the desired isomorphism (5.10).

5.2.4 Preliminary results for Serre duality for curves
In this section, we gather several results that we need in the proof of Theorem 5.1.14.

Proposition 5.2.10. Let C be a smooth projective curve over a field k. Let π : C → P1
k

be a non-constant morphism. Let F be a finite locally free OC-module. Then the OP1
k
-

module π∗F is finite locally free, and we have an isomorphism of OP1
k
-modules

π∗
(
H omOC

(F ,ΩC/k)
) ∼= H omOP1

k

(π∗F ,ΩP1
k/k

).
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Proof. We first prove that π∗F is finite locally free. Since F is finite locally free, we
have that for each affine open W ⊂ C, we have that F(W ) is a flat OC(W )-module
(verify this!).

Let V ⊂ P1
k be any affine open. Then U := π−1(V ) is affine by Proposition 5.2.5.

Let A = OP1
k
(V ) and B = OC(U). The resulting ring map A→ B is flat (verify this!).

Moreover, by the above, the module (π∗F)(V ) = F(U) is flat over B. Therefore, F(U)
is flat over A.

Hence we see that for each affine open V ⊂ P1
k, the OP1

k
(V )-module (π∗F)(V ) is

flat. In particular, for each x ∈ P1
k, we get that (π∗F)x is a flat OP1

k,x
-module of finite

type. Since OP1
k,x

is a discrete valuation ring, any flat finite type module over it is finite
free. This proves that (π∗F)x is a finite free OP1

k,x
-module for all x ∈ P1

k. Therefore
π∗F is finite locally free by Lemma 3.4.7.

Next, we prove that there exists a canonical isomorphism

π∗
(
H omOC

(F ,ΩC/k)
) ∼−→H omOP1

k

(π∗F ,ΩP1
k/k

). (5.11)

To provide the isomorphism (5.11), we define

ωP1
k

:= OP1
k
(−2).

Note that ωP1
k

∼= ΩP1
k/k

canonically by Example 5.1.9. We then proceed in two steps:

Step 1 We construct a coherent OC-module ωC , together with a canonical isomorphism

π∗ (H omOC
(F , ωC))

∼−→H omOP1
k

(π∗F , ωP1
k
). (5.12)

Step 2 We construct a canonical isomorphism ΩC/k
∼= ωC .

Step 1. The definition of ωC goes as follows. Consider

Ui = D+(xi) ⊂ P1
k.

We have U0
∼= Spec k[t] and U1

∼= Spec k[t−1], which are glued along U0 ∩ U1
∼=

Spec k[t, t−1]. Define
C0 := π−1(U0), C1 := π−1(U1).

Moreover, define

Ai := OP1
k
(Ui), Bi := OC(Ci) (i ∈ {0, 1}).

Then the Ci ⊂ C are open subschemes, affine by Proposition 5.2.5, and the restrictions
of π gives two morphisms

πi : Ci −→ Ui (i ∈ {0, 1}).

Define
Mi := HomAi

(Bi, ωP1
k
(Ai)).
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Then Mi is a finitely generated Bi-module. Thus M̃i is a coherent OCi
-module. We

then glue together M̃0 and M̃1 to get a coherent sheaf ωC on C.
We claim that we have an isomorphism as in (5.12). To prove this, we work locally

again: define Fi := F(Ci). Then Fi is a finitely generated Bi-module, and the map

Ψi : HomBi
(Fi,HomAi

(Bi, ωP1
k
(Ai))) −→ HomAi

(Fi, ωP1
k
(Ai))

defined as

HomBi
(Fi,HomAi

(Bi, ωP1
k
(Ai))) 3 φ 7→ (` 7→ φ(`)(1)) ∈ HomAi

(Fi, ωP1
k
(Ai))

is an isomorphism. The maps Ψi for i ∈ {0, 1} sheafify to an isomorphism (5.12).

Step 2. It remains to construct a canonical isomorphism

ΩC/k
∼−→ ωC . (5.13)

For this, see [OE15, pages 402 & 403].

We proceed with the following lemmas, which we need (together with Proposition
5.2.10) in order to prove Theorem 5.1.14.

Lemma 5.2.11. Let f : X → Y be a morphism of schemes. Let F be an OX-module
and let E be a finite locally free OY -module. Then there is a natural isomorphism

f∗(F ⊗OX
f ∗E) ∼= f∗F ⊗OY

E .

Proof. Let A → B be a morphism of rings. Let M be a B-module. Let n ∈ Z≥1 and
consider the free A-module An. Then there is a natural isomorphism of A-modules

M ⊗B (An ⊗A B) ∼= M ⊗A An.

The lemma follows from this.

Lemma 5.2.12. Let X be a noetherian scheme and let F and G be finite locally free
OX-modules. Then we have a canonical isomorphism F∨ ⊗OX

G = H omOX
(F ,G).

Proof. There is indeed a morphism of sheaves F∨⊗OX
G →H omOX

(F ,G) defined as
f ′⊗g 7→ (f 7→ f ′(f) ·g). This map is an isomorphism, as can be verified on stalks.

5.2.5 Proof of the Serre duality theorem for curves
Proof of Theorem 5.1.14. We can now prove Theorem 5.1.14. Let C be a smooth
projective curve over a field k, and let F be a finite locally free sheaf on C. In view of
Remark 5.1.15, it suffices to prove (5.5). By Lemma 5.2.7, there exists a non-constant
morphism

π : C −→ P1
k.
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By Proposition 5.2.10, we have a canonical isomorphism

π∗
(
H omOC

(F ,ΩC/k)
) ∼= H omOP1

k

(π∗F ,ΩP1
k/k

).

This yields:

H0(C,F)∨ ∼= H0(P1
k, π∗F)∨ (5.14)

∼= H1
(
P1
k, (π∗F)∨ ⊗OP1

k

ΩP1
k

)
(5.15)

∼= H1
(
P1
k,H omOP1

k

(π∗F ,ΩP1
k
)
)

(5.16)

∼= H1
(
P1
k, π∗

(
H omOC

(F ,ΩC/k)
))

(5.17)
∼= H1

(
C,H omOC

(F ,ΩC/k)
)

(5.18)
∼= H1

(
C,F∨ ⊗OC

ΩC/k

)
. (5.19)

Let us explain the above isomorphisms. The isomorphism (5.14) holds since we have

H0(P1
k, π∗F) = Γ(P1

k, π∗F) = Γ(C,F) = H0(C,F).

Then (5.15) follows from Lemma 5.2.9. The isomorphism (5.16) holds by Lemma
5.2.12. Then (5.17) follows from Proposition 5.2.10. The isomorphism (5.18) follows
from Lemma 2.1.17 together with item (3) in Lemma 5.2.7. Finally, (5.19) holds by
Lemma 5.2.12 again.

This proves (5.5), and hence we are done.

5.2.6 Proof of the first version of Riemann–Roch
Lemma 5.2.13. Let C be a smooth projective curve over a field k. Let D ∈ Div(C)
be a Weil divisor on C. Let p ∈ C be a closed point. Then:

χ(C,OC(D + p)) = χ(C,OC(D)) + [k(p) : k], (5.20)
deg(D + p) = deg(D) + [k(p) : k]. (5.21)

Proof. Let I ⊂ OC be the ideal sheaf of the closed subscheme i : Spec k(p) ↪→ C
attached to the closed point p ∈ C. By Exercise 3.3.9, we have I = OC(−p) as
subsheaves of OC . This gives an exact sequence

0 −→ OC(−p) −→ OC −→ i∗OSpec k(p) −→ 0.

Consider the line bundle OC(D+p) on C. Since this OC-module is invertible, tensoring
the above sequence with it gives a sequence which remains exact:

0 −→ OC(D) −→ OC(D + p) −→ i∗OSpec k(p) −→ 0. (5.22)

Here, we used Lemma 5.2.11, which implies that for any line bundle L on C, we have

L⊗OC
i∗OSpec k(p)

∼= i∗

(
i∗(L)⊗OSpec k(p)

OSpec k(p)

)
∼= i∗OSpec k(p).
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Consider the exact sequence (5.22). By Lemma 5.1.12, we obtain:

χ(C,OC(D + p)) = χ(C,OC(D)) + χ(C, i∗OSpec k(p)).

Since

χ(C, i∗OSpec k(p)) = dimk H0(C, i∗OSpec k(p)) = dimk(OSpec k(p)(Spec k(p)))

= dimk(k(p)) = [k(p) : k],

the equality (5.20) follows.
Consider p ∈ C as a Weil divisor on C. Then deg(p) = [k(p) : k], so that we have

deg(D+ p) = deg(D) + deg(p) = deg(D) + [k(p) : k]. In particular, (5.21) follows.

Proof of Theorem 5.1.13. Let C be a smooth projective curve over a field k. Let g be
the genus of C, and let D ∈ Div(C) be a Weil divisor on C. Write

D =
m∑
i=1

ni · pi,

for closed points p1, . . . , pm ∈ C. By Lemma 5.2.13, we have

χ(C,OC(D)) = χ(C,OC) +
m∑
i=1

ni · [k(pi) : k],

deg(D) =
m∑
i=1

ni · [k(pi) : k].

Therefore, to prove (5.4), it suffices to prove that

χ(C,OC) = 1− g.

As χ(C,OC) = h0(C,OC) − h1(C,OC), and as h0(C,OC) = 1 by Example 2.3.4, this
amounts to proving that h1(C,OC) = g, which holds by Corollary 5.1.16.
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